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Abstract

Background: Exosomes are extracellular vesicles (EVs) derived from endocytic compartments of eukaryotic cells
which contain various biomolecules like mRNAs or miRNAs. Exosomes influence the biologic behaviour and
progression of malignancies and are promising candidates as non-invasive diagnostic biomarkers or as targets for
therapeutic interventions. Usually, quantitative real-time polymerase chain reaction (qRT-PCR) is used to assess gene
expression in cancer exosomes, however, the ideal reference genes for normalization yet remain to be identified.

Results: In this study, we performed an unbiased analysis of high-throughput mRNA and miRNA-sequencing data
from exosomes of patients with various cancer types and identify candidate reference genes and miRNAs in cancer
exosomes. The expression stability of these candidate reference genes was evaluated by the coefficient of variation
“CV” and the average expression stability value “M”. We subsequently validated these candidate reference genes in
exosomes from an independent cohort of ovarian cancer patients and healthy control individuals by qRT-PCR.

Conclusions: Our study identifies OAZ1 and hsa-miR-6835-3p as the most reliable individual reference genes for
mRNA and miRNA quantification, respectively. For superior accuracy, we recommend the use of a combination of
reference genes - OAZ1/SERF2/MPP1 for mRNA and hsa-miR-6835-3p/hsa-miR-4468-3p for miRNA analyses.
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Background
Exosomes are a class of extracellular vesicles (EVs) which
are secreted by eukaryotic cells. Exosomes contain bio-
molecules, such as DNA, RNA, miRNA or proteins and
are considered important mediators of intercellular com-
munication [1–7]. Cancer cell-derived exosomes play a
pivotal role in tumorigenesis and cancer progression as
they modulate cancer cell biology, the tumor microenvir-
onment and the immune response [7–13]. Tumor-derived

exosomes can also be harnessed as non-invasive diagnos-
tic biomarkers due to their abundance in biological fluids
and the enrichment of tumor-relevant biomolecules such
as mRNAs or miRNAs within [4, 14–17]. In the past, vari-
ous exosome-based liquid biopsies studies have suggested
clinical feasibility for cancer diagnosis [18–20].
To accurately explore exosomes as non-invasive bio-

markers and to better understand their impact on cancer
progression, the precise quantification of biomolecule
abundance within exosomes is of utmost importance.
Quantitative real-time polymerase chain reaction (qRT-
PCR) is the most widely used laboratory technique to
evaluate cell-intrinsic and exosomal gene expression
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patterns [21]. qRT-PCR offers the advantage of high sen-
sitivity and specificity combined with reproducibility and
low template input requirements [22, 23]. However,
technical or experimental factors inherent to qRT-PCR,
such as variable template integrity or efficiency of re-
verse transcription, can reduce the diagnostic accuracy
[23–26]. In addition, the numbers, sizes, and composi-
tions of exosomes are usually affected by many factors
including the methodologies for exosome isolation,
intracellular biological processes, cell culture parameters
and the treatments of the parental cells, which introduce
the difficulty for the characterization of the composition
in exosomes [27–29]. To account for this, reference
genes with stable expression across different conditions
or cancer subtypes are used to normalize gene expres-
sion [22, 30, 31]. Currently, the reference genes used for
expression analyses in exosomes are most frequently
those which are also used for tissue or cell lines, such as
ACTB, 18S rRNA and GAPDH [5, 32, 33]. Notwithstand-
ing their broad use, expression levels of these house-
keeping genes are not universally stable, thus decreasing
the quantitative accuracy in exosome studies [22, 31,
34–37]. For example, the small nucleolar RNA RNU6 is
frequently used as a reference gene for miRNA expres-
sion analyses within cells [38–40], but the molecule is
only expressed in the cell nucleus and not detected in
exosomes [41–43]. Whereas some studies reported
RNU6 to be detectable in exosomes, this is most likely
due to contamination of the exosome fraction with in-
tact cells or cell debris [44, 45]. Therefore, the unvalid-
ated use of classical housekeeping genes suitable for cell
lines or tissues needs to be critically considered for the
analysis of exosomes.
To address this unmet need of an unbiased identifica-

tion and validation of reference genes or miRNAs for
exosome studies, here, we performed a sequencing-
driven analysis with high-throughput mRNA- and
miRNA-Seq datasets from serum exosomes of patients
with frequent cancer types and of healthy control indi-
viduals and subsequently validate these candidates by
qRT-PCR in serum exosomes of an independent cohort
of ovarian cancer patients and of healthy control
individuals.

Results
Identification of candidate reference genes by an
unbiased integrative analysis of pooled cancer mRNA-Seq
datasets
To identify reference genes with stable expression in
serum exosomes, we interrogated RNA-Seq data from
47 serum exosome samples of patients with PAAD, CRC
and HCC as well as of 32 healthy control individuals
(HC) and applied Deseq2 to evaluate expression levels
across samples. Only genes with high expression in both,

serum exosomes of cancer patients and of healthy indi-
viduals (measured as transcripts per million (TPM))
compared to the average gene expression level (pooled-
transcriptome) were considered as potential reference
candidates. Our analysis firstly identified 112, 117, and
85 stably expressed genes respectively in serum exo-
somes of PAAD, CRC and HCC (p value > 0.1), by com-
paring their patients with healthy control individuals
using Deseq2 analysis. Then 48 genes were found to be
universally stably expressed in serum exosomes of all
cancers. By sorting these genes by their expression level,
we identified ten highly expressed candidate reference
genes (ADP-ribosylation factor 1 (ARF1), beta-2-
microglobulin (B2M), H3 histone pseudogene 6
(H3F3AP4), integral membrane protein 2B (ITM2B),
membrane palmitoylated protein 1 (MPP1), ornithine
decarboxylase antizyme 1 (OAZ1), protein-L-isoaspartate
(D-aspartate) O-methyltransferase domain containing 1
(PCMTD1), superoxide dismutase 2 (SOD2), small
EDRK-rich factor 2 (SERF2), and WAS/WASL Interact-
ing Protein Family Member 1 (WIPF1) (Fig. 1a, indicated
by red dots and Table 1). The diagonal scatterplot distri-
bution of candidate reference genes indicates consistent
expression abundance between exosomes of cancer pa-
tients and of healthy control individuals (Fig. 1a), with a
correlation coefficient of R = 0.995. Furthermore, expres-
sion patterns of candidate reference genes identified by
the pooled cancer analysis (including PAAD, CRC and
HCC) were recapitulated in each cancer subtype as well
(Fig. 1b-d).

Evaluation of expression levels and stability of candidate
reference genes
To further validate our predicted candidate reference
genes for exosomes, we compared their respective
expression levels and stabilities with those of nine
classical housekeeping genes: beta-actin (ACTB), beta-
2-microglobulin (B2M), ribosomal protein L13A
(RPL13A), tyrosine 3-monooxygenase/tryptophane 5-
monooxygenase activation protein zeta (YWHAZ),
glyceraldehyde-3-phosphate dehydrogenase (GAPDH),
vimentin (VIM), peptidylprolyl isomerase A (PPIA),
aldolase A (ALDOA), and ubiquitin C (UBC). Overall,
abundance of exosomal candidate reference genes
(Fig. 2a) was similar to those of classical housekeep-
ing genes (Fig. 2b). B2M had by far the highest over-
all expression abundance of all candidate reference
genes (Fig. 2a) which was only surpassed by the clas-
sical housekeeping gene ACTB (Fig. 2b). We then
assessed the expression stability across samples and
tumor types by two measures: 1) the coefficient of
variation “CV” as the standard deviation divided by
the mean of the expression levels (transcripts per mil-
lion - TPM), and 2) the average expression stability
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“M” determined by the geNorm algorithm. “CV”
values for the exosomal candidate reference genes
(0.405 to 0.723) (Fig. 2c) were significantly lower than
those for classical housekeeping genes (p = 8.10e-04,
Wilcoxon rank-sum test) (Fig. 2d) with “M” values
below 1.0, thus indicating higher expression stability
across samples and tumor types (Fig. 2e). The “M”
values were also significantly lower in candidate refer-
ence genes compared to those for classical

housekeeping genes (p = 0.0279, Wilcoxon rank-sum
test) (Fig. 2f). The candidate reference genes were
then sorted according to their expression stability
from highest to lowest, and both, the “CV” and “M”
criteria achieved similar ranks for most candidates.
OAZ1 was identified as the gene with the highest ex-
pression stability across samples and tumor types
(Table 1). We also identified and validated ten candi-
date reference genes respectively for each cancer sub-
type including PAAD (FTL, OAZ1, FYB1, SERF2,
SOD2, PCMTD1, ARPC2, NCOA4, HCLS1 and TYR-
OBP), CRC (B2M, RPL41, SNCA, RPS9, BTF3, ADI-
POR1, HEMGN, SOD2, PCMTD1 and NCOA4), and
HCC (FTL, OAZ1, CD74, DDX5, PCMTD1, HCLS1,
LSP1, RPL9, WIPF1 and H3F3AP4) as well (Suppl.
Fig. 1).

Validation of candidate reference genes in exosomes of
an independent cohort of ovarian cancer patients
Based on the promising results from the pooled analysis
of serum exosomes of patients with different tumour
types, we expected our predicted candidate reference
genes to be applicable to serum exosomes from patients
with various other cancer types as well. Therefore, we
next sought to validate the candidate reference genes in
a “real-life setting” in samples of serum exosomes of ten

Fig. 1 Scatterplots of predicted candidate reference genes for serum exosomes using RNA-Seq data. Expression levels of candidate reference
genes in serum exosomes are depicted for pooled cancer samples (PAAD, CRC, HCC) (a), for pancreatic adenocarcinoma (PAAD) (b), colorectal
cancer (CRC) (c) and hepatocellular carcinoma (HCC) (d) samples and compared to serum exosomes of healthy control individuals. Expression
values are shown as the logarithm of transcripts per million (TPM) (log2(TPM + 1)). Red dots represent candidate reference genes and grey dots
genome-wide genes

Table 1 Candidate reference genes (n = 10) ranked in order of
their expression level and expression stability

Gene
Symbol

Expression level Stability

Log2(TPM + 1) Rank CV M value Rank

OAZ1 9.289 2 0.405 0.561 1

SERF2 8.608 5 0.492 0.588 2

MPP1 7.748 9 0.460 0.597 3

H3F3AP4 7.750 8 0.654 0.563 4

WIPF1 7.645 10 0.538 0.626 5

PCMTD1 8.067 6 0.511 0.704 6

ARF1 7.850 7 0.660 0.564 7

SOD2 8.696 4 0.655 0.725 8

B2M 12.826 1 0.688 0.827 9

ITM2B 8.754 3 0.723 0.934 10
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ovarian cancer patients and of ten healthy control indi-
viduals. The qRT-PCR results showed that as expected
from the RNA-Seq data, B2M had the highest expression
abundance among all candidates (Fig. 3a). Moreover, ab-
solute abundance of SOD2, H3F3AP4, OAZ1, and SERF2
were comparable to the expression level of 18S rRNA,
whereas the abundance of the remaining five genes
(ITM2B, ARF1, PCMTD1, WIPF1, MPP1) was lower
(Fig. 3a). Interestingly, the abundance of the reference
candidate genes in serum exosomes of healthy control
individuals and of ovarian cancer patients were highly
consistent (Fig. 3a). Most candidate genes also exhibited
high expression stability in ovarian cancer and healthy
control individuals with “M” and “CV” values lower than
1.0 (Fig. 3b-e), even though some variation occurred

regarding the gene order between both stability indica-
tors. Whereas MPP1, WIPF1, SOD2 and OAZ1 exhibited
lower “CV” values in exosomes of healthy individuals
(Fig. 3c), in both exosome groups, OAZ1 had the lowest
“M” value (Fig. 3d-e). The “M” values for OAZ1, ITM2B,
SERF2, MPP1, H3F3AP4, and ARF1 were advantageous
over 18S rRNA, whereas WIPF1, B2M, SOD2 and PCMT
D1 in part had clearly higher “M” values indicating re-
duced expression stability (Fig. 3d). The expression sta-
bility of 18S rRNA was lower (indicated by a higher “M”
value”) compared to many of the identified candidate
reference genes especially in exosomes of healthy control
individuals (Fig. 3d-e).
To quantify gene expression levels more accurately,

multiple reference genes can be used [46]. Therefore, we

Fig. 2 Gene expression levels and stability of candidate reference genes for exosomes predicted with RNA-Seq data. Expression levels of ten
candidate genes sorted by their respective expression levels (a). Expression levels of ten candidate reference genes (blue bars) compared with
those of nine commonly used housekeeping genes (green bars) (b). Expression stability of candidate reference genes as measured by the
coefficient of variation (“CV”) (c). Comparison of “CV” values between candidate reference genes and classical housekeeping genes (p = 8.10e-04,
Wilcoxon rank-sum test) (d). Expression stability of candidate reference genes as measured by the average expression stability value (“M”) (e).
Comparison of “M” values between candidate reference genes and classical housekeeping genes (p = 0.0279, Wilcoxon rank-sum test) (f)
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also determined the expression stability of respective
combinations of candidate reference genes by determin-
ing the average gene-specific variation with the geNorm
algorithm for RNA-Seq datasets in exosomes of the
pooled cancer populations and for qRT-PCR data of
exosomes from ovarian cancer patients. Overall, three
combinations according to their expression stability
ranks (Table 1) were evaluated: 1) genes 1–3 (OAZ1,

SERF2, MPP1); 2) genes 4–6 (H3F3AP4, WIPF1, PCMT
D1); and 3) genes 8–10 (SOD2, B2M, ITM2B). The first
group with a combination of OAZ1, SERF2 and MPP1
had the lowest average gene-specific variations in exo-
somes of the pooled patient group including PAAD,
HCC and CRC (RNA-Seq, Suppl. Fig. 2A) as well as in
ovarian cancer patients (qRT-PCR, Suppl. Fig. 2B) indi-
cating the highest expression stability.

Fig. 3 Experimental validation of candidate reference genes in exosomes of patients with ovarian cancer and healthy control individuals. Expression
levels (Ct values) of candidate reference genes in exosomes of ovarian cancer patients (red bars) and healthy control individuals (blue bars) relative to
18S rRNA (a). Expression stability of the candidate reference genes in serum exosomes of ovarian cancer patients (b) and healthy control individuals (c)
as measured by the “CV” indicator. Expression stability of the candidate reference genes in serum exosomes of ovarian cancer patients (d) and healthy
control individuals (e) as measured by the “M” indicator
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Identification and validation of candidate reference
miRNAs in cancer exosomes
In addition to mRNA, exosomes also contain miRNA.
To identify reliable miRNAs for normalization in exo-
somes, we analyzed miRNA-Seq data of 72 serum exo-
some samples of patients with HCC, HNSCC, LCA,
NBL, OVA, and THCA and 31 serum exosome samples
of healthy control individuals. We identified six candi-
date reference miRNAs with high and stable expression:
hsa-miR-125-5p, hsa-miR-192-3p, hsa-miR-4468, hsa-
miR-4469, hsa-miR-6731-5p, and hsa-miR-6835-3p
(Fig. 4a). Expression levels and stability of the candidate
reference miRNAs were evaluated in the exosomes of
pooled cancer and further validated in the exosomes of
ovarian cancer and healthy control individuals (Fig. 4b-
j). Across the pooled exosomes of six cancer types, but
also for each individual cancer type, these candidate
miRNAs show high expression and similar abundance
compared to exosomes of healthy control individuals
(depicted as counts per million (CPM)) (Fig. 4b, Suppl.
Fig. 3). Among all candidate miRNAs, hsa-miR-6835-3p
had the highest expression level across samples and
tumor types (Table 2). And hsa-miR-4468 had the high-
est and hsa-miR-6731-5p the lowest expression stability
across samples and cancer types as indicated by low and
high “CV” and “M” values, respectively (Fig. 4e, h). Over-
all, “M” values for all candidate miRNAs were low (<
1.5), indicating their general expression stability and po-
tential utility as candidate reference miRNAs for exo-
somes. By integrating both stability indicators “CV” and
“M”, candidate reference miRNAs were ranked and hsa-
miR-4468 showed the highest overall expression stability
across samples and tumor types (Table 2). Finally, hsa-
miR-6835-3p with high expression level and stability was
identified as the best reference miRNA.
To further validate the predicted reference miRNA

candidates, we measured their expression levels by qRT-
PCR in serum exosomes of patients with ovarian cancer
(n = 10) and of healthy control individuals (n = 10).
miRNA abundance was calculated as cycle threshold
numbers (Ct) relative to ce-miR-39-1. ce-miR-39-1 is a
frequently used miRNA for normalization (Fig. 4c-d).
These results showed the highest expression for hsa-
miR-4469 in exosomes of ovarian cancer patients even
though all miRNAs were less abundant than ce-miR-39-
1 (Fig. 4c-d). In exosomes of ovarian cancer patients,
hsa-miR-4469 and hsa-miR-4468 were the miRNAs with
the highest and lowest expression levels, reproducing the
results for exosomes of healthy control individuals (Fig.
4c-d). Compared to the miRNA-Seq analysis (Fig. 4e, h),
hsa-miR-6731-5p, hsa-miR-4468, hsa-miR-192-3p and
hsa-miR-6835-3p exhibited lower “CV” and “M” values
indicating even higher expression stability in a “real-life”
setting (Fig. 4f, g, i, j). Overall, all candidate reference

miRNAs in exosome of ovarian cancer and healthy con-
trol individuals exhibited “M” values smaller than 1.5 in-
dicating high expression stability (Fig. 4i-j).
Furthermore, the expression stability of combinations

of multiple reference miRNAs was determined by the
average gene-specific variation. We generated three
combinations of two candidate reference miRNAs each
according to their expression stability ranks (Table 2): 1)
miRNAs 1–2 (hsa-miR-4468 and hsa-miR-6835-3p), 2)
miRNAs 3–4 (hsa-miR-192-3p and hsa-miR-125a-5p),
and 3) miRNAs 5–6 (hsa-miR-4469 and hsa-miR-6731-
5p). The combination of hsa-miR-6835-3p and hsa-miR-
4468 had the highest expression stability in exosomes of
pooled groups of patients affected by PAAD, HCC and
CRC (miRNA-Seq data, Suppl. Fig. 4A) or by ovarian
cancer (qRT-PCR data, Suppl. Fig. 4B).

Discussion
Exosomes are nano-sized (< 200 nm in diameter) biovesi-
cles which are released into the surrounding body fluids
upon fusion of endocytic compartments with the plasma
membrane [47] . Exosomes transfer various types of
cargo from donor to acceptor cells among them nucleic
acids, mRNAs and miRNAs were the first nucleic acids
to be identified in exosomes [3]. Interestingly, some
mRNAs and miRNAs are even specifically enriched in
cancer exosomes implying a critical role for cancer biol-
ogy and progression. Therefore, exosomes can be har-
nessed as diagnostic biomarkers or as targets for
therapeutic interventions [3, 5, 48–50]. To characterize
the composition of exosomes, the accurate quantification
of mRNA and miRNA expression within the exosome
fraction is critical. qRT-PCR combines high sensitivity
and specificity with high reproducibility and low tem-
plate input requirements and is therefore an ideal tech-
nology for exosome studies [22, 23]. qRT-PCR analyses,
however, require the selection of appropriate reference
genes to avoid variation in gene expression results under
different experimental conditions (e.g. tumor cell vs.
exosome) [22, 30, 31, 51] and currently, the ideal refer-
ence genes for the analysis of exosomes across cancers
or for comparison of expression with cancer cells or tis-
sues remain largely unknown [52, 53]. Often, classical
housekeeping genes used for gene expression analyses in
tissues or cell lines are used for exosome studies as well,
but the expression stability of these genes is not uncon-
ditionally guaranteed for exosome samples thereby limit-
ing the analytical accuracy. In this context, previous
studies have confirmed that there is no universal refer-
ence gene for normalization under different conditions
[35, 36, 54, 55].
Therefore, here, we sought to perform an unbiased

and sequencing-driven analysis of publicly available
high-throughput RNA- and miRNA-Seq datasets to
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Fig. 4 (See legend on next page.)
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identify and experimentally validate reference genes and
combinations of these genes to generate accurate RNA-
and miRNA-expression data from serum exosomes of
cancer patients. From the pooled RNA- and miRNA-Seq
datasets we identify multiple potential candidate refer-
ence genes in cancer exosomes (ARF1, B2M, H3F3AP4,
ITM2B, MPP1, OAZ1, PCMTD1, SOD2, SERF2, WIPF1
for mRNA analyses and hsa-miR-125-5p, hsa-miR-192-
3p, hsa-miR-4468, hsa-miR-4469, hsa-miR-6731-5p, and
hsa-miR-6835-3p for miRNA analyses) (Tables 1 and 2
and Suppl. Table 1) and subsequently validate their ex-
pression stability in exosomes isolated from sera of pa-
tients with ovarian cancer and of healthy control
individuals. All ten identified candidate reference genes
provide better accuracy in terms of stability and vari-
ation of expression compared to classical housekeeping
genes (Table 1, Fig. 2d and f). Interestingly, if we applied
our algorithm to exosome data of each individual cancer
type, the predicted candidate reference genes were dif-
ferent from those in the pooled cancer analysis and also
varied among cancer subtypes (Suppl Fig. 1).
By employing two different indicators, we define

mRNA and miRNA expression stability from two differ-
ent perspectives: 1) the coefficient of variation “CV” and
2) the “M” value which are both based on the expression
abundance of a gene (measured as transcripts per mil-
lion – TPM) or miRNA (measured as counts per million
– CPM). Whereas “CV” measures the variation of a ref-
erence gene across all samples, “M” represents the aver-
age pairwise variation of a reference gene versus all

other reference genes across all samples. Low “CV” and
“M” values suggest stable gene expression, and in gen-
eral, genes with “M” < 1.5 can be accepted as reference
genes [54]. By requiring a reference gene to have ideally
both, low “CV” and “M” values, we identify OAZ1 and
hsa-miR-6835-3p as the most accurate single reference
genes based on RNA-Seq datasets (Tables 1 and 2). We
confirm the utility of all candidate reference genes and
miRNAs but especially of OAZ1 and hsa-miR-6835-3p
by measuring their expression abundance (Fig. 3a and
Fig. 4c, d) and stability (Fig. 3b, c, d, e and Fig. 4f, g, i, j)
in serum exosomes of an independent cohort of ovarian
cancer patients and of healthy control individuals (n =
10 each group, Fig. 3). NormFinder [56] is another
popular method without requiring priori knowledge of
control gene as calibrator to enhance the accuracy, by
calculating intra and intergroup variations to evaluate
the stability of expression. Here we used NormFinder to
evaluate the candidates predicted by geNorm. The re-
sults (Suppl. Fig. 5) showed that the most reliable genes
OAZ1 and hsa-miR-6835-3p still presented a robust sta-
bility measured by NormFinder, with OAZ1 ranking the
1st in healthy controls and the 2nd in ovarian cancer pa-
tients (Suppl. Fig. 5A, B), and with hsa-miR-6835-3p
ranking the 1st in healthy controls and the 3rd in ovar-
ian cancer (Suppl. Fig. 5C, D). To increase the diagnostic
accuracy, some studies suggest the use of a combination
of multiple reference genes or miRNAs [52, 54, 57]. We
therefore tested various combinations of reference gene
candidates, and identified the combinations of OAZ1,
SERF2 and MPP1 for mRNA (Suppl. Fig. 2) and hsa-
miR-6835-3p and hsa-miR-4468 for miRNA (Suppl. Fig.
4) providing the highest expression stability across sam-
ples and tumor types.
Unlike many previous studies which used an approach

to narrow down the number of reference genes from a
panel of previously reported candidate genes - usually a
list of classical housekeeping genes [37, 45, 58, 59] - our
study has the clear advantage of an unbiased and se-
quencing data-driven approach thus preventing bias
from artificial selection. Due to the scarcity of publicly
available RNA- and miRNA-Seq exosome datasets with
high sequencing quality, the exosome datasets used
herein include the RNA-Seq exosome samples with

(See figure on previous page.)
Fig. 4 Identification and validation of candidate reference miRNAs predicted in exosomes of ovarian cancer patients. Scatterplot of candidate
reference miRNA expression levels in pooled cancer samples (HCC, HNSCC, LCA, NBL, OVA, and THCA) and healthy control individuals. Expression
values are shown as the logarithm of counts per million (CPM) (log2(CPM + 1)). The red dots represent candidate reference miRNAs, grey dots
genome-wide miRNAs (a). Expression levels of six candidate reference miRNAs in exosomes of pooled cancer (b), ovarian cancer patients (relative
to ce-miR-39-1, n = 10) (c) and healthy control individuals (relative to ce-miR-39-1, n = 10) (d). Expression stability of candidate reference miRNAs
in exosomes of pooled cancer (e), ovarian cancer patients (f) and healthy control individuals (g) as measured by the “CV”. Expression stability of
six candidate reference miRNAs in exosomes of pooled cancer (h), ovarian cancer patients (i) and healthy control individuals (j) as measured by
the “M” indicator

Table 2 Candidate reference miRNAs (n = 6) ranked in order of
their expression level and expression stability

miRNA Expression level Stability

Log2(CPM + 1) Rank CV M value Rank

hsa-miR-4468 11.743 4 0.476 0.304 1

hsa-miR-6835-3p 12.208 1 0.498 0.455 2

hsa-miR-192-3p 11.223 5 0.543 0.340 3

hsa-miR-125a-5p 11.102 6 0.557 0.336 4

hsa-miR-4469 11.756 3 0.515 0.521 5

hsa-miR-6731-5p 12.087 2 0.667 0.601 6
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PAAD, CRC and HCC as well as miRNA-Seq exosome
samples with HCC, HNSCC, LCA, NBL, OVA, and
THCA. Accounting for the limitation that the samples
in our current analysis may not fully capture the dy-
namic expression of genes in exosomes of pan-cancers,
our analysis will be continuously updated with the emer-
gence of additional sequencing datasets to refine the ro-
bustness of identified candidate reference genes. In this
regard, it will be interesting to determine if the reference
genes and miRNAs identified here will also proof utility
in a true pooled cancer analysis including most or even
all of the different cancer types affecting patients.
In our analysis, pooled cancer RNA- or miRNA-Seq

datasets are from the extracellular vesicles (including
exosomes) isolated from the different labs. However,
different sized vesicles are derived from different
intracellular processes, that affects the numbers and
biomolecule contents. Other technical factors (such as
exosome isolation and quantification procedures) and
biological factors (such as cancer type) can also im-
pact the numbers and composition of exosomes [60–
62]. Exosomes isolated from the different sources or
by the different isolation methodologies introduce
variations in the concentration, purity and size [28,
29]. Moreover, due to the limited knowledge of
exosome specific molecular machineries of biogenesis
and release, there are the challenges in confirming
the biogenesis mechanisms of exosomes. Therefore,
future efforts should definitely include standardization
(number, volume, etc) and verification of the exosome
or extracellular vesicle characteristics, prior to
sequencing.
We finally confirm previous study results indicating,

that housekeeping genes in cancer cell lines and tumor
tissue cannot be transferred to the analysis of exosomes
and vice versa without further validation [22, 31, 35, 36].
For this, we predicted the top ten candidate reference
genes (ACTB, RPS27, RPS11, RPL13A, RPL41, RPS14,
RPL41P1, RPS29, RPL10 and NACA), in cancer tissues
with simultaneous high expression abundance
(log2(TPM + 1)) and stable expression (“CV” and “M”)
(Suppl. Fig. 6A), and compared their ranks with those of
the top ten predicted reference genes in exosomes and
vice versa (Suppl. Fig. 6B). The top ten genes with the
high expression stability in tissues as indicated by low
“CV” and “M” values were ranked the 120th to 600th in
exosomes (Suppl. Fig. 6B, C, D). The results clearly show
that there is no overlap between candidate reference
genes in exosomes and cancer cell lines/tissue if both,
exosome and cancer cell line datasets are not considered
together in the initial step of candidate reference predic-
tion (Suppl. Fig. 6B). Although derived from tissue, exo-
somes deliver specific cargo of protein, miRNA, and
small molecules, which is heterogenous between

exosome and tissue. The use of tissue-specific reference
genes causes quantitative inaccuracy due to the instabil-
ity of them in exosome studies. Therefore, it is great
practical necessity for use exosome-specific reference
genes to enhance the quantity accuracy.

Conclusions
Our study provides reference genes and miRNAs with
high abundance and expression stability across samples
and cancer types for more accurate future qRT-PCR
analyses of cancer exosomes. OAZ1 and hsa-miR-6835-
3p were identified as the most reliable individual refer-
ence genes for mRNA and miRNA quantification, re-
spectively. For superior accuracy, we recommend the
use of a combination of reference genes - OAZ1/SERF2/
MPP1 for mRNA and hsa-miR-6835-3p/hsa-miR-4468-
3p for miRNA analyses. The use of the ideal reference
genes is favorable to the accurate quantification of
mRNA and miRNA expression fraction within the
exosome.

Methods
Data collection
We manually curated RNA- and miRNA-Seq exosome
data from the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) [63]. The RNA-Seq
datasets included 79 serum exosome samples from pa-
tients with pancreatic adenocarcinoma (PAAD), colorec-
tal cancer (CRC), hepatocellular carcinoma (HCC) and
healthy control individuals (HC) (Suppl. Table 2). The
miRNA-Seq datasets included 72 serum exosome sam-
ples from patients with seven different cancer types
(HCC, lung cancer (LCA), ovarian cancer (OVA), head
and neck squamous cell carcinoma (HNSCC), neuro-
blastoma (NBL) and thyroid cancer (THCA)) as well as
healthy control individuals (n = 31) (Suppl. Table 2). For
comparison of expression patterns between exosomes
and cancer tissues or cell lines, we furthermore analyzed
RNA-Seq data from 28 datasets including three cancer
types (PAAD, CRC, and HCC) with overall 1038 tissue
and cancer cell line samples (Suppl. Tab. 2). To validate
the reference genes identified by mRNA- and miRNA-
Seq analyses, the serum samples were collected from 10
patients diagnosed with ovarian cancer stage I and II ac-
cording to TNM staging without any treatment and 10
healthy volunteers were recruited in the study.

Processing of raw RNA- and miRNA-Seq data
Raw reads of the RNA-Seq data were trimmed by re-
moving adaptors and low-quality bases using Trimmo-
matic (version 0.36) [64]. The clean reads were then
mapped onto a human reference genome (GRCh38)
using HASAT2 software (version 2.1.0) [65]. StringTie
(version 1.3.0) [66] was applied to quantify the number

Dai et al. BMC Genomics           (2021) 22:27 Page 9 of 13

https://www.ncbi.nlm.nih.gov/geo/


of reads that were aligned to the regions of protein-
coding RNAs (mRNAs) and annotations of mRNAs in
the human genome were retrieved from GENCODE
(v29) [67]. For the identification of reference miRNAs,
sequencing data were additionally discarded of low-
quality reads, adaptor dimers and sequences with lengths
< 18 and > 35 nucleotides. The filtered reads were
mapped to the human genome by bowtie (version
1.2.1.1) [68] and quantified by featureCounts (version
1.5.3) [69], miRNA annotations were retrieved from
miRBase (v22.1) [70]. Expression levels were depicted as
transcripts per million for mRNA (TPM) [71] and
counts per million (CPM) for miRNA.

Strategy to identify candidate reference genes and
miRNAs in cancer exosomes
For individual cancer subtypes, we selected genes or
miRNAs as reference candidates if the respective expres-
sion level was greater than the average genome-wide ex-
pression. Therefore, genes or miRNAs were analyzed
using DESeq2 (version 1.22.1) in serum exosomes of
cancer patients and of healthy control individuals [72].
DESeq2 provides algorithms for determining differential
expression within digital expression datasets using a
negative binomial distribution model. In the present
study, genes with a p-value > 0.1 were considered to be
not differentially expressed.
To determine the expression stability of candidate ref-

erence genes and of miRNAs across samples and cancer
types, we used two measures: 1) “CV” - the variation of
a candidate reference gene or miRNA across all samples
- and 2)” M” - the average expression stability value
which represents the average pairwise variation between
a reference gene and other reference genes across sam-
ples calculated by geNorm [54]. Lower values of “CV” or
“M” indicate higher expression stability.
We assumed that there were m samples and n refer-

ence genes. For a given reference gene j in the ith sam-
ple, the gene expression level aij is the normalization
expression value (TPM for mRNA, CPM for miRNA) of
RNA−/miRNA-Seq data or of the transformed value of
cycle threshold numbers (Ct) in qRT-PCR data (Eq. 1).
Based on the expression levels of the reference gene j
across m samples (Eq. 2), we defined the coefficient of
variation “CV” as the ratio of the standard deviation to
the mean (Eq. 3).

∀i∈ 1;m½ �; ∀ j∈ 1; n½ �ð Þ :

aij ¼ 2 − Ctij ð1Þ

Aj ¼ a1 j; a2 j;…amj
� � ¼ aij

� �
i¼1→m ð2Þ

CV j ¼
st:dev Aj

� �

mean Aj
� � ð3Þ

The second expression stability measure - the average
expression stability value “M” - was developed by Van-
desompele J et al. in the tool geNorm [54]. For any two
reference genes j and k, the logarithm of the expression
ratio aij�

aik for the sample i (i = 1→m) forms an array

Ajk (Eq. 4). Based on the pairwise variation Vjk defined
by the standard deviation of Ajk (Eq. 5), the average ex-
pression stability value Mj for the gene j is the arithmetic
mean of all pairwise variation Vjk (Eq. 6). Usually, a gene
with a M less than 1.5 is acceptable as a reference gene.

∀ j; k∈ 1; n½ � and j≠kð Þ :

Ajk ¼ log2
a1 j
a1k

� �
; log2

a2 j
a2k

� �
;… log2

amj

amk

� �� �

¼ log2
aij
aik

� �� �

i¼1→m

ð4Þ
V jk ¼ st:dev Ajk

� � ð5Þ

Mj ¼

Xn

k¼1

V jk

n − 1
ð6Þ

Furthermore, multiple genes were combined as can-
didate references and their stability was measured as
the average gene-specific variation AV according to
geNorm. For any three reference genes j, k and l, the
average gene-specific variation AVj, k, l was calculated
as the geometric mean of the three-gene stability
value “M" (Eq. 7).

∀ j; k; l∈ 1; n½ � and j≠k≠lð Þ :
AV j;k;l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mj∙Mk ∙Ml

3
p ð7Þ

Isolation of the exosome fraction and sample storage
To validate the reference genes identified by mRNA-
and miRNA-Seq analyses, serum exosomes were ob-
tained from ten ovarian cancer patients and ten healthy
control individuals. Therefore, blood was drawn and
kept at room temperature (15–25 °C) for 10 min to 1 h
before further processing. The tubes were centrifuged
for 10 min at 1900 x g (3,000 rpm) and 4 °C using a
swinging bucket rotor. The upper serum phase was
transferred into a new canonical tube without disturbing
the cell pellet. Subsequently, sera were centrifuged for
15 min at 3000 x g and 4 °C in conical tubes, passed
through a 0.8-μm filter and the supernatants were care-
fully removed without disturbing the pellet and trans-
ferred into new tubes. Samples were stored at 2–8 °C for
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immediate processing or kept frozen in aliquots at −
65 °C to − 90 °C for long-term storage [29].

Quantitative reverse transcription-PCR (qRT-PCR)
Total RNA (containing the mRNA and miRNA frac-
tions) was isolated from 1ml serum using the exoR-
Neasy Serum/Plasma Maxi Kit (Qiagen, Wetzlar,
Germany). cDNA was generated with the PrimeScriptRT
Master Mix (Perfect Real Time; Takara Bio, Kusatsu,
Japan) according to the manufacturer’s protocol. Quanti-
tative RT-PCR was performed with ChamQTM Univer-
sal SYBR qPCR Master Mix (Vazyme, Nanjing, China) in
a final reaction volume of 10 μl using an Applied Biosys-
tems QuantStudio 5 Real-Time PCR Instrument
(Thermo Fisher Scientific, Rockford, USA). 18S rRNA
and ce-miR-39-1 served as internal controls for mRNA
and miRNA, respectively. Expression levels are depicted
as cycle threshold (Ct) value of the candidate gene rela-
tive to the Ct value of the housekeeping gene. Data were
analyzed with the QuantStudio TM Design & Analysis
software. The primer sequences for B2M were 5′-TGTC
TTTCAGCAAGGACTGGT-3′ and 5′-TGCTTACATG
TCTCGATCCCAC-3′, for OAZ1 were 5′-GCCAAACG
CATTAACTGGCG-3′ and 5′-TGTCCTCGCGGTTC
TTGTG-3′, for ITM2B were 5′-TTGCCTCAGTCCTA
TCTGATTCA-3′ and 5′-TCTGCGTTGCAGTTTGTA
AGT-3′, for SOD2 were 5′-GGAAGCCATCAAAC
GTGACTT-3′ and 5′-CCCGTTCCTTATTGAAAC
CAAGC-3′, for PCMTD1 were 5′-TGCATTTGTT
GTTGGTAATTGCC-3′ and 5′-GTCCAGTTCGCATA
ATCTGTGT-3′, for ARF1 were 5′-ATGGGGAACA
TCTTCGCCAAC-3′ and 5′-GTGGTCACGATCTCAC
CCAG-3′, for MPP1 were 5′-GTCAGCTCCTAGCGAA
GCC-3′ and 5′-GCCGAACGACTTCCTCGTAG-3′, for
WIPF1 were 5′-AGCCGCTGCGCGATTTAT-3′ and
5′-TCCCAGCCTGCTCTGTCTTA-3′, for SERF2 were
5′-CCGCAAGCAGAGGGACTC-3′ and 5′-AGCACT
ACAGGAGGAAACGC-3′, for H3F3AP4 were 5′-
CAGCTATCGGTGCTTTGCAG-3′ and 5′-AGCACG
TTCTCCACGTATGC-3′, for 18 s were 5′-CTTCCA
CAGGAGGCCTACAC-3′ and 5′-CTTCGGCCCA
CACCCTTAAT-3′.

Statistical analysis
The Wilcoxon rank-sum test was used to compare ex-
pression stability between classical housekeeping and
exosomal candidate reference genes as measured by
“CV” and “M”. Candidate reference genes were sorted
according to their “CV” and “M” values from low (higher
expression stability across samples) to high (lower ex-
pression stability across samples) and assigned a rank,
and the best candidate gene or miRNA for validation
was determined as the one with the lowest sum of these
two ranks. All statistical analyses were executed in R.
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Additional file 1: Figure S1. Gene expression level and stability of
candidate reference genes in PAAD, HCC and CRC exosomes predicted
using RNA-Seq data A, Expression levels of ten candidate genes in PAAD
(A), HCC (B) and CRC (C) exosomes sorted by their expression. Expression
stability of ten candidate reference genes in exosomes of patients with
PAAD (D), HCC (E) and CRC (F) measured by the “CV”. Expression stability
of ten candidate reference genes in exosomes of PAAD (G), HCC (H) and
CRC (I) patients as measured by the “M” indicator. Expression levels are
given as the log2(TPM + 1) (TPM – transcripts per million). The TPMs of
each candidate gene were used to determine “CV” and “M” indicators.

Additional file 2: Figure S2. Evaluation of expression stability of
combinations of three reference genes in pooled exosomes of cancer
patients with PAAD, CRC and HCC (A, RNA-Seq data) and with ovarian
cancer (B, qRT-PCR data) The expression stability of respective combina-
tions was measured as the average gene-specific variation calculated with
the geNorm algorithm based on transcripts per million (TPM) (A) or cycle
threshold (Ct) values (B). Three combinations according to their expres-
sion stability ranking from Table 1 were evaluated: 1) genes 1–3 (OAZ1,
SERF2, MPP1); 2) genes 4–6 (H3F3AP4, WIPF1, PCMTD1); and 3) genes 8–10
(SOD2, B2M, ITM2B)

Additional file 3: Figure S3. Scatterplots of expression levels of six
candidate reference miRNAs (red dots) in serum exosomes of patients
with HCC (A), HNSCC (B), LCA (C), NBL (D), OVA (E) and THCA (F)
compared to exosomes of healthy control individuals The expression
values are depicted as: log2(CPM + 1) (CPM – counts per million). Grey
dots indicate genome-wide miRNAs

Additional file 4: Figure S4. Evaluation of expression stability of
combinations of two reference miRNA candidates in pooled exosomes of
cancer patients with different tumor types (A, miRNA-Seq data) or with
ovarian cancer (B, qPCR data) The expression stability of miRNA combina-
tions was measured as the average miRNA-specific variation, which was
calculated by the geNorm algorithm based on counts per million (CPM)
(A) or cycle threshold (Ct) values (B). Three combinations were consid-
ered according to the miRNA expression stability ranks shown in Table 2:
miRNAs 1–2 (miR-4468 and miR-6835-3p), miRNAs 3–4 (miR-192-3p and
miR-125a-5p), and miRNAs 5–6 (miR-4469 and miR-6731-5p)

Additional file 5: Figure S5. Validation of candidate reference genes
and miRNAs predicted in exosomes of ovarian cancer patients and
healthy controls by NormFinder Expression stability of candidate
reference genes as measured by the NormFinder stability value in
exosomes of ovarian cancer patients (A) and healthy control individuals
(B). Expression stability of six candidate reference miRNAs in exosomes of
ovarian cancer patients (C) and healthy control individuals (D) as
measured by the NormFinder stability value

Additional file 6: Figure S6. Analysis of candidate reference genes
predicted in cancer tissues Expression levels of the ten top candidates in
pooled cancer tissue samples calculated using RNA-Seq data. Expression
levels are given as log2(TPM + 1; TPM = transcript per million) (A). The top
ten predicted candidate reference genes for exosomes were compared
with the respective ranking in cancer tissues and vice versa (B). Expres-
sion stability of the ten top candidate reference genes in tumor tissues as
measured by “CV” (C) and “M” indicators (D)

Additional file 7: Table S1. List of candidate reference genes (n = 10)
and miRNAs (n = 6) identified by RNA-Seq and quantitative real-time PCR
analyses.

Additional file 8: Table S2. Detailed information for the RNA-Seq data-
sets in the GEO database.
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