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Abstract

Background: Tuberculosis remains one of the leading causes of morbidity and mortality worldwide. Therefore,
understanding the pathophysiology of Mycobacterium tuberculosis is imperative for developing new drugs. Post-
transcriptional regulation plays a significant role in microbial adaptation to different growth conditions. While the
proteins associated with gene expression regulation have been extensively studied in the pathogenic strain M.
tuberculosis H37Rv, post-transcriptional regulation involving small RNAs (sRNAs) remains poorly understood.

Results: We developed a novel moving-window based approach to detect sRNA expression using RNA-Seq data.
Overlaying ChIP-seq data of RNAP (RNA Polymerase) and NusA suggest that these putative sSRNA coding regions
are significantly bound by the transcription machinery. Besides capturing many experimentally validated sRNAs, we
observe the context-dependent expression of novel sRNAs in the intergenic regions of M. tuberculosis genome. For

example, ncRv11806 shows expression only in the stationary phase, suggesting its role in mycobacterial latency
which is a key attribute to long term pathogenicity. Also, ncRv11875C showed expression in the iron-limited
condition, which is prevalent inside the macrophages of the host cells.

Conclusion: The systems level analysis of SRNA highlights the condition-specific expression of sRNAs which might
enable the pathogen survival by rewiring regulatory circuits.
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Background

Tuberculosis remains one of the most successful human
pathogens and one among the top 10 leading causes of
morbidity and mortality from infectious diseases world-
wide [1]. In about 90% of the affected individuals,
bacteria may persist in the form of an asymptomatic
latent infection, which may reactivate under any form of
immunosuppression [2]. During the course of infection,
M. tuberculosis adapts to different micro-environments
such as iron restriction, starvation, hypoxia and low pH.
The transcriptional and translational machinery associated
with bacterial adaptation in response to environmental
changes have been widely studied in M. tuberculosis [3].
Most of these studies have invariably focused on the
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protein-coding regions of the genome. However, with
the emergence of transcriptome sequencing revolution,
expression patterns in the non-protein coding regions
can be analysed meaningfully. This is important as
the recent studies suggest that bacterial genomes code
for small non-coding RNAs (sRNAs), which play a
significant role in modulating translation or mRNA
stability [4].

Depending on the base pairing with their target
mRNAs, there are three broad classes of sSRNAs (i) Anti-
sense sSRNAs which are present in the opposite strand of
their target mRNA and share an extensive sequence
complementarity, (ii) Trans-encoded sRNAs which are
located largely in the intergenic regions (IGRs) and share
limited sequence complementarity with their target
mRNAs, and (iii) Cis-encoded sRNAs which are present
in the untranslated regions (UTRs) of the genes [4-6].
These sRNAs are important for adapting to various
stresses and environmental changes caused by the host
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defense mechanisms. For example, Escherichia coli
sRNA RyhB maintains iron homeostasis by downregulat-
ing the expression of iron utilization proteins such as
SodB, PflA and MsrB [7]. Also in E. coli, SRNAs DsrA
and RprA base-pair with the mRNA of the stress re-
sponse sigma factor rpoS, thereby increasing its stability
by rendering protection from RNaseE [8]. While adapt-
ing to less carbon source, SRNA CrcZ in Pseudomonas
aeruginosa helps in relieving catabolite repression by se-
questering Crc protein [9]. Some of the sSRNAs identified
in M. tuberculosis so far include F6, B11, MTS2823,
ncRV12659, DrrS, Mcr7 and Mrsl [10-15]. DrrS showed
increased expression in the stationary phase which is
regulated by the M. tuberculosis dormancy regulator
DosR [12]. Also, ncRv12659 which is transcribed anti
sense to the gene Rv2660c, was shown to be expressed
during starvation [15]. Another condition-specific SRNA
is Mrsl which is expressed during iron starvation, oxida-
tive stress and membrane stress [14].

Both sequence and expression based approaches have
been used to identify sSRNAs in the bacterial genomes.
Previously in E. coli, putative sSRNAs were shortlisted by
identifying conserved IGRs across Salmonella typhi, S.
paratyphi, and S. Typhimurium, with potential transcrip-
tion start and termination sites [16]. In another
sequence-based approach, 13 well annotated bacterial
species were considered for identifying conserved IGRs
which are likely to code for sSRNAs [17]. However, such
sequence-based methods remain efficient in identifying
only those sSRNAs which are conserved across other bac-
terial genomes. The emergence of transcriptome data
has opened a way to identify sSRNAs based on their ex-
pression. In E. coli, IGRs were identified as sRNAs if
they showed significant expression compared to the up-
stream and downstream protein-coding genes [18]. In
M. tuberculosis, expression data corresponding to the
log-phase growth was utilised to identify sSRNAs by con-
sidering the read depth at a given position in the gen-
ome excluding the UTRs [19]. However, none of these
genome-wide analyses focused on the conditional ex-
pression of the sRNAs in different stress environments.

While sequence conservation-based approaches fail to
identify species specific sSRNAs and sRNAs which show
significant divergence, expression based methods need
to be improved to address the following challenges: a) to
detect SRNA expression independent of the neighbour-
ing gene expression and the signals arising due to UTR
expression, b) to identify sRNA expression within an
IGR without normalising the reads across the entire
IGR, and c) to identify condition-specific expression of
the sSRNAs.

We used RNA-Seq data to identify sRNAs in M. tubercu-
losis. Our method employs sliding-windows along the IGRs
to detect SRNA expression, while efficiently dismissing the
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expression signals arising from the upstream and the down-
stream genes and their UTRs. Previously, such moving win-
dows of normalised RNA-Seq values along the genome
were used to detect sigma-H dependent promoters in Lis-
teria monocytogenes [20]. Also, as SRNAs are recognised to
tune the cellular responses, we profiled the conditional ex-
pression of sSRNAs by analysing the expression data across
multiple growth conditions. Analysis of these condition
specific SRNAs along with their predicted targets provided
insights on the putative regulatory mechanisms for bacterial
adaptation under various stress conditions.

Results and discussion
Profiling expression data of M. tuberculosis to identify
sRNAs
We used RNA-Seq data of the mid-exponential phase
culture to develop a methodology for identifying sSRNAs
in the intergenic regions (IGRs) of M. tuberculosis [21].
Initially, we quantified the expression of different func-
tional elements in the genome and tested if the RNA-
Seq data is sufficient to detect the IGR sRNA expression.
Of the 4018 protein coding genes (CDS), 1000 highly ex-
pressing (HE) and less expressing (LE) genes respect-
ively, were extracted (Additional file 9: Tables S3a and
S3b). These were compared with the essential genes
which show high expression levels [22-25] (Additional
file 1: Figure S1). rRNAs are the abundantly expressed
RNA species in the cell. Similarly, tRNAs show signifi-
cant expression, which is comparable to the expression
of the essential genes (Additional file 1: Figure S1). Fur-
ther, we divided the IGR into untranslated regions
(UTRs) and the absolute intergenic region (AbIGR)
which is devoid of the UTRs. Both IGRs and AbIGRs
show significant expression which is higher than the less
expressed genes, implying functional importance of the
non-protein coding regions in the genome. The high ex-
pression levels of the experimentally validated sRNAs
encoded in the IGRs suggest that RNA-Seq could be po-
tentially used to predict the location as well as the ex-
pression levels of sRNAs in the bacterial genomes
(Additional file 8: Table S2; Additional file 1: Figure S1).
About 1037 IGRs of length more than 100 bp which
are devoid of repeat regions, insertion elements, rRNAs
and tRNAs were considered for identifying sRNAs
(Methods). The distribution of these IGRs shows varied
lengths ranging from 100 to 1500 bases (Additional file
2: Figure S2). As the given sRNA is unlikely to span the
entire length of the IGR, a moving window approach
was adopted to capture the expression of the sRNAs.
The IGRs were covered by the windows of lengths 50
bases with 25 bases sliding and the expression of each of
these windows was compared to its neighbouring win-
dows to identify the peak expression signal. A window
with an expression value of more than three times the
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median expression value of all the IGRs and showing
higher expression compared to its adjacent windows was
considered as a potential SRNA encoding region (Add-
itional file 3: Figure S3; Methods).

Using this approach, we identified 119 IGR regions as
significantly expressed in the mid-exponential growth
phase which are likely to encode sSRNA (Additional file
10: Table S4a). Of these, 52 and 2 expression regions
were from the 5’ and the 3'UTRs of the neighbouring
genes, respectively. These included three experimentally
validated sRNAs, namely, ncRv13003Ac, ncRv3418Ac
and ncRv13660Ac which are in the 5’UTR of their re-
spective neighbouring genes. The rest 65 expression re-
gions were localised in the ADbIGR which included
experimentally  validated  sRNAs  ncRv11147Ac,
ncRV2395, ncRv11534A and ncRv11846c¢ [10, 11, 26].

Increased transcription machinery binding in the
expressed IGRs
For the 119 potential sRNA regions identified in the
mid-exponential growth phase, we tested their expres-
sion by profiling the binding of RNA polymerase
(RNAP) and NusA along these regions. RNA polymerase
(RNAP) is the principal enzyme involved in synthesising
of RNA from a DNA template. Another member of the
transcription complex is NusA, a terminator and an
anti-terminator of transcription which was shown to fa-
cilitate transcription by binding to RNAP in both mid-
exponential and stationary phases of growth [27-29].
ChIP-seq data of RNAP and NusA in M. tuberculosis
were used to test if these transcription-associated pro-
teins are significantly bound to the identified sSRNA re-
gions on the genome [27]. Additionally, ChIP-seq data
of the polyketide synthase regulator Rv1186¢ and a gen-
omic control sample attributing non-specific binding sig-
nals across the genome were used as control datasets
(SRR1524124 and SRR5753731). We observe that the
119 expressed sRNA regions were significantly bound by
both RNAP and NusA compared to the non-expressed
IGRs (P value <7.702e-10 and P value < 7.208e-06, re-
spectively). Expression analysis using RNA-Seq data as-
sociated with RNAP and NusA experiments
(SRP015746) showed that these putative sRNA regions
are highly expressed compared to the non-expressed
IGRs (P value < 4.424e-07). However, such a differential
binding was not observed in the control samples
Rv1186¢ and the genomic control (P value < 0.3239 and
P value < 0.7858). Further, we performed a similar ana-
lysis for the highly expressed protein coding genes and
the less expressed protein coding genes. As expected,
the highly expressed protein coding genes showed in-
creased binding of RNAP and NusA compared to the
control samples (P-value <2.2e-16) (Fig. 1). Therefore,
sRNA regions identified in the mid-exponential growth
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phase seem to be significantly bound by the transcrip-
tion machinery, suggesting transcriptional activity in
these genomic regions.

Context-dependent expression of sRNAs to revamp
cellular responses

Similar to transcription factors, bacterial sSRNAs show
condition-specific expression which enables them to im-
part necessary cellular responses for a particular growth
environment [7, 9, 12, 15]. The 119 sRNAs described
earlier were identified in the mid-exponential phase
growth culture. To gain more insights on the context-
dependent expression of the sRNAs, we analysed M. tu-
berculosis RNA-Seq data of 5 different studies represent-
ing 15 different growth conditions. These included
exponential and stationary growth phases, M. tubercu-
losis persistence and reactivation conditions, stress con-
ditions such as iron depletion, NO treatment and acidic
pH growth [27, 30, 31] (Additional file 8: Table S1). Of
the 1037 IGRs considered in the analysis, we observed
the expression of 430 putative sRNAs from 361 IGRs in
at least one growth condition (Additional file 10: Table
S4b; Additional file 4: Figures. S4a and S4b). Genome-
wide representation of the IGR sRNA expression high-
lights the context-dependent expression of sSRNAs along
the M. tuberculosis genome (Figure 2).

We captured the expression of 24 sRNAs from 42 ex-
perimentally validated intergenic sSRNAs of M. tubercu-
losis (Table 1). Over-expression of the SRNA MTS2823
(ncRv13661) was previously shown to affect the growth
rate of M. tuberculosis [11]. In our analysis, MTS2823
showed expression in all the 15 growth conditions with
a very high expression in the stationary phase (Fig. 3).
One of the promising targets predicted for MTS2823 is
the gene Rv0115 (hddA) which codes for D-alpha-D-
heptose-7-phosphate kinase, involved in GDP-L-fucose
salvage pathway. Also, some of the other targets pre-
dicted for MTS2823 such as hemD, Rv0875, ribH,
mpt83, Rv3828c and Rv3839 were down-regulated by
>2.5-fold upon over expression of MTS2823 [11]. An-
other SRNA MrsI (ncRv11846) was shown to be induced
during exposure to iron starvation, oxidative stress and
membrane stress. Mrsl represses the iron storage mRNA
bfrA in iron deprived conditions [14]. Along similar
lines, we observe the induced expression of Mrsl during
iron limiting conditions. Also, Mrsl expression is signifi-
cantly induced in the late stages of iron deprivation
compared to low iron day-1 (P value < 2.2e-16) (Fig. 4).

While 6 sRNAs are expressed irrespective of the
growth condition, the rest of the sRNAs showed
context-dependent expression (Fig. 2 and Additional file
4: Figure. S4b). The sRNA ncRv11806, which is flanked
by the genes PE20 and PPE32, showed expression only
in the stationary phase of growth (P value <2.2e-16)
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Fig. 1 Binding of RNAP and NusA in the identified sSRNA regions. Putative SRNA regions detected in the mid-exponential phase showed
significant binding of RNAP and NusA compared to non-expressing IGRs (P-value < 0.05). They were also shown to be highly expressed in the
RNA-Seq data associated with the ChiIP-Seq experiments of RNAP and NusA (P-value < 4.424e-07). A similar binding profile was also seen for the
highly expressed protein coding genes (P-value < 2.2e-16). However, this differential binding was not observed in the ChIP-seq data of the
control sample Rv1186 and the genomic control

(Fig. 5). Some of the potential targets predicted for this
region were rpfB, nrdH, memE, thyX, senX3 and mutTI
(Additional file 11: Table S5a). The expression of rpfB
which codes for a resuscitation promoting factor (RpfB)
gets diminished as the pathogen transits into stationary
phase [32] (Additional file 5: Figure S5A). ncRv11806 is
predicted to bind at the 5UTR region of rpfB mRNA,
which extends further to the protein coding region
(Additional file S5: Figure S5B). We therefore hypothe-
sise that the induced expression of ncRv11806 in the sta-
tionary phase of M. tuberculosis growth might repress
the translation of rpfB.

Another sRNA ncRv11875C located between the genes
RvI875 and bfrA showed significant expression in the
iron limiting conditions (P value <2.2e-16) (Fig. 6).
Genes Rv3003c, Rv1924c, Rv3150, Rvi937, Rv1728c,
Rv1626, Rv1308, Rv0544c, Rv0532 and RvI526¢ are the
predicted targets for this SRNA (Additional file 11: Table
S5b). Subsequent gene expression analysis revealed that
the predicted targets Rvi308 Rv3003c, Rv1924c,
Rv1728¢, Rvi626 and Rv3150 showed reduced expres-
sion in the iron limited condition compared to mid-
exponential and high iron growth conditions (Additional
file 6: Figure S6). On the other hand, Rv1937, which is a
probable monooxygenase containing [2Fe-2S] cluster

shows increased expression in the iron limited condi-
tions, suggesting a probable positive regulation by
ncRv11875C (Additional file 6: Figure S6).

M. tuberculosis persists in the host with a reduced meta-
bolic activity and gets reactivated upon encountering
favourable conditions for growth [2]. However, the regula-
tory roles of mycobacterial SRNAs in these growth phases
remain poorly understood. We observe that the sRNA
ncRv11706A, which is in the intergenic region between
Rv1706A and Rv1706c, is highly expressed in hypoxia in-
duced persistence (P value < 2.2e-16) (Fig. 7). Some of the
predicted targets shortlisted for this sRNA such as
Rv3158, Rv2736¢, Rv1382, Rv2325c and Rv2898¢ showed
reduced expression in persistence compared to mid-
exponential growth and various reactivation phases (Add-
itional file 11: Table S5c; Additional file 7: Figure S7A).
On the other hand, predicted target genes Rv3047c and
Rv3102c showed increased expression in persistence com-
pared to mid-exponential and reactivation conditions
(Additional file 7: Figure S7A). Among these, Rv2736¢ en-
coding RecX was repressed in persistence significantly.
RecX, which modulates the activity of RecA by inhibiting
its ATP hydrolysis and the strand-exchange activities, was
shown to be significantly downregulated in SS18b model
which mimics latent TB infection [33, 34]. ncRv11706A is
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Fig. 2 Genome-wide representation of the conditional expression of IGR sRNAs. The circles represent 15 growth conditions from innermost to
the outer as ordered in Table S1. For each growth condition, the expression units range from 0 to 1500 RPKM. Experimentally validated sRNAs

and sRNAs expressed in all conditions are highlighted in orange and red strokes respectively. Green strokes represent the expressed sRNAs and
the blue strokes represent the absence of the sRNA expression

-

predicted to interact at 3 bases downstream of the start Conclusions
codon of recX mRNA, suggesting that this interaction
might affect the translation, thereby repressing RecX ac-
tivity (Additional file 7: Figure S7B). These conditionally
expressed sSRNAs in the context of their predicted targets
and the functions, therefore, provide insights on bacterial
adaptability to changing growth environments.

Bacterial genomes encode both cis and trams-acting
sRNAs which are important for the regulation of cellular
functions [4]. Since sequence conservation is poor for
the sRNAs across species, homology-based methods are
less powerful in identifying sSRNAs [35]. Previously, there
were attempts to determine SRNA coding regions in the
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Table 1 Conditional expression of the 24 experimentally validated sRNAs. Of these, only 2 sRNAs were expressed in all the 15

growth conditions

SRNA Start End Strand Number of Expressed Conditions PubMed Identifier
ncRv10243A (F6) 293604 293705 + 12 23284830
ncRv10537A 629877 629975 + 6 19555452; 22072964
ncRv10932Ac 1041165 1041129 - 4 20181675; 22072964
ncRv11051c (MTS0823) 1175225 1175315 + 2 22072964, 20181675
ncRv11075A 1200555 1200605 + 1 22072964
ncRv11147Ac (MTS0903) 1275549 1276297 - 8 20181675
ncRv11160A 1287126 1287201 + 13 23284830
ncRv11174Ac 1306073 1306038 - 3 20181675
ncRv1222A 1365274 1365365 + 5 22452820
ncRv11248c¢ 1393055 1393140 + 2 20181675; 22072964
ncRv11296A 1453007 1453060 + 13 20181675
ncRv11435¢ 1612987 1613047 + 1 23284830
ncRv11534A 1735693 1735747 + 15 19555452; 22072964
ncRv1734A (MTS1338) 1960667 1960783 + 7 24244498
ncRv11846Ac (Mrsl) 2096839 2096768 + 4 29871950
ncRv2395A 2692172 2692521 + 5 20181675
ncRv12560A 2881252 2881320 + 2 20181675
ncRv12904A 3214341 3214399 + 9 23284830
ncRv13003Ac 3363153 3363023 - 2 20181675
ncRv13241Ac 3621466 3621265 - " 23284830
ncRv3418Ac 3837458 3837288 - 13 23284830
ncRv13596A (MTS2774) 4040879 4040938 + 5 20181675
ncRv13660Ac (MTS2822) 4099478 4099386 - 13 20181675; 22072964
ncRv13661A (MTS2823) 4100669 4100968 + 15 20181675

bacterial genomes using expression data [18, 19]. How-
ever, the challenges while using such an approach in-
clude discriminating between sRNA expression signal
and the noise arising from IGRs, and to systematically
eliminate the signals which are associated with the
neighbouring gene expression. We have devised a novel,
moving-window based method for detecting SRNA ex-
pression in the IGRs. Our method is elegant in capturing
both validated and novel sSRNA expression, with reduced
influence of the expression signals arising from both the
upstream and the downstream gene UTRs. As RNA-Seq
is used as the input, the same data allows for the simul-
taneous quantification of both protein-coding gene as
well as sSRNA expression. Using this method, we identi-
fied 119 IGR sRNAs in the mid-exponential growth
phase, which also exhibit preferential binding for the
transcription machinery.

Mpycobacteria encounter diverse environments in the
host such as nutrient depletion, hypoxia and iron limita-
tion. Profiling of sRNAs in multiple conditions is there-
fore essential to understand the expression dynamics of

sRNAs, which correlates with the conditional responses
of the cell. Our extended analysis of the repertoire of
RNA-Seq data to detect sRNA expression revealed
context-dependent expression of many sRNAs. As case
studies, we chose some of these novel sRNAs identified
by our method and attempted to explain their potential
regulatory role by predicting gene targets. One such
sRNA is ncRv11806 which shows expression in the sta-
tionary phase of growth. Resuscitation promoting factor
(RpfB) is one of its predicted gene targets which is re-
quired for the revival of dormant bacteria. It is interest-
ing to note that the binding of ncRv11806 to the rpfB
mRNA masks the 5 UTR and the start codon, which
likely hinders translation. Also, ncRvl11706A appears as
the hypoxia-induced persistence specific SRNA. One of
the targets for ncRv11706A is recX, the expression of
which is downregulated in the latent mycobacterial in-
fection. By inspecting the putative binding sites, it ap-
pears that the SRNA ncRv11706A masks the start codon
on the recX mRNA. Therefore, our methodology for
identifying sSRNAs and subsequent cataloguing of their
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Fig. 3 High expression of the MTS2823. Literature curated sSRNA MTS2823, which is flanked by the genes Rv3661 and Rv3662¢ (represented as
arrows), shows expression in all the 15 growth conditions
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Fig. 6 Expression of ncRv11875C in iron rich and iron limiting conditions. sSRNA ncRv11875C which is flanked by the genes Rv1875 and bfrA is
induced in the iron limiting conditions (day-1 and week-1) compared to the iron rich environment. The upstream and the downstream genes are
represented as arrows
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Fig. 7 Expression of persistence and reactivation specific SRNAs. sSRNA ncRv11706A which is flanked by the genes Rv1706¢ and Rv1706A
(represented as arrows) showed expression in persistence compared to the exponential phase and all the stages of reactivation

context-dependent expression generated novel perspec-
tives on the sRNA mediated regulation. Further experi-
mental validation of these putative sRNAs and their
regulatory mechanisms will provide more insights on M.
tuberculosis host adaptation and pathogenesis.

Methods

Downloading and processing expression data

RNA-Seq data of M. tuberculosis H37Rv were retrieved
from the NCBI-Sequence Read Archive (NCBI-SRA)
(https://www.ncbinlm.nih.gov/sra) and European Nucleo-
tide Archive (ENA) (https://www.ebi.ac.uk/ena) databases.
Based on the library size quality, 5 different studies with
15 unique growth conditions were chosen for the analysis
(Additional file 8: Table S1). SRA files were converted to
fastq using fastq-dump available in sra-toolkit.2.1.18. The
adapter sequences and the reads with the mean Phred
score < 15 were removed using trimmomatic (v 0.36) [36].
Trimmed data were aligned to the M. tuberculosis H37Rv
reference genome (NC_000962.3) [37] using bowtie2 (v
2.1.0) [38] and the resulting SAM files were converted into

BAM files. BAM files for the replicate datasets were
merged, sorted and indexed using samtools (v 0.1.18) [39].

Selecting IGRs for the analysis
Intergenic region (IGR) is defined as the genomic region
between two protein-coding regions, and absolute inter-
genic region (AbIGR) is the IGR devoid of the UTRs.
The genome size of M. tuberculosis H37Rv is 4411532
bp, which consists of 4018 proteins coding regions, 3
rRNAs and 45 tRNAs [37]. Of the 4017 Intergenic re-
gions (IGRs), following were excluded from the analysis:
i) 830 IGRs between operonic genes [40] ii) 48 IGRs en-
coding tRNAs and rRNAs [37] iii) 41 IGRs which con-
tain mycobacterium specific repeat regions such as
MIRU, VNTR [41] iv) 46 IGRs with Insertion elements
such as IS6110 (16 copies), 1S1018 (6 copies), REP13E12
(14 copies) and other IS (11 copies) [37] and v) IGRs
which have a length smaller than 100 bp. This resulted
in a total of 1037 IGRs for further analysis.

Genome coordinates of the protein-coding regions,
tRNAs, rRNAs and repeat regions were retrieved from the
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NCBI Refseq gene annotation file (https://www.ncbinlm.
nih.gov/refseq/) [37]. Transcription termination (3'UTR)
coordinates were derived from the WebGeSTer database
[42]. Coordinates of the transcription start site were ob-
tained from the study by Cortes et al. [43]. From the inter-
genic regions, both the 3" and the 5" UTRs were removed
to get the absolute intergenic region (AbIGR). MultiBam-
cov in Bedtools was used to obtain read counts which
were further normalised using RPKM (Reads Per Kilobase
Million) [44]. In the mid-exponential phase growth cul-
ture, top 1000 genes with high expression, which corres-
pond to more than third quartile (Q3) of the dataset were
identified as highly expressed (HE) genes [21]. Similarly,
bottom 1000 genes with the least expression, which cor-
respond to less than first quartile (Q1) of the dataset were
identified as less expressed (LE) genes [21]. For compari-
son, experimentally validated sRNAs in M. tuberculosis
were curated from the available literature (Additional file
8: Table S2).

Identifying IGR expression

To identify significant expression in the IGRs, windows
of 50 base length with 25 bases sliding were used. In
each IGR, a window was termed expressed if a) its ex-
pression value (RPKM) is greater than or equal to three
times the median expression of the IGRs which are de-
void of operons and repeat regions, and b) is greater
than the adjacent windows. The first and the last win-
dows in each IGR were masked to avoid the misclassifi-
cation of the UTR expression as sSRNA expression. The
windows which overlap with the annotated pseudogenes
were excluded. The expressing windows were merged to
obtain putative sSRNAs if they appear as contiguous in
terms of genomic coordinates.

ChIP-Seq data analysis

Differential binding of RNAP and NusA in the expressed
IGRs in mid-exponential phase was analysed using
ChIP-Seq datasets GSM1003214 and GSM1003222, re-
spectively [27]. These were compared with the ChIP-Seq
data of the transcription factor Rv1186 (SRR1524124)
and a genomic control (GSM2683113). Fastq-dump
function of the sra-toolkit-2.1.18 was used to retrieve
fastq format of the data. Trimmomatic (v 0.36) was used
to trim the adapter sequences and the reads with the
mean Phred score <15 [36]. The data were aligned to
the reference genome using bowtie2 (v 2.1.0) [38].
Aligned SAM files were converted to BAM files which
were further sorted and indexed by samtools. From the
sorted bam files, readcounts were obtained using multi-
BamCov of bedtools [44], which were further normalised
to RPKM values to represent the binding profile. Welch
Two Sample t-test was performed using R (https://www.
r-project.org/) to compare the binding of transcription
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machinery to the expressed sRNAs encoding regions
and the non-expressed IGRs.

Gene targets of the identified sRNAs

Genome-wide putative termination sites were derived
using iTerm-PseKNC which were further used to deter-
mine the strands of the expressed sSRNAs [45]. Potential
gene targets of the SRNAs were derived using target pre-
diction tools IntaRNA and TargetRNA2 [46, 47]. The
reference genome of M. tuberculosis (NC_000962.3) was
used as a target input file. Of the list of predicted targets
with p-value <0.05, we considered 10 genes with mini-
mum binding energy and the least p-value as potential
targets for further analysis. Expression of the target
genes in each of the 15 RNA-Seq data was quantified
using bedtools [44]. The read counts were normalised by
calculating RPKM.

All statistical analyses were performed using R
(https://www.r-project.org/). The statistical significance
of the conditional expression of sRNAs was assessed
using Wilcoxon signed rank test. Data were analysed
using in-house shell and python scripts. Circos version-
0.69 was used to represent the IGR expression along the
circular chromosome co-ordinates [48].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512864-020-6573-5.

Additional file 1 Figure S1. Expression profile of different functional
categories in the mid-exponential growth phase. sRNAs are expressed on
par with highly expressed and known essential genes. IGRs and AbIGRs,
which are the potential SRNA encoding regions, also show significant ex-
pression suggesting functional relevance of the non-protein coding re-
gions. (CDS - Protein coding regions, EG - Essential genes, HE — Highly
expressed genes, LE - Less expressed genes, IGR - Intergenic regions,
ADbIGR - Absolute intergenic region devoid of neighbouring gene UTRs,
and sRNA - curated sRNAs).

Additional file 2 Figure S2. Length distribution of 1037 IGRs chosen
for the study. The IGR length ranges from 100 bp to 1500 bp.

Additional file 3 Figure S3. Moving-window approach to identify SRNA
expression. The IGR between the two protein-coding regions (CDS) in-
cluding untranslated regions (5'UTR and 3'UTR) was slided with windows
of length 50 base with 25 bases sliding. In this cartoonic representation,
the genomic region covered by the 3rd window is predicted to encode
an sRNA as it shows expression higher than the cut-off (the solid line)
and the expression greater than the adjacent windows.

Additional file 4 Figure S4. Expression of IGRs across growth
conditions. (A) Number of sSRNAs expressed in each of the growth
conditions studied (B) Frequency distribution of the number of sSRNAs
versus the number of the expressed growth conditions. Of the 430
SRNAs, 6 showed expression in all the 15 growth conditions and 48
sSRNAs were expressed in more than 10 growth conditions.

Additional file 5 Figure S5. Expression of the predicted target genes
of ncRv11806.(A) Expression of the predicted gene targets of the sSRNA
ncRv11806 quantified in both exponential and stationary phases of
growth. (B) Base pairing of ncRv11806 and one of its targets Rv1009. The
5'UTR region of rpfB is underlined and the start codon AUG is highlighted
in bold letters.
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Additional file 6 Figure S6. Expression of the target genes of
ncRv11875C. Expression of some of the predicted gene targets of the
SRNA ncRv11875C which are differentially expressed in low iron
conditions compared to mid-exponential and high iron growth.

Additional file 7 Figure S7. Expression of the target genes of
ncRv11706A. (A) Expression of few of the target genes of ncRv11706A
which are differentially expressed at persistence day-0 compared to mid-
exponential growth phase and various time points of reactivation. (B)
Base pairing of ncRv11706A and one of its targets recX. The start codon is
highlighted in bold letters.

Additional file 8 Table S1. List of the RNA-Seq data. Description of the
15 RNA-Seq datasets used in the study along with their SRA study and
accession numbers, growth conditions, and the data type. Table S2. Ex-
perimentally validated sRNAs. List of literature curated M. tuberculosis
SRNAs which are experimentally validated.

Additional file 9 Table S3. Highly expressed and less expressed genes
in the mid-exponential growth phase. List of highly expressed (a) and less
expressed genes (b) protein coding genes in the mid-exponential growth
phase with their RPKM values and the gene coordinates.

Additional file 10 Table S4. Context-dependent expression of the
SRNAs. (a) List of 119 sRNAs expressed in the mid-exponential growth
phase. (b) Context-dependent expression of all the 430 sRNAs derived by
our method. (c) Binary matrix representation of the context-dependent
expression of sRNAs across 15 growth conditions. (d) Expression matrix of
the identified sRNAs in all the 15 growth conditions.

Additional file 11 Table S5. Target genes of some of the SRNAs.
Predicted gene targets of the sRNAs along with their quantified
expression in relevant growth conditions. Targets of (a) ncRv11806, (b)
ncRv11875 and (c) ncRv11706A.
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