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Abstract

Background: Single-cell RNA-Sequencing (scRNA-Seq) has provided single-cell level insights into complex biological
processes. However, the high frequency of gene expression detection failures in scRNA-Seq data make it challenging
to achieve reliable identification of cell-types and Differentially Expressed Genes (DEG). Moreover, with the explosive
growth of single-cell data using 10x genomics protocol, existing methods will soon reach the computation limit due to
scalability issues. The single-cell transcriptomics field desperately need new tools and framework to facilitate large-scale
single-cell analysis.

Results: In order to improve the accuracy, robustness, and speed of scRNA-Seq data processing, we propose a
generalized zero-inflated negative binomial mixture model, “JOINT,” that can perform probability-based cell-type
discovery and DEG analysis simultaneously without the need for imputation. JOINT performs soft-clustering for
cell-type identification by computing the probability of individual cells, i.e. each cell can belong to multiple cell
types with different probabilities. This is drastically different from existing hard-clustering methods where each
cell can only belong to one cell type. The soft-clustering component of the algorithm significantly facilitates the
accuracy and robustness of single-cell analysis, especially when the scRNA-Seq datasets are noisy and contain a
large number of dropout events. Moreover, JOINT is able to determine the optimal number of cell-types
automatically rather than specifying it empirically. The proposed model is an unsupervised learning problem
which is solved by using the Expectation and Maximization (EM) algorithm. The EM algorithm is implemented
using the TensorFlow deep learning framework, dramatically accelerating the speed for data analysis through
parallel GPU computing.

Conclusions: Taken together, the JOINT algorithm is accurate and efficient for large-scale scRNA-Seq data analysis via
parallel computing. The Python package that we have developed can be readily applied to aid future advances in
parallel computing-based single-cell algorithms and research in various biological and biomedical fields.
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Background
scRNA-Seq technology has significantly advanced the un-
derstanding of human disease and underlying biological
processes at the single-cell level [1, 2]. This ever-evolving
technique has revealed cell lineage [3], cell-type heteroge-
neities [4, 5], and distinct patterns of gene expression [6]
that cannot be identified by conventional bulk cell ana-
lysis. Despite the rapid growth and maturation of the tech-
nique, many experimental and computational challenges
remain [7]. Due to the limited amount of RNA extracted
from each cell and various technical factors [8], e.g. ampli-
fication bias and low RNA capture rate, scRNA-Seq data
are very noisy and contain frequent gene expression detec-
tion failures (i.e. dropout events [9]). Although several
scRNA-Seq imputation methods such as MAGIC [10],
scImpute [11], and Saver [12] have been developed to im-
prove analytical accuracy, over-processing of data can
cause information loss, and increase the lower bound of
detection-error probability due to data processing inequal-
ity and Fano’s lemma in information theory [13] (see
Methods). Moreover, the massive size of scRNA-Seq data-
sets demands extensive processing time, hindering the ap-
plicability of imputation methods to ever-growing
collections of scRNA-Seq data [14]. Together, these
challenges significantly hinder the progress of scRNA-
Seq in its use as a technique and its application to
biological and biomedical research.
Traditional single-cell data processing methods typic-

ally perform cell-type identification followed by subse-
quent DEG analysis [15–17]. However, there are major
disadvantages with this two-step method. First, cell-type
identification or cell-clustering accuracy may signifi-
cantly impact DEG analysis. Second, potential valuable
information derived from DEG algorithms is not used in
cell-type identification. Here, we propose a generalized
zero-inflated negative binomial mixture model, “JOINT,”
that can perform probability-based cell-type discovery
and DEG analysis simultaneously without the need for
imputation. The proposed model is an unsupervised
learning problem which is solved by using the EM algo-
rithm. Most published studies do not provide test results
for model validation, and the statistical distribution of
single-cell data remains unclear. We show for the first
time (by a statistical test) that the excessive zero-counts
in scRNA-Seq data can be explained by this model.
Moreover, JOINT performs soft-clustering for cell-

type discovery by computing the probability of cell iden-
tity for individual cells, where each cell can belong to
multiple cell types with different probabilities. This is
different from existing algorithms which typically per-
form hard-clustering where each cell can only belong to
one cell type. JOINT identifies the optimal number of
cell-types through Akaike Information Criterion (AIC)
automatically rather than specified empirically. All

parameters in JOINT are calibrated automatically, with-
out the need for setting hyperparameters, e.g. number of
cell-types. Existing clustering algorithms typically per-
form log-transformation on the count data first, whereas
JOINT uses the raw count data directly. Therefore, po-
tential biases introduced during data processing are
greatly reduced. We comprehensively evaluated the im-
pact of dropout probability and tested the performance
of JOINT on cell-clustering and DEG analysis using sim-
ulated and real scRNA-Seq datasets. We show that
JOINT obtains better clustering performance on both
simulated and real, large-scale scRNA-Seq datasets when
compared to existing algorithms.
We also leverage parallel computing methods in data

processing: A Python package is implemented and run
on GPU using the TensorFlow deep learning frame-
work’s (http://www.tensorflow.org/) low-level API to
solve our unsupervised learning model. The computa-
tional speed of the JOINT algorithm is 3532 times faster
when run on a GPU, versus a Python NumPy implemen-
tation on CPU for a simulated dataset with 1000 cells
and 2000 genes. We use instructions from TensorFlow
directly instead of high-level neural networks APIs such
as Keras (https://keras.io/). The Python package that we
have developed is the first that can perform cell-
clustering and DEG analysis simultaneously on GPU,
which dramatically accelerates the computational speed
for large-scale scRNA-Seq data analysis. Although not
required by JOINT for cell-type identification or DEG
analysis, an imputation algorithm is embedded for data
visualization.
Finally, our DEG analysis algorithm directly applies

soft-clustering results from JOINT, rendering the ability
to extract high quality cell-type information and perform
accurate DEG identification. Existing GPU-based imput-
ation algorithms only use GPU in the imputation step
and still require standard cell-clustering and DEG pipe-
line in downstream data analysis, which are typically
performed on CPU. In contrast, our model does not re-
quire the imputation step and can perform both cell-
clustering and DEG analysis on GPU. Our study shows a
new paradigm of leveraging the use of GPU on large-
scale scRNA-Seq data analysis. Overall, the JOINT algo-
rithm provides a more accurate, robust, and scalable
method for analysis of large-scale scRNA-Seq datasets.
The package that we developed is generic and can be
readily applied to aid future advances in parallel
computing-based single-cell algorithms.

Results
Overview and validation of the JOINT algorithm
Existing bulk DEG analysis algorithms (e.g. DESeq2 [18])
and single-cell DEG analysis algorithms (e.g. MAST
[19]) assume that cell-type is given, and DEG detection
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is performed within these given cell-types. As such, cell-
type accuracy significantly impacts DEG detection and
analysis. Additionally, parameters derived from DEG al-
gorithms may provide useful information for cell-type
discovery. We investigate whether simultaneously per-
forming cell-type identification and downstream DEG
model calibration benefits both processes. In the JOINT
algorithm, we consider the probability of observing
count x follows a general mixture model. We assume
that each mixture component takes a generalized zero-
inflated negative binomial model with multiple negative
binomial components (see Methods). Instead of
performing hard-clustering for cell-type identification,
where a given cell is clustered into a particular cell-
type, we obtain the probability of individual cells be-
longing to each cell-type with JOINT. The probability
of observing count x from cell-type k and model pa-
rameters are calibrated jointly for cell-type discovery
and DEG analysis, rather than fixing cell-type first
and estimating DEG parameters thereafter (Methods
and Fig. 1a). For each cell-type k and gene g, our
model extends the current use of zero-inflated nega-
tive binomial distribution [20] by allowing multiple
negative binomial components rather than one. Add-
itionally, we derive an EM algorithm to calibrate all
parameters in the zero-inflated negative binomial
model for single-cell data automatically, which can
also be used for arbitrary numbers of negative bino-
mial components.
We first validated the model by testing whether it

could explain the excessive zero-counts in a real scRNA-
Seq dataset. We chose the Zeisel dataset [21] and ana-
lyzed gene expression with the “Oligodendrocyte” label
provided in the dataset (see Methods). For each gene, we
tested the performance of three JOINT variations: 1)
negative binomial (Poisson-Gamma mixture), 2) zero-in-
flated negative binomial, and 3) zero-inflated negative bi-
nomial with two components. We trained all three
variations of the algorithm on GPU using TensorFlow,
obtained predicted zero-count probability for each gene
across all cells and compare the mean to the empirical
zero-count probability. Then, we tested if the predicted
zero-count probability is significantly different than the
empirical value for each JOINT variation (see Methods).
We found that p-values for the comparisons were: p =
1.58e− 19 for 1) negative binomial, p = 0.057 for 2) zero-
inflated negative binomial, and p = 1.12e− 10 for 3) zero-
inflated negative binomial with two components. Since
the zero-count probability from 2) zero-inflated negative
binomial model is not significantly different than the
empirical value, we concluded that this variation can re-
cover the zero-count probability. This finding provides
the first statistical evidence that excessive zero-counts in
scRNA-Seq data can be explained by a zero-inflated

negative binomial distribution. In the rest of the paper,
we assume that gene expression follows the zero-inflated
negative binomial distribution (with one component),
but arbitrary numbers of negative binomial components
can be selected and applied in the model for different
single-cell datasets.
Next, as a sanity test, we examined whether the JOINT

algorithm can converge to true values. We generated a
simulated dataset with two cell-types (clusters) and two
genes as the “ground truth” (see Methods). JOINT suc-
cessfully converged to true values when we varied the
number of iterations, number of samples (cells), and
dropout probabilities (Fig. 1b-d and Fig. S1, S2, S3).

Evaluation of clustering performance using simulated
datasets
We next compared the clustering performance of JOINT
to other algorithms using a simulated dataset containing
two cell-types and two genes (Fig. 2 and Table S1). We
fixed the dropout probability at q0 = 0.2 and generated
5000 cells (see Methods). For published algorithms, we
applied K-means clustering with 100 random initial
points to the dataset and chose clustering results with
the best Adjusted Rand Score for comparison. We com-
pared the performance of JOINT on the original non-
imputed data, to K-means on the non-imputed and
Saver [12] -imputed datasets (Fig. 2a-h and Table S1).
ScImpute [11] was not included since it cannot be ap-
plied to 2-dimensional data. We demonstrated that
JOINT obtained much higher clustering scores on the
non-imputed data, than K-means on both the non-
imputed and Saver-imputed datasets. JOINT’s perform-
ance also surpassed that of K-means on the original data
without dropout (Table S1). In this dataset, K-means
performance was worse in log-transformed counts when
compared to non-log-transformed data, suggesting log-
transformation may lead to information loss (Fig. 2f and
g). In contrast, non-log-transformed raw data can be dir-
ectly used in the JOINT algorithm, minimizing potential
bias and information loss. The JOINT algorithm can also
automatically optimize the number of clusters through
AIC, rather than forcing a choice from intuition. We ran
the JOINT algorithm with the number of clusters K ran-
ging from 1 to 5. For each K, we randomly chose initial
points, ran the proposed JOINT algorithm 10 times, and
chose results with the highest likelihood. We found that
the log likelihood did not increase when K was greater
than 2, and both AIC and Bayesian Information Criter-
ion (BIC) were minimized when K = 2. Therefore, JOINT
took K = 2 as the optimal number of clusters, which pre-
cisely predicted the number of clusters in the simulated
dataset (Fig. 2i-k).
We further examined JOINT’s performance on a more

complex simulated dataset with three cell-types, using
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Fig. 1 Overview and convergence tests for the JOINT algorithm. a Workflow of the JOINT procedure. Soft-clustering, parameter optimization and DEG
analysis are performed simultaneously in JOINT. Probability-based soft-clustering for cell-type identification and DEG analysis are demonstrated in the
insets. b Convergence of πk (k = 1), qg,k,l (g = 0, k = 0, and l = 1), αg,k,l (g = 0, k = 1, and l = 1), and βg,k,l (g = 1, k = 0, and l = 1) to true values with iterations.
c Convergence of π1, q0,0,1, α0,1,1, and β1,0,1 to true values with the number of samples. d Convergence of π1, q0,0,1, α0,1,1, and β1,0,1 to true values with
dropout probabilities. True values are indicated by blue lines. Error bars in (c) (d) indicate the full range of data variation
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parameters derived from published scRNA-Seq data to
mimic real experimental settings (Methods and Fig. S4).
We systematically examined the clustering performance
of JOINT at different dropout probabilities and DEG
numbers. We evaluated the performance of JOINT and
other published algorithms at dropout probability q0 =
0.1, 0.2 and 0.3 and DEG number n = 50, 100 and 150
(Fig. 3 and Fig. S5, S6, S7). We generated 10 datasets for
each dropout probability and DEG number combination,
and applied JOINT, Saver, and scImpute to each dataset.
We showed that JOINT obtained the highest Adjusted
Rand Index score among all algorithms tested, strongly
suggesting its performance was superior over Saver and
scImpute (Fig. 3a-c and Fig. S6a-d). It is worth noting
that although JOINT performs cell-type identification
without the need of imputation, it acquires the ability to
impute for data visualization (Methods, Fig. 3, and Fig.
S5, S6, S7).

Finally, we compared the clustering outputs from
JOINT, Saver, and scImpute to the original dataset with-
out dropout, to access the accuracy of performance.
Since we used a simulated dataset, “true labels” without
dropout were known. We correlated the clustering out-
puts to “true labels,” and compared the correlation coef-
ficients for the different algorithms. Higher correlation
coefficients indicate better performance. We found that
when we performed this correlation test at different
dropout probabilities and DEG numbers, JOINT ob-
tained higher correlation coefficients than other imput-
ation methods (Fig. 3d, e, and Fig. S6e). Overall, we
leveraged a simulated dataset with known cell-types to
evaluate the performance of JOINT at different dropout
probabilities and DEG numbers. Since the simulated
dataset was generated using parameters derived from
real scRNA-Seq data, we validated the JOINT algorithm
in conditions that mimic real experimental settings.

Fig. 2 Validation of JOINT’s clustering performance. a Cell-clustering by JOINT on a simulated dataset with two cell-types and two genes. Scatter
plot shows posterior probability (z-axis) for each cell (red dots) belonging to cell-type 1. Expression levels of gene 1 (Dimension 1, Dim 1) and
gene 2 (Dimension 2, Dim 2) are shown on the x- and y-axis. b Surface plot shows the probability for individual cells belonging to cell-type 1
(hot color) and 2 (cold color). c - h Comparison of the clustering performance of different algorithms. c Original dataset without dropout (True
Labels). d Observed dataset with 0.2 dropout probability. e Cell-clustering by JOINT on the dataset with 0.2 dropout probability. f Cell-clustering
by K-means on non-log data with 0.2 dropout probability. g Cell-clustering by K-means on log-transformed data with 0.2 dropout probability. h
Cell-clustering by K-mean on Saver-imputed data (non-log) with 0.2 dropout probability. Individual cells in clusters 1 and 2 are shown in red and
blue, respectively. i - k The JOINT algorithm determines cell-cluster numbers automatically by likelihood (i), AIC (j), and BIC (k) tests
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Fig. 3 Comparison of clustering performance of different algorithms at various dropout probabilities and DEG numbers. a Cell-clustering by JOINT, Saver, and
scImpute on a simulated dataset with three clusters (dropout probability is set to 0.3 and DEG number set to 150). Original data with no dropout is shown on
the left. Adjusted Rand Index for each algorithm is shown. K-means clustering method is used for published imputation algorithms. Imputation algorithm in
JOINT is used for data visualization. For datasets with dropout, we applied the PCA from the original dataset without dropout to get the 2-dimensional plot. b -
c Cell-clustering scores are compared for JOINT, Saver, and scImpute algorithms at different dropout probabilities on a dataset with 150 DEG (b) and 50 DEG (c).
d - e Correlation coefficients of cell-clustering results from JOINT, Saver, and scImpute to original “true labels” are averaged across all genes (Gene Correlation) or
cells (Cell Correlation) at different dropout probabilities. Correlation coefficients generated from a dataset with 150 DEG (d) and 50 DEG (e) are shown
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Evaluation of clustering performance using real, large-
scale scRNA-Seq datasets
To futher evaluate JOINT’s performance, we compared
its clustering performance and computing time to Saver
and scImpute using real, large-scale scRNA-Seq datasets
(Baron [22] and Zeisel [21]). The cell-types identified by
JOINT algorithm matched the published results when
applied to the Baron and Zeisel data (Fig. 4d and h).
JOINT also obtained higher or comparable Adjusted
Rand Index, Jaccard Index, and Adjusted Mutual Infor-
mation scores when compared to Saver and scImpute
methods (Fig. 4 and Table 1).
We then evaluated the computing time of JOINT

compared to other imputation algorithms. We found
both performance and speed of the JOINT algorithm
were dramatically accelerated over existing algorithms
(Table 1). This is the first study that systematically
examined the performance and computing time of dif-
ferent imputation algorithms. The JOINT algorithm
functions as a useful parallel computing-based method
for scalable scRNA-Seq analysis. Since JOINT runs from
an initial point, we also examined whether clustering
performance was improved by the EM algorithm
through JOINT, or relied heavily on initial conditions.
We compared the JOINT-obtained clustering scores on
the Zeisel dataset using randomly selected initial points
or those selected through K-means with and without the

application of EM algorithm. We demonstrated that the
EM algorithm indeed improved the clustering perform-
ance of JOINT when the initial points were either ran-
domly selected or using K-means (Fig. S8).

Evaluation of JOINT performance in DEG analysis
The JOINT algorithm also acquires the function of per-
forming DEG analysis simultaneously with cell-type
identification. We evaluated JOINT’s performance in
DEG analysis using a simulated dataset with 3 clusters
from cells labeled “CA1 Pyramidal” from the Zeisel data-
set [21] (see Methods). We examined JOINT’s perform-
ance in two conditions: true cell-type labels as known or
unknown. First, we assumed that all cell-types were
known, and set the dropout probability to q0 = 0.1, 0.2,
and 0.3 for all cells and selected n = 50, 100, and 150
DEG in the simulated dataset. In real experimental set-
tings, dropout probability is unlikely to be a set number
across all cells. Therefore, we varied the dropout prob-
ability q0 by 0.05 for each cluster (e.g. When q0,mean for
all cells = 0.1, we obtained q0 = 0.05, 0.1, and 0.15 for
clusters 1, 2, and 3 respectively). The performance of
JOINT and other published DEG analysis algorithms
were evaluated using the false/true positive rate relation-
ship (Receiver Operating Characteristic (ROC) curve).
DEG analysis results from cluster 1 and cluster 3 were
then compared across algorithms (Fig. 5a-d). When we

Fig. 4 Evaluation of JOINT’s clustering performance with real, large-scale scRNA-Seq datasets. a - d Cell-clustering and t-SNE visualization of the Barron
dataset. Cell-clustering from raw data (a), Saver-imputed data (b), scImpute-imputed data (c), and JOINT (d) are shown. Imputation algorithm in JOINT
is used to visualize cell-clustering results. Adjusted Rand Index scores are shown for all algorithms. e - h Cell-clustering and t-SNE visualization of the
Zeisel dataset. Cell-clustering from the raw data (e), Saver-imputed data (f), scImpute-imputed data (g), and JOINT (h) are shown. Imputation algorithm
in JOINT is used to visualize cell-clustering results. Adjusted Rand Index scores are shown for all algorithms
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used Area Under the Curve (AUC [23]) to compare the
performance of MAST [19], scDD [24], DESeq2 [18],
and JOINT, we found that JOINT obtained higher AUC
scores compared to other algorithms at different drop-
out probabilities and DEG numbers (Fig. 5a-d).
Next, we considered the case where cell-type labels were

unknown, but derived from a clustering algorithm. Since
cell-types are unknown before analysis in real scRNA-Seq
datasets, this test allows us to evaluate all algorithms in
conditions similar to real experiments. For published DEG
analysis algorithms, we first performed K-means clustering
and spectral clustering on log(1 + count), PCA on log(1 +
count) with 2 components, and PCA on log(1 + count)
with components explaining 25% or 40% of variance on
the simulated data. Cluster labels which generate the high-
est Adjusted Rand Index scores were chosen for DEG ana-
lysis for published methods. For JOINT, we initialized the
algorithm with the same 8 conditions for fair comparison.
We want to emphasize that for existing DEG analysis
methods, true cell labels must be known in order to com-
pute Adjusted Rand Index scores. Since we opted to use
the highest Adjusted Rand Index scores for published al-
gorithms, it is in fact, an overestimation of their perform-
ance. In contrast for JOINT, we chose the clustering
results that provided the highest likelihood for individual
cells belonging to certain clusters, thus eliminating the
need of knowing true cell labels beforehand. Based on the
clustering results from each algorithm, we identified cell-
types with the highest correlation with the original clus-
ters 1 and 3, and performed DEG analysis on these clus-
ters. We compared AUC scores for MAST, scDD, DESeq2
and JOINT algorithms. We found the JOINT algorithm
obtained the best AUC scores among all the DEG analysis
methods tested at different dropout probabilities (same
dropout probability across all cells) and DEG numbers
(Fig. 5e-h).

Finally, we evaluated JOINT’s performance in DEG
analysis using a real, large-scale scRNA dataset. We ana-
lyzed a scRNA-Seq dataset GSE75748 [25] with both
bulk and single-cell RNA-seq data on human embryonic
stem cells (ESC) and definitive endoderm cells (DEC).
This dataset includes four samples in H1 ESC, and two
samples in DEC from bulk RNA-Seq; 212 cells in H1
ESC and 138 cells in DEC from scRNA-Seq. We used an
R package (DESeq2) to identify DEG from bulk data and
applied MAST, scDD, and DESeq2 to identify DEGs
from the original scRNA-seq data or imputed data by
Saver and scImpute. As DESeq2 requires non-zero inte-
ger inputs, we rounded the imputed counts and added 1
for DEG analysis. We applied different thresholds to
False Discovery Rates (FDRs) of genes in bulk data to
obtain a DEG list as the reference for single-cell DEG
analysis. Next, we compared AUC scores for JOINT and
other DEG analysis algorithms in combination with im-
putation methods. All algorithms that were used for
comparison include: MAST+Original, MAST+Saver,
MAST+scImpute, scDD+original, scDD+Saver, scDD+
scImpute, DESeq2 +Original, DESeq2 + Saver, DESeq2 +
scImpute, and JOINT. We found JOINT had superior
performance over all other existing imputation and DEG
analysis algorithms that were tested (Fig. 5i).
We also systematically examined the computational

time of JOINT. We compared the computational time of
one iteration in the EM algorithm between TensorFlow
using GPU, TensorFlow using CPU (run on compiled C
code), and Python-based NumPy implementation using
CPU. We examined the scenario with 1000 cells and 9
cell-types. We simulated the dataset randomly and var-
ied the number of genes from 1000 to 2500 (Fig. 5j).
When the number of genes is 2000 (based on the num-
ber of highly differential genes used in Seurat proced-
ure), we found that TensorFlow run on GPU had a 35.6x

Table 1 Comparison of clustering performance and computing time for JOINT and published imputation algorithms on real scRNA-
Seq datasets

Performance Scores Raw Saver scImpute JOINT

Baron Dataset

Adjusted Rand Index 0.64 0.63 0.43 0.95

Jaccard Index 0.55 0.53 0.34 0.92

Adjusted Mutual Info 0.79 0.76 0.64 0.89

Zeisel Dataset

Adjusted Rand Index 0.67 0.69 0.45 0.67

Jaccard Index 0.57 0.59 0.35 0.57

Adjusted Mutual Info 0.63 0.63 0.56 0.65

Computing Time (s) Saver scImpute JOINT

Baron Dataset 4777 1010 528

Zeisel Dataset 18036 3440 836
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speedup over TensorFlow run on CPU, and a 3532x
speedup over NumPy run on CPU (Fig. 5j and Table
S2). Overall, we demonstrated that the performance of
JOINT significantly improved both the accuracy and effi-
ciency of DEG analysis compared to current algorithms.

Discussion
We propose a mathematical algorithm, “JOINT,” that
performs cell-type discovery and DEG analysis by paral-
lel computing. Since there is no need for imputation, the
potential for information loss from data over-processing

Fig. 5 Evaluation of JOINT’s performance in DEG analysis. a - d Comparison of the performance of DEG analysis algorithms when cell labels are known and
different dropout probabilities are assigned to each cell-cluster. AUC scores for MAST, scDD, DESeq2, and JOINT when different dropout probabilities are
assigned to each cell-cluster in datasets with 50 DEG (a), 100 DEG (b) and 150 DEG (c) are shown. d ROC curves for MAST, scDD, DESeq2, and JOINT when
mean dropout probability for all cells is set to 0.1 (dropout probability varies by 0.05 for each cell-cluster) and DEG number is set to 150. e - h Comparison of
the performance of different DEG analysis algorithms when cell labels are unknown and the same dropout probability is assigned to all cells. AUC scores for
MAST, scDD, DESeq2, and JOINT when the dropout probability is set to the same value for all cells in datasets with 50 DEG (e), 100 DEG (f) and 150 DEG (g) are
shown. h ROC curves for MAST, scDD, DESeq2, and JOINT when mean dropout probability for all cells is set to 0.1 and DEG number is set to 150. i AUC curves
of DEG analysis algorithms in combination with imputation methods and JOINT are shown. j Computing time of one iteration of the JOINT EM algorithm
when run by TensorFlow using GPU, TensorFlow using CPU (run on compiled C code), and Python-based NumPy implementation using CPU. Computing time
is tested for different numbers of genes
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is minimized. Instead of assigning each cell into a hard-
cluster, this cell-type probability-based soft-clustering
approach makes this algorithm more accurate and ro-
bust. We validated the model extensively, and examined
the performance of JOINT on cell-type identification
and DEG analysis using both simulated and real, large-
scale scRNA-Seq datasets. Most published studies do
not provide test results for model validation, and the
statistical distribution of single-cell data from these
models is unclear. We show, for the first time, that ex-
cessive zero-counts in real scRNA-Seq data can be ex-
plained by a properly trained zero-inflated negative
binomial distribution. All parameters in JOINT are cali-
brated automatically without needing to set any hyper-
parameters, such as the number of cell-types. While
existing clustering algorithms typically perform log-
transformation on the count data first, our model uses
the raw count data directly. Therefore, potential biases
introduced during data processing are greatly reduced.
Moreover, when we evaluate the performance of JOINT
on cell-type identification and DEG analysis, the joint-
analysis feature of JOINT makes it more reliable and ef-
ficient over existing algorithms that were tested.
We developed a Python package using the TensorFlow

low-level API to train our model on GPU. The computa-
tional speed of the JOINT algorithm is 3532 times faster
when run on a GPU versus a Python NumPy implemen-
tation on CPU for a simulated dataset. The Python pack-
age we have developed is the first one that can perform
cell-clustering and DEG analysis simultaneously on
GPU, which dramatically facilitates an increase in com-
puting speed for large-scale scRNA-Seq data analysis.
The Python package is generic and can be applied to a
generalized zero-inflated negative binomial distribution
with arbitrary number of negative binomial components
for different scRNA-Seq datasets.
In conclusion, JOINT can be readily applied to aid fu-

ture advances in parallel computing-based single-cell algo-
rithms. JOINT greatly improves the accuracy, scalability
and speed of single-cell data processing, making it a suit-
able candidate for future work involving scalable scRNA-
Seq data analysis.

Methods
Over-processing of data by imputation may cause
information loss due to data processing inequality and
Fano’s lemma
Let three random variables form the Markov chain X→
X′→ Y, implying that the conditional distribution of Y
depends only on X′ and is conditionally independent of
X. By data processing inequality [13], the mutual infor-
mation between X and Y is greater than or equal to that
between X′ and Y, i.e.

IðX;Y Þ≥ IðX′;Y Þ: ð1Þ

X is observed single-cell data, X′ is imputed data, Y is
decision variables, such as cell-types or DEG. This equa-
tion indicates the information of data cannot be in-
creased from data imputation. Note that if we have a
priori information S about genes or cell-types, we may
have IðX;Y Þ≤ IðX′;Y jSÞ , which indicates data imput-
ation with a priori information may improve mutual in-
formation. But even in this case, we still have I(X; Y| S) ≥
I(X′; Y| S).
From Fano’s inequality, we have a lower bound on the

detection-error probability (cell-type mis-classification
or DEG mis-detection)

pe ¼ PrðŶ≠Y Þ≥ HðY Þ − IðX;Y Þ − 1
logðjY jÞ : ð2Þ

From data processing inequality, if processed data X′

instead of un-processed data X is used, the right-hand
side of eq. (2) becomes bigger. Even though (2) is only a
lower bound, data imputation increases the lower bound
of error-detection. Therefore, performing data imput-
ation on observed data and performing subsequent ana-
lysis leads to information loss and an increase of a lower
bound on the detection-error probability. This indicates
that there is an opportunity to perform cell-type discov-
ery and DEG analysis simultaneously to prevent such an
information loss.

JOINT algorithm
In the JOINT algorithm we consider a general mixture
model

p xð Þ ¼
XK − 1

k¼0

πk f k xjθkð Þ;

where x is observed count number, k is the number of
cell-types, πk is the probability of choosing cell-type k
and fk(x|θk) is the probability of observing x given pa-
rameters θk in cell-type k. Given x and θk, we compute
the posterior probability of observed counts x from cell-
type k as

p kjxð Þ ¼ πk f k xjθkð ÞPK − 1
k¼0 πk f k xjθkð Þ :

Rather than using hard-clustering methods where a
given cell is clustered into a particular cell-type, we ob-
tain the probability of individual cell belonging to each
cell-type (Fig. 1a). If a cell has non-zero probability p be-
longing to cell-type k, then it contributes accordingly
(proportional to p) to clustering and DEG analysis for
cell-type k (Fig. 1a). Here, we assume that fk(x|θk) takes
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a generalized zero-inflated negative binomial model with
multiple negative binomial components

qg;k;01xg ¼¼0 þ
XL − 1

l¼1

qg;k;l

Z
Gammaðλg;k;ljαg;k;l; βg;k;lÞ
Poissonðxg jscλg;k;lÞdλg;k;l;

where there are L components, qg, k, 0 is the dropout
probability for gene g in cell-type k, 1xg¼¼0 is 1 when xg =
0, and otherwise 0. qg,k,l is the probability that the ob-
served count xg is from the l-th negative binomial com-
ponent for gene g in cell-type k, and sc is a cell level
scaler. We choose the same cell scaler as Seurat process
which normalizes the library size to 10,000. The dropout
probability qg,k,0 is the probability of observing zero-
counts, regardless of the real expression level of gene g.
When the first dropout term is omitted and L = 1, we
obtain a negative binomial model. When L = 2, the
model reduces to the zero-inflated negative binomial
model. When L = 3, we obtain a zero-inflated negative bi-
nomial model with two components. Note that fk(x|θk)
can be also adapted and used for other models in DEG
analysis.
To generate observed count x, we first draw a cell-type

k from π, which determines a set of parameters used for
each gene in cell-type k. Then, we choose a negative bi-
nomial component type l with probability qg,k,l. When
l = 0, we set xg = 0, which corresponds to dropout and
the process stops. When l > 0, we choose αg,k.l and βg,k.l
for each gene in cell-type k and generate a Poisson in-
tensity λg,k,l. Finally, we generate the observed count xg
from a Poisson distribution with intensity λg,k,l. Given
observed counts in a given cell x = [x0, …, xG − 1], we esti-
mate θ = {αg,k,l, βg,k,l, qg,k,l, πk} by maximizing the Prob-
ability Mass Function

pðxjπk ; qg;k;l; αg;k;l; βg;k;lÞ
¼

XK − 1

k¼0

πk

YG − 1

g¼0

ðqg;k;01xg ¼¼0

þ
XL − 1

l¼1

qg;k;l

Z
Gammaðλg;k;ljαg;k;l; βg;k;lÞ
Poissonðxg jscλg;k;lÞdλg;k;lÞ;

where we assume individual genes obtain independent
parameters αg,k,l, βg,k,l, qg,k,l.
We do not assume a constant dispersion across all

genes but rather each gene has its own αg,k,l and βg,k,l.
The dropout probability qg,k,0 is optimized for each gene
without assuming specific dependence on the mean ex-
pression. Each cell-type has its own negative binomial
distribution rather than a single distribution shared
across all cell-types. The mixture model is an unsuper-
vised learning problem which is solved using the EM
algorithm.

The probability of x from cell-type k and negative bino-
mial distribution parameters αg,k,l and βg,k,l (also used for
DEG analysis) are calibrated jointly, rather than fixing
the cell-type first and estimating parameters for DEG
analysis thereafter. Although usually challenging when
run on CPU especially with big dataset, model calibra-
tion is successfully achieved when it is trained on GPU.
All model training and testing was performed on a com-
puter with Intel Xeon CPU E5–2686 v4 @ 2.30GHz with
62GB RAM and NVIDIA Tesla K80 GPU with 17GB
memory.

Model validation using the Zeisel dataset
We chose the Zeisel dataset [21] and analyzed the gene
expression with the “Oligodendrocyte” label provided in
the dataset for model validation. Top and bottom 10%
cells were removed based on their library size. Genes
that have non-zero expression between 30 and 90% were
chosen. This resulted in a dataset with 742 cells and
3069 genes for model testing and validation. For each
gene, we tested the performance of three variations of
the JOINT algorithm: 1) negative binomial (Poisson-
Gamma mixture), 2) zero-inflated negative binomial (ini-
tial points were: dropout probability q0 = 0.1, α =mean,
and β = 1), 3) zero-inflated negative binomial with two
components where one component started from α = 0.1
and β = 1 (mimic a Poisson component with rate 0.1
from reference [23]) and the other one started from α =
mean and β = 1 in training. The initial probability q0 was
set to 0.5 for the first and 0.4 for the second compo-
nents. For the proposed generalized zero-inflated nega-
tive binomial model with multiple negative binomial
components, the probability of getting zero-count is

qg;k;0 þ
XL − 1

l¼1

qg;k;lð
βg;k;l

βg;k;l þ sc
Þ
αg;k;l

:

In order to test whether the three variations of JOINT
algorithm can explain the zero-counts in the Zeisel data-
set, we trained all three variations of the algorithm on
GPU using TensorFlow, obtained predicted zero-count
probability p̂0c;g for each gene g and cell c, then calculated

the mean across all cells for each gene p̂0g ¼ 1
C

P
p̂0c;g . We

compared p̂0g to the empirical zero-count probability for
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each gene �p0g by counting the number of cells with zero-

count (for this gene), divided by the total number of cells.
Then, we performed two-sided student t-tests with the
null hypothesis that p̂0g − �p0g has mean 0, to examine

whether each variation of the model can recover the zero-
count probability. We found that p-values were: p =
1.58e− 19 for negative binomial, p = 0.057 for zero-inflated
negative binomial, and p = 1.12e− 10 for zero-inflated nega-
tive binomial with two components. Since we could not re-
ject the null hypothesis (i.e. predicted zero-count
probability is the same as the empirical estimate at 95%
confidence level), we concluded that the zero-inflated
negative binomial model can recover the zero-count prob-
ability. Although model 3 subsumes model 2, the EM al-
gorithm may converge to a suboptimal local optimum
when model 3 is initialized as in Methods.

Generation of a simulated dataset with two genes and
two cell-types
Simulation set up
In order to validate and test the clustering performance
of the model (Fig. 1b-d, Fig. 2, Fig. S1, S2, S3 and Table
S1), we generated a simulated dataset with two genes
and two cell-types (clusters) as the “ground truth.” To
set up the simulation, we chose π = {0.4,0.6}, qg,k,0 = 0.2,
qg,k,1 = 0.8, and βg,k,1 = 1.0; first cluster α0,0,1 = 10 and
α1,0,1 = 5; second cluster α0,1,1 = 30 and α1,1,1 = 20.

Convergence of the model with iterations
We generated 10,000 samples from the mixture model
using parameters described above. In the EM algorithm,
we chose initial values π = {0.5,0.5}, qg,k,0 = 0.1, qg,k,l = 0.9,
and βg,k,l = 1.0; first cluster α0,0,1 = 8 and α1,0,1 = 8; second
cluster α0,1,1 = 25 and α1,1,1 = 25. The JOINT algorithm
converged after 30 iterations (Fig. 1b and Fig. S1).

Convergence of the model with number of samples
For a given number of samples, we randomly generated
50 datasets and applied JOINT on each dataset for sta-
tistics. As the number of samples increased, we found
that the EM estimate converged to the actual values with
smaller variances (Fig. 1c and Fig. S2). This agrees with
the fact that Maximum Likelihood (ML) estimates con-
verge almost surely to true values asymptotically when
the number of samples goes to infinity [26].

Convergence of the model with dropout probability
We fixed the number of samples as 1000 and varied the
dropout probability qg,k,0 from 0.1 to 0.5 with step size
of 0.1. At each dropout probability, we generated 50
datasets and ran JOINT on each dataset to test the con-
vergence (Fig. 1d and Fig. S3).

Generation of a simulated dataset with three cell-types
using Zeisel data
We simulated a scRNA-Seq dataset with 3 cell-types
(Fig. 3 and Fig. S5, S6, S7). We trained JOINT on cells
with the “CA1 Pyramidal” label in the Zeisel dataset [21]
for each gene using the EM algorithm. First, we chose
cells with > 10,000 library size and genes with non-zero-
counts in at least 40% of cells. Then, we trained the
JOINT algorithm on the 3529 genes and 834 cells that
were selected. Next, we randomly chose 1000 genes
without replacement from the selected 3529 genes and
generated three cell-types (1200 cells in total). We ran-
domly generated gene counts for 400 cells in each cell-
type. In order to generate cells with different DEG num-
bers, we randomly selected n genes (n = 50, 100 and 150)
from the chosen 1000 genes without replacement and
set the mean expression of these genes 1.5 times higher
in one cluster than in the other two (1.5 is the median
of the gene expression ratio between cells with “CA1
Pyramidal” and “Oligodendrocytes” labels in the dataset
(Fig. S4)).

Evaluation of clustering performance
Evaluation of clustering performance using simulated data
sets with three genes and three clusters
We assumed the number of cell-types K = 3 was known
in all algorithms. We performed K-means clustering and
spectral clustering on imputed counts from published
algorithms with the following transformations: log(1 +
count), PCA on log(1 + count) with 2 components, PCA
on log(1 + count) with components explaining 25% or
40% of variance. Since we do not know the transform-
ation required to achieve best performance for published
imputation algorithms, we tested all 8 transformations
for each, and chose the one with the best score for com-
parison. We also ran the JOINT algorithm (initialized
with the same 8 conditions) using original unimputed
counts, and chose the one with the highest likelihood as
the final solution. In order to obtain clustering scores
for JOINT, we assigned each individual cell to the cell-
type with the highest posterior probability, converting
soft-clustering into hard-clustering results. Although
Seurat process [15] can also be used for clustering, dif-
ferent parameters must be chosen for each individual
dataset in order to achieve cluster number K = 3. Given
that the performance of multiple algorithms at different
dropout probabilities and DEG numbers needed to be
tested extensively, K-means clustering method was used
to simplify the process. It is also worth emphasizing that
for data mapping and visualization in lower dimensional
space, we applied the PCA from the original data with-
out dropout, to the imputed data from published algo-
rithms and data from JOINT, so that all data were
transformed with the same projection from higher
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dimensional space to 2-dimensional space (Fig. 3, Fig.
S6, and S7). Mapping to 2-dimensional space allows us
to compare these different algorithms by inferring as-
pects of their relative positions in the original higher di-
mensional space. This is different than published work
where PCA is performed for each individual dataset [11],
which makes data incomparable following transform-
ation. Although the simulated dataset may not have the
same distribution as the original data, the performance
of different algorithms in various conditions can be
investigated.

Evaluation of clustering performance using real, large-scale
scRNA-Seq datasets
We first applied Saver and scImpute algorithms to
Baron and Zeisel datasets with default parameters for
imputation. Then, we applied standard Seurat process
with default parameters to the imputed data using
2000 highly expressed genes and cluster number K = 9
and 9 for each dataset. The number of PCA compo-
nents in Seurat [15] was set to 25 and 45 (from the
elbow method [15, 27]) for Baron and Zeisel datasets
respectively. Finally, we applied the JOINT algorithm
to both datasets.

Correlation analysis (cell and gene correlation)
We consider cell to cell correlation and gene to gene
correlation. For cell to cell correlation, let xc = [xc,1,...,
xc,G]

T be a vector of counts without dropout for cell c
and yc = [yc,1,..., yc,G]

T be the corresponding vector of im-
puted counts. We compute the Pearson correlation be-
tween xc and yc as

ρc ¼ pearsonr xc; ycð Þ:
The cell to cell correlation is defined as the average of

ρc across all cells, i.e.,

ρcell ¼
1
C

XC
c¼1

ρc:

Similarly, xg = [x1,g,..., xC,g]
T be a vector of counts with-

out dropout for gene g and yc = [y1,g,..., yC,g]
T be the cor-

responding vector of imputed counts. We compute the
Pearson correlation between xg and yg as

ρg ¼ pearsonr xg ; yg
� �

:

The gene to gene correlation is defined as the average
of ρg across all gene

ρgene ¼
1
G

XG
g¼1

ρg :

Imputation algorithm for data visualization
We impute the observed counts directly. If the ob-
served count is non-zero, we treat it as it is and do
not perform imputation. If the observed count is zero,
we impute it based on the posterior mean calculated
from the JOINT algorithm. Consider a simple case in
which we only have one cluster K = 1, one negative
binomial component L = 2, and the observed count is
0. If the observed count is purely from the negative
binomial component, the observed count 0 is the true
count (the true expression is 0). If the observed count
0 is purely from the zero component, the best esti-
mate in this case is the mean from negative binomial
component which we assume is 5. If the probability
that the 0 count is from the zero component q0 = 0.2,
the probability from the negative binomial component
1-q0 = 0.8, and the mean of negative binomial compo-
nent is 5, then the mean of the count imputed for
given observed 0 is 0.2∗5 + 0.8∗0 = 1. We apply the
idea formally, given observed count xc in cell c, we
first compute the posterior probability that c is from
type k as

pðkjxcÞ ¼
πkΠg

P
lqg;k;lhðxc;g jθg;k;lÞ

XK − 1

κ¼0

πκΠg

X
l′
qg;κ;l′hðxc;g jθg;κ;l′Þ

;

where

h xc;g jαg;k;l; βg;k;l
� �

¼
Z

Gamma λg;k;ljαg;k;l; βg;k;l
� �

Poisson xc;g jscλg;k;l
� �

dλg;k;l l > 0

1; l ¼ 0

8<
:

Given xg,c for gene g and cell-type k, the probability of
xg,c from the l-th negative binomial component is

p ljk; xg;c
� � ¼ qg;k;lh xc;g jθg;k;l

� �
P

l
0 qg;k;l0h xc;g jθg;k;l0

� � :

The mean of each component l is scmg,k,l where

mg;k;l ¼
αg;k;l
βg;k;l

l > 0

0; l ¼ 0

8<
:

With probability 1 − p(0|k, xg,c) the observed 0 is from
a negative binomial component and we do not need im-
putation in this case. With probability p(0|k, xg,c) the ob-
served count is from dropout events and we use the
mean expression (conditional on this count is truly
expressed) as the best estimate for imputation. The
probability of l > 0 conditional on this count is truly
expressed is
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p ljk; xg;c; expressed
� � ¼ p ljk; xg;c

� �
p expressedjk; xg;c; l
� �

p expressedjk; xg;c
� �

¼ p ljk; xg;c
� �

p expressedjk; xg;c
� � ¼ p ljk; xg;c

� �
1 − p 0jk; xg;c

� � :

We thus have the imputation value as
X
k

pðkjxcÞð1 − pð0jk; xg;cÞÞ�0

þ pð0jk; xg;cÞ
X
l>0

pðljk; xg;cÞ
1 − pð0jk; xg;cÞ scmg;k;l

¼ sc
X
k

pðkjxcÞ pð0jk; xg;cÞ
1 − pð0jk; xg;cÞ

X
l>0

pðljk; xg;cÞmg;k;l:

DEG analysis
We apply the Wald test [28] for DEG analysis by directly
estimating the mean and the variance of expression con-
ditional on that gene is expressed (or no dropout) for
cell-type k. Given p(k|xc) and p(l = 0|k, xc,g), let wc,k =
p(k|xc) and vc,g,k = 1 − p(l = 0|k, xc,g), where vc,g,k is the
probability that the observed zero-count is from a nega-
tive binomial component. We find the mean by
minimizing

X
c;xc;g>0

wc;k jxc;g −mg;k j2

þ
X

c;xc;g ¼¼0

wc;kvc;g;k jxc;g −mg;k j2:

We obtain

mg;k ¼ Eðxc;gjk; expressedÞ

¼

X
c;xc;g>0

wc;kxc;g

X
c;xc;g>0

wc;k þ
X

c;xc;g ¼¼0
wc;kvc;g;k

;

which is a weighted average with weight the probability
of the observed count that is expressed in cell-type k.
Similarly, we compute E(x2c,g|k) and obtain the variance
as

σ2ðxc;g jk; expressedÞ ¼ Eðx2c;g jk; expressedÞ
− E2ðxc;g jk; expressedÞ:

Wald test [28] is used with the estimated mean and
variance. After model training, it requires simple arith-
metic operations to compute the mean and variance for
Wald test. The Wald test p-values are adjusted using the
Benjamini and Hochberg method [29]. As hard-
clustering is a special case of soft-clustering with
p(k|xc)∈{0, 1}, all the proposed DEG algorithms can be
readily applied to hard-clustering as well. We are aware
that we can use Fisher information matrix to estimate
the variance of MLE estimate. However, although a

closed-form of Fisher information matrix can be derived,
we find the matrix is not always positive semidefinite for
real scRNA-Seq data. Therefore, the MLE estimate
method cannot be used directly to identify the variance
of the EM algorithm. We can also use the likelihood-
ratio test. However, it requires training the JOINT mul-
tiple times, which is computational expensive.
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Additional file 1: Fig. S1. Convergence of the JOINT algorithm with
iterations. Convergence of qg,k,l (a), αg,k,l (b), βg,k,l (c), and πk (d) for
different genes and cell clusters to true values with iterations.

Additional file 2: Fig. S2. Convergence of the JOINT algorithm with
number of samples. Convergence of qg,k,l (a), αg,k,l (b), βg,k,l (c), πk (d), ðmðe; j
mg;k‐m̂g;k j=mg;kÞ, the mean of absolute difference between the theoretical
mean from zero-inflated negative binomial model and the mean from
model using estimated parameters over the theoretical mean), ðp0ð f; jp0g;k‐
p̂0g;k j=p0g;kÞ, the mean of absolute difference between the theoretical zero-
count probability from zeroinflated negative binomial model and the zero-
count probability from model using estimated parameters over the theoret-
ical probability), ð varðg; j varg;k‐vârg;k j= varg;kÞ, the mean of absolute differ-
ence between the theoretical variance from zero-inflated negative binomial
model and variance from model using estimated parameters over the the-
oretical variance) to true values with the number of samples. Error bars in
(a) - (d) indicate the full range of data variation.

Additional file 3: Fig. S3. Convergence of the JOINT algorithm with
dropout probabilities. Convergence of qg,k,l (a), αg,k,l (b), βg,k,l (c), πk (d),
and ðmðe; jmg;k‐m̂g;k j=mg;kÞ, i.e. the mean of absolute difference between
the theoretical mean from zero-inflated negative binomial model and the
mean from model using estimated parameters over the theoretical mean)
to true values with dropout probabilities. Error bars in (a) - (d) indicate
the full range of data variation.

Additional file 4: Fig. S4. The ratio of mean gene expression between
pyramidal CA1 neurons and oligodendrocytes in the Zeisel dataset. (a) -
(b) Histogram of α (a) and β (b) values for each gene when pyramidal
CA1 neuron expression counts were used in model training. (c)
Histogram of the ratio of mean gene expression between pyramidal CA1
neurons and oligodendrocytes. Note the median of the gene expression
ratio between cells with “CA1 Pyramidal” and “Oligodendrocytes” labels
in the Zeisel dataset is 1.5.

Additional file 5: Fig. S5. Simulated data at different dropout
probabilities and DEG numbers. (a) Simulated datasets with three clusters
when there is no dropout and DEG number set to 150, 100, and 50. (b)
Simulated dataset with three clusters when dropout probability is set to
0.1, and DEG number set to 150, 100, and 50. (c) Simulated dataset with
three clusters when dropout probability is set to 0.2, and DEG number
set to 150, 100, and 50. (d) Simulated dataset with three clusters when
dropout probability is set to 0.3, and DEG number set to 150, 100, and
50. (e) Simulated dataset with three clusters when dropout probability is
set to 0.4, and DEG number set to 150, 100, and 50. For datasets with
dropout, we applied the PCA from the original dataset without dropout
to obtain the 2-dimensional plot. These simulated data show the impact
of dropout probability and DEG number on the destruction of single-cell
data.

Additional file 6: Fig. S6. Comparison of clustering performance of
different algorithms at various dropout probabilities and DEG numbers.
(a) Cell clustering by Saver, scImpute, and JOINT on a simulated dataset
with three clusters (dropout probability set to 0.1 and DEG number set to
50). Original data without dropout is shown on the left. K-means cluster-
ing method is used for published imputation algorithms. Adjusted Rand
Index for each algorithm is shown. Imputation algorithm in JOINT is used
for data visualization. (b) Cell clustering by Saver, scImpute, and JOINT on
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a simulated dataset with three clusters (dropout probability set to 0.1 and
DEG number set to 100). (c) Cell clustering by Saver, scImpute, and JOINT
on a simulated dataset with three clusters (dropout probability set to 0.1
and DEG number set to 150). (d) Cell clustering scores are compared for
Saver, scImpute, and JOINT algorithms at different dropout probabilities
on a dataset with 100 DEG. (e) Correlation of cell clustering results from
Saver, scImpute, and JOINT to original “true labels” averaged across all
genes (Gene Correlation) or cells (Cell Correlation) at different dropout
probabilities. Correlation coefficients generated from a dataset with 100
DEG are shown. (f) - (g) The JOINT algorithm determines cell cluster num-
bers automatically by likelihood (f) and AIC (g) tests. For each dataset, we
applied the PCA from the original dataset without dropout to obtain the
2-dimensional plot.

Additional file 7: Fig. S7. Cell clustering data visualization by the JOINT
imputation algorithm at different dropout probabilities and DEG
numbers. (a) - (d) Cell clustering by JOINT on a simulated dataset with
three clusters when dropout probability is set to 0.1 (a), 0.2 (b), 0.3 (c),
and 0.4 (d), and DEG number set to 150, 100, and 50. For each dataset,
we applied the PCA from the original dataset without dropout to obtain
the 2- dimensional plot.

Additional file 8: Fig. S8. EM algorithm in JOINT improves the
performance of cell clustering. (a) Clustering scores that JOINT obtained
on the Zeisel dataset when the initial points were selected by the K-
means method, with and without application of the EM algorithm. (b)
Clustering scores that JOINT obtained on the Zeisel dataset when the ini-
tial points were randomly selected, with and without application of the
EM algorithm.

Additional file 9: Table S1. Comparison of clustering performance for
JOINT and published imputation algorithms on a simulated dataset.

Additional file 10: Table S2. Comparison of computing time when
JOINT is run on GPU vs. CPU.
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