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Abstract

Background: Periparturient cows release fatty acid reserves from adipose tissue (AT) through lipolysis in response to the
negative energy balance induced by physiological changes related to parturition and the onset of lactation. However,
lipolysis causes inflalnmation and structural remodeling in AT that in excess predisposes cows to disease. The objective of
this study was to determine the effects of the periparturient period on the transcriptomic profile of AT using NGS RNAseq.

Results: Subcutaneous AT samples were collected from Holstein cows (n =12) at 11 + 3.6 d before calving date (PreP) and
at 6+ 1d (PP1) and 13 + 1.4d (PP2) after parturition. Differential expression analyses showed 1946 and 1524 DEG at PP1 and
PP2, respectively, compared to PreP. Functional Enrichment Analysis revealed functions grouped in categories such as lipid

metabolism, molecular transport, energy production, inflammation, and free radical scavenging to be affected by parturition

generation of reactive oxygen species.

and the onset of lactation (FDR < 0.05). Inflammation related genes such as TLR4 and IL6 were categorized as upstream
lipolysis triggers. In contrast, FASN, ELOVL6, ACLST, and THRSP were identified as upstream inhibitors of lipid synthesis.
Complement (C3), CXCL2, and HMOXT were defined as links between inflammatory pathways and those involved in the

Conclusions: Results offer a comprehensive characterization of gene expression dynamics in periparturient AT, identify
upstream regulators of AT function, and demonstrate complex interactions between lipid mobilization, inflalnmation,
extracellular matrix remodeling, and redox signaling in the adipose organ.
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Background

The transition from late pregnancy to early lactation
(the periparturient period, PPE) represents a major
metabolic challenge to mammals and is dependent on
an extensive series of physiological adaptations that
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include many, perhaps most, body tissues and involve all
nutrient classes [1, 2]. The PPE is especially challenging
in dairy cows as these animals have increased energy re-
quirements driven by fetal growth and copious milk pro-
duction. At the same time, cows have an inadequate
appetite and feed intake to meet the energetic costs of
maintenance plus pregnancy or lactation, resulting in a
state of negative energy balance (NEB). This energetic
deficit depletes liver glycogen stores and increases the
use of amino acids and fatty acids (FA) as energy sources
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[3]. Throughout the PPE, the primary source of FA is
lipolysis in adipose tissues (AT) [4]. Cows successfully
adapt to NEB when the release of FA from AT is limited
to concentrations that can be fully metabolized for en-
ergy needs [4]. However, when lipolysis is excessive,
cows exhibit elevated levels of plasma FA around partur-
ition that are associated with increased disease suscepti-
bility and limited milk production [5].

The AT adapts to support the energy needs of the PPE
by increasing its responsiveness to lipolytic stimuli. At
the same time, adipocytes, the essential cellular compo-
nent of AT, become resistant to the anti-lipolytic effects
of insulin. In addition to driving the release of FA and
glycerol from adipocytes, AT lipolysis also involves a re-
modeling process characterized by an inflammatory re-
sponse with immune cell infiltration composed mainly
of macrophages [6]. These mononuclear cells are the
predominant immune cell type in AT of ruminants [7].
In dairy cows, when lipolysis is severe, AT macrophages
make up 20% of the cells in the stromal vascular fraction
(i.e., non-adipocytes) or 2% of the total number of cells
in the AT [8, 9]. Although AT physiological adaptations
to NEB during PPE are well characterized, the transcrip-
tomic mechanisms that govern these changes are still
poorly understood.

Here we report the results of a next-generation RNA-
seq study in subcutaneous AT collected at three differ-
ent time points during the PPE. Parturition and the
onset of lactation induce profound transcriptomic
changes in genes with functions grouped by in silico
analysis in categories such as lipid metabolism, molecu-
lar transport, energy production, inflammation, extracel-
lular matrix structure, and free radical scavenging. These
results offer a comprehensive characterization of gene
expression dynamics in periparturient AT and demon-
strate the close interactions between lipid mobilization,
inflammation, and redox signaling in the adipose organ.

Methods

Animal model

Twelve healthy multiparous Holstein cows at the Mich-
igan State University Dairy Field Laboratory were used
for this longitudinal cohort study. At the moment of se-
lection, cows were non-lactating and pregnant (210-240
days of gestation). The body condition score (BCS) was
assessed weekly by three trained technicians, and the
average score was calculated [10]. Cows were blocked
(six blocks) by the last BCS measurement before partur-
ition (up to 0.50-unit difference using the scale of 1=
thin and 5 =fat in 0.25 increments), previous lactation
305-d mature-equivalent yield (MEq; within 5700 kg),
and parity (up to 1 lactation difference). The values
(mean * SD) for BCS, MEq and parity were 3.53 + 0.22,
32,182 + 3752 kg, and 2.67 + 0.65 respectively. Cows were
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housed in tie-stalls bedded with sawdust. All animals re-
ceived a close-up (- 21 d pre-calving to parturition) and
a fresh (1-15 d in lactation) diet that were formulated to
meet or exceed their nutritional requirements according
to NRC (Supplement Table 1, [11]). None of the 12 cows
had a health event reported during the study and
remained in the herd after experiments.

Sample collection

Blood samples were collected weekly from 3 wk. before
the expected parturition date until 3 wk. after calving.
Blood was drawn before the morning feeding via coccy-
geal venipuncture using coated collection tubes (K,
EDTA), centrifuged for 20 min at 3000xg (15°C) for
plasma fraction collection, and then stored at —80°C
until further analysis. Plasma concentrations of insulin,
glucose, free FA (FFA), and [B-hydroxybutyrate (BHB)
were determined using an Olympus AU640e chemistry
analyzer (Olympus America, Center Valley, PA, USA) at
the Michigan State University Veterinary Diagnostic La-
boratory (Lansing, MI, USA).

Subcutaneous AT (SCAT) samples were obtained from
the right flank at 11 + 3.6 d before the expected calving
date (PreP) and 6 +1 d (PP1) and 13 +1.4 d (PP2) after
parturition, using the surgical procedure described by
Mann et al. [12], with modifications detailed in [13]. The
site of the incision was moved 3—-4 cm at each collection
timepoint. Five grams of SCAT were collected, snap-
frozen in liquid nitrogen, and stored at — 80 °C for RNA
extraction. A subsample was fixed in formaldehyde for
12 h for histological analysis. The skin was closed using
a continuous interlocking suture with Braunamid (USP1,
Aesculap, Center Valley, PA, USA). Sutures were re-
moved 12-14 d after each procedure.

Histological analyses were performed using hematoxylin-
and eosin-stained sections from paraformaldehyde fixed
paraffin-embedded tissue. The area of adipocytes in 5 ran-
domly selected fields per section was measured using the
Adiposoft plugin (v. 1.15) for ImageJ Fiji (v 2.0.0), as de-
scribed in [14].

RNA seq analyses

Total RNA was extracted from frozen samples using Tri-
zol and the Quick RNA MiniPrep kit (R1054; Zymo Re-
search, Irving, CA, USA) that includes a DNase step to
remove genomic DNA according to the manufacturer’s
protocol. Purity, concentration, and integrity of mRNA
were checked using a NanoDrop 1000 spectrophotom-
eter (Thermo Scientific, Wilmington, DE, USA) and an
Agilent Bioanalyzer 2100 system (Agilent Technologies,
Santa Clara, CA, USA). All samples had a 260:280 nm
ratio between 1.9 and 2.1 and RNA integrity number > 8.
Samples were sent to Novogene Corporation Inc.
(Sacramento, CA, USA) for sequencing in Illumina
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platform. Data quality control was performed with
FastQC v.0.11 (www.bioinformatics.babraham.ac.uk/pro-
jects/fastqc/). After data filtering, clean reads were
mapped to the bosTau? reference genome using HISAT
2.1.0 [15]. The average mapping ratio with the reference
genome was 95.06%. After genome mapping, HTseq
v.0.6.1 was used to count the number of reads to per-
form differential expression analysis (Supplement
Table 2, [16]).

Gene count matrix was uploaded to the NetworkAna-
lyst 3.0 platform and filtered for genes with low tran-
scription abundance (less than 3 reads per gene in all
the samples), and features with constant values (either 0
or empty) were removed [17]. The gene counts were
then normalized using log2. Principal components ana-
lysis (PCA) and 3D PCA analyses were plotted with R
v3.6.1 packages. The R package edgeR v3.4.2 was used to
detect differentially expressed genes in pairwise compari-
sons and differences among time points [18]. Genes with
fold changes > 1, and false discovery rates (FDRs) < 0.05
were defined as Differential Expressed Genes (DEGs)
and captured for further analysis. All data is available in
NCBI Gene Expression Omnibus (accession number:
GSE159224).

Enrichment analysis and networks of gene interaction
Expression analyses were imported into the Ingenuity
Pathways Analysis (IPA) Software (Ingenuity Systems
Inc., NY, USA) and Metascape for functional enrichment
analysis [19]. IPA uses information from databases to
predict regulatory networks associated with an expres-
sion list of genes and determines a statistical Z-score for
each network. This Z-score predicts how the network is
altered as the result of the gene expression profile given.
Canonical pathways and functional regulatory networks
of upstream regulators were identified by the prediction
algorithms and the hypergeometric distribution algo-
rithm. The significance for pathway analyses was set at
P <0.05, and that of networks was set at P < 0.01. Irrele-
vant diseases and processes specific to other species
were removed.

Statistical analysis

The study’s sample size is based on previous PPE studies
by our group, where we determined the impact of par-
turition and the onset of lactation on the expression of
specific genes using targeted gene expression analyses
[13, 20, 21]. All individual data for BW, BCS, and blood
metabolites were averaged per period (PreP, PP1, and
PP2) and analyzed using the MIXED procedure of SAS
version 9.2 (SAS Institute Inc., Cary, NC). The model
used was Yijklm =p+Bi + C(BiFk)j+ Fk + Jm + eijklm,
where Yijklm is the dependent variable, { = overall mean;
Bi = random effect of block; C(BiFk)j = random effect of

Page 3 of 13

cow within block and period; Fk = fixed effect of period;
Jm =random effect of Julian date; and eijklm = residual
error. NEFA values were logarithmically transformed to
achieve normal distribution. Pairwise mean comparisons
evaluated significant effects, and P-values were adjusted
for multiple comparisons using the Tukey-Kramer
method. Friedman’s nonparametric test was used for
analyzing BHB concentrations due to non-normal distri-
bution. Significance was declared at P < 0.05.

Results

Periparturient lipolysis

FA reserves stored as triglycerides in adipocytes are mo-
bilized by lipolysis to support the energy needs of par-
turition and lactation during a time of limited feed
intake. FA mobilization in this group of cows was
reflected in different parameters. First, there was a re-
duction in cows’ BW and BCS at PP1 and PP2 compared
with PreP (Fig. 1a and b). Depletion of triglyceride stores
in adipocytes reduced their average size postpartum
(PreP = 3951 + 336 um?% PP1 = 3534 + 336 um? PP2=
3111 + 336 um?% P<0.05). Lipolysis increased the per-
centage of smaller (<3000 um?) and reduced that of the
largest (9000 um?®) adipocytes at PP1 and PP2 compared
to prepartum values (Fig. 1c). Plasma concentrations of
FFA and BHB increased after parturition, also reflecting
the mobilization of AT lipid stores (Fig. 1d and e). The
high lipolysis rate at PP1 and PP2 coincided with a re-
duction in blood glucose and insulin compared with pre-
partum values (Fig. 1f and g).

The effect of parturition and onset of lactation on AT
transcription profile

To establish an AT transcriptional profile baseline before
parturition, we performed a principal component analysis
(PCA) on PreP samples. PCA patterns at PreP demon-
strate no clear separation of the samples (Fig. 2a). To de-
termine the effects of parturition and the onset of
lactation on AT transcription patterns, we compared PreP
to PP1 and PP2. The samples’ separation and composition
patterns in 2D and 3D PCA analyses show a clear differ-
ence among PreP, PP1, and PP2 (Fig. 2a and b). Differen-
tial expression analysis of samples at PreP vs. PP1
identified 1524 DEGs. Of these genes, 921 were upregu-
lated and 603 downregulated (Fig. 2c, Supplement
Table 2). The progression of lactation accentuates the
changes in AT transcription patterns. When comparing
PreP and PP2, a total of 1946 genes were DEG. The ex-
pression of 1213 of these genes was upregulated, and that
of 733 was downregulated (Fig. 2¢, Supplement Table 2).
Next, Functional Enrichment Analysis was performed on
PP1 and PP2 using Ingenuity pathways IPA and Metas-
cape. As expected, functions grouped in categories such as
lipid metabolism, molecular transport, energy production,
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cell signaling, and free radical scavenging were affected by
parturition and the progression of lactation (Fig. 2d).

Enrichment of gene networks of AT lipid metabolism,
inflammation, and remodeling

Since there were more transcriptional changes identified
at PP2 compared to PP1 and the majority overlapped be-
tween the two timepoints, we selected PP2 DEG and
performed enrichment analysis using Metascape and
IPA. Results demonstrated enrichment of processes re-
lated to lipid metabolism, energy production, inflamma-
tion, extracellular matrix remodeling, and free radical
scavenging. Few lipid metabolism enriched processes
were upregulated at PP2, and these belonged to choles-
terol homeostasis and the acyl chain remodeling path-
way (Fig. 3A). In contrast, there were several gene
networks downregulated at PP2 that included synthesis
of FA, FA and glycerolipid metabolism, and lipid and tri-
glyceride biosynthesis (Fig. 3A). Many of these lipid-
related downregulated processes are also in the energy
metabolism ontology networks, including adipokine sig-
naling and monocarboxylic acid binding (Fig. 3B). There
were four expression patterns of lipid metabolism-
related genes (Fig. 3A‘). Genes involved in de novo lipo-
genesis such as AGPAT2 and FASN were downregulated
(- 3.3 and - 6.0 Fold Change [FC]) at PP1 compared to
PreP, and then their expression started to increase by
PP2 with values of — 1.9 FC for AGPAT2 and - 2.4 FC
for FASN (Supplement Table 3). The second group of
genes exhibited a gradual reduction of their FC expres-
sion from PP1 to PP2 compared to PreP. This group of

genes belongs to processes related to energy generation
and catabolism, including ACLY (PP1=-3.2 FC; PP2 = -
2.0 EC), LPL (PP1=-2.8 FC; PP2 =-1.7 FC), and DECRI1
(PP1 =-2.8 FC; PP2 =-1.9 FC). The third group of genes
showed a continuous downregulation at PP1 and PP2,
and these included leptin (LEP; PP1 =-2.8 FC; PP2=-1.8
FC), GPAM (PP1 =-4.8 FC; PP2=-2.9 FC), and ACAT2
(PP1=-1.7 FC; PP2=-1.4 FC). The final group had a
drastic increase in expression upon parturition. These
genes modulate intracellular lipid fluxes, including chol-
esterol transport ABCAI (PP1=2.2 FC; PP2=1.8 FC),
mitochondrial CoA transport CPTI1c (PP1=1.8 FC;
PP2 =1.7 FC), and the vitamin D receptor VDR (PP1 =
3.0 FC; PP2 = 1.9 FC). Among the DEGs involved in en-
ergy metabolism, two expression patterns were identified
(Fig. 3B). A group with downregulation below -4 FC
after calving included anabolic genes belonging to the de
novo lipogenesis pathway (e.g. FASN, ACACA) and a
group with permanent upregulation after calving includ-
ing RGS16 a regulator of G protein signaling (Fig. 3B‘and
Supplement Table 3).

High lipolysis rates induce inflammatory responses
within AT in the first 2-3 weeks after parturition [20].
Accordingly, several inflammation-related networks be-
came activated at PP2, including chemokine activity,
apoptosis, lipid binding, response to lipopolysaccharide,
and membrane rafts (Fig. 3C). DEG belonging to these
upregulated networks at PP1 and PP2 included those en-
coding for pro-inflammatory cytokines (CCL2, CCLIS,
CXCL2, CXCLS, IL6), macrophage phenotype markers
(CDI14, TREM?2), complement (C3, C6, C7), and the free
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heme processing proteins HMOX1 and HP (Fig. 3C‘and
Supplement Table 3). DEG that exhibited downregula-
tion at PP1 and PP2 included the gene encoding for the
complement component C4a and those transcribing
cytochrome P450 enzymes CYP2D14 and CYPI1A1L Toll-
like receptor 8 (TLRS8) showed a unique expression pat-
tern exhibiting strong downregulation at PP2 compared
to PreP and PP1 (Fig. 3C'and Supplement Table 3).

Due to the rapid reduction in AT mass during the first
three weeks after parturition (>20%, [22]), the AT ex-
hibits considerable changes in its extracellular matrix
(ECM) structure gene networks with upregulation of
angiogenesis and cellular protein localization and down-
regulation of metallopeptidase activity (Fig. 3D).

Reflecting on the complex regulation of ECM, certain
metalloproteases that promote angiogenesis and adipo-
genesis were upregulated (ADAMTS4, PAPPA2). In con-
trast, others such as ADAMTS16 were downregulated
together with specific ECM proteins like keratins 3 and
19 encoded by KRT3 and KRT19 (Fig. 3D‘and Supple-
ment Table 3).

Rapid mobilization and oxidation of FA in adipocytes
during the PPE trigger intense responses to oxidative
stress and reactive oxygen species generation. Accord-
ingly, gene networks that link inflammation and oxida-
tive stress were upregulated, while those that involve
catabolism of lipids were downregulated (Fig. 3E and
Supplement Table 3). Noticeably, genes associated with
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heme processing such as HP and HMOXI were up-
regulated after calving (Fig. 3E‘and Supplement
Table 3). While IDH1, an NADPH producing enzyme,
and MAOB, an amine oxidase, were downregulated
(Fig. 3E‘and Supplement Table 3).

Pathway analyses of AT lipid metabolism, inflammation,
and remodeling

Ingenuity pathway analyses determined upstream regula-
tors related to DEG identified at PP2. The activation of in-
flammatory signals, including P38 MAPK, TLR4, IL1, and
IL6 were identified as triggers of lipolytic activity (Fig. 4a).
In contrast, several components of lipogenic pathways
acted as inhibitors of FASN, ELOVL6, ACLS1, and THRSP
and thus reduced the synthesis of lipids (Fig. 4b). The gene
encoding primary facilitator superfamily domain-
containing protein 2a (MFSD2A) also suppressed lipo-
genic activity (Fig. 4c). As expected, the regulation of in-
flammatory responses within AT during the PPE is
complex and includes many upstream regulators that are
interconnected. Key pathways identified by IPA included
activation and recruitment of phagocyte and myeloid cells,
phagocytosis, and fibrogenesis (Fig. 5a). Carbon monoxide
acted as an upstream regulator of lipolysis and phagocyte
recruitment linking inflammation and lipid release (Fig.
5b). Finally, the gene CHUK, encoding the inhibitor of
NEKp kinase complex subunit alpha, was identified as a
possible promotor of reactive oxygen species production
linking inflammation and oxidative stress [23]. Although

CHUK is only one component of the kinases that phos-
phorylate NFKB, its inflammatory activity induces the acti-
vation of complement (C3), CXCL2 encoding macrophage
inflammatory protein 2-alpha, and HMOX1 (Fig. 5c¢).

Discussion

During the PPE, AT reserves of FA support lactation
and bodily functions in an NEB environment. Lipolysis
makes FA available as an energy substrate to tissues by
breaking down triglyceride molecules stored within adi-
pocyte lipid droplets. In this group of cows, a high PPE
lipolysis rate was reflected in the reduction of BW and
BCS post-calving, increased postpartum plasma NEFA
and BHB, and reduced adipocyte size as lactation pro-
gressed. These changes occurred during the first 2 weeks
of lactation and were accompanied by variations in AT
gene expression patterns that were analyzed by measur-
ing their transcript levels using NGS.

To our knowledge, this the first next-generation RNA-
seq study performed in AT from multiparous PPE cows
and the second in PPE dairy cattle after Mellouk et al.
[24] who did a similar transcriptomics evaluation in first
lactation heifers. In our current study, transcription pro-
filing identified 1524 and 1946 DEG at PP1 and PP2, re-
spectively, compared to PreP. In the report by Mellouk
and colleagues, heifers with moderate NEB exhibited
977 DEG at one week post-calving when comparing the
transcriptome with that at four weeks before parturition.
In both studies, parturition and the onset of lactation
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Inhibition of long-chain fatty acids synthesis; (c) Inhibition of lipid synthesis of lipids

coincided with abrupt and intense changes in AT gene
expression profiles.

Periparturient AT lipid and energy metabolism

Enrichment analyses in the present study and that of
Mellouck et al. [2020] identified genes related to lipid
and energy metabolism processes overly represented as
DEG (Fig. 3). This is an expected observation reflecting
AT’s rapid response to reduce NEB that is characterized
by an inhibition of pathways that promote the synthesis
of FA and triglycerides [25]. By diverting FA away from
triglyceride formation, the AT prioritizes FA released by
lipolysis for export as energy substrates. Previous RT-
qPCR and microarray experiments reported the down-
regulation of lipogenic genes that govern FA synthesis
pathways in AT during the PPE, including FASN [26-
28], ELOVL6 [26, 29], PCKI [30, 31], ACACA [13, 32],

and ACLSI [32, 33]. Our IPA analysis found these same
genes and ELOVLS5, THRSP, as upstream inhibitors of
FA synthesis. An important finding in our analyses is
that following parturition, the inhibition of FA synthesis
related genes is not static. Genes that have a predomin-
ant role in lipogenesis such as FASN, ELOVL5, ACLS],
and PCKI increase their expression by PP2 responding
to the improvement in NEB. Together, our results dem-
onstrate that lipogenesis inhibition is a feature of AT
transcriptomic adaptation to the PPE that is reduced as
lactation progresses. The gradual reactivation of lipogen-
esis likely minimizes the release of FA into circulation as
NEB diminishes.

Another necessary transcriptional adaptation of AT to
the PPE is increasing the capacity of adipocytes to export
lipids. Cows in this study exhibited upregulation of the
cholesterol homeostasis pathway characterized by higher
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expression of ABCA1 (Fig. 3A and A). Lipolysis activates
cholesterol efflux in adipocytes as the breakdown of lipid
droplets releases cholesterol molecules into the cyto-
plasm [34]. The protein ABCAL is critical for delivering
free intracellular cholesterol and phospholipids to extra-
cellular apolipoproteins and thus activating the transport
of lipids from AT [35]. Postpartum activation of the
cholesterol homeostasis pathway coincides with the
well-characterized plasma cholesterol dynamics in dairy
cows that reach their nadir immediately after parturition
and rapidly rebound to pre-calving levels by four weeks
into lactation [36]. The pattern of AT ABCAI transcrip-
tion observed in the present study coincides with that
reported in the liver [36]; thus, both organs activate their
cholesterol homeostasis pathways to accommodate the
sizeable periparturient flux of lipids into circulation.

Cows in our present study also exhibited, at least at
the transcription level, post-calving activation of the
acyl chain remodeling pathway (Lands Cycle). Primar-
ily driven by the upregulation of the phospholipases
PLA2G2A and PLA2G4F at PP1 and PP2 (Fig. 3A"),
this pathway regulates the size of lipid droplets and
may be necessary for targeting smaller droplets gener-
ated during lipolysis to intracellular organelles such as
the mitochondria and the rough endoplasmic
reticulum [37]. Since mitochondria is an essential tar-
get for FA released during lipolysis in adipocytes [38],
the upregulation of CPTIC at PP1 and PP2 is note-
worthy (Fig. 3A°). This gene encodes an isoform of
the rate-limiting enzyme in mitochondrial FA oxida-
tion, carnitine palmitoyltransferase 1. Simultaneously,
AT showed downregulation of LEP, coinciding and
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likely explaining the low circulating levels of leptin
observed during the PPE [39]. By reducing leptin, the
AT exerts an orexigenic effect to counterbalance
NEB. Together these transcriptomic changes activate
the oxidative machinery of adipocytes preparing these
cells for using FA as an energy substrate in the mito-
chondria and enhance energy intake systemically.

Although lipolytic activity is primarily regulated by the
phosphorylation rate of lipases and not by gene tran-
scription patterns [40], it is essential to highlight the
drastic postpartum downregulation of MAOB. This gene
encodes monoamine oxidase B, an enzyme that degrades
lipolytic amines such as norepinephrine. The responses
of AT to adrenergic stimuli in dairy cows are increased
during the first month after parturition compared to the
non-lactating period [41]. A limited transcription of
MAOB provides a mechanistic target for this physio-
logical response, and therefore future studies should
examine protein expression and activity patterns of this
enzyme around parturition.

Adipose tissue inflammation

Lipolysis is an inflammatory event that triggers im-
mune cell infiltration and extracellular remodeling in
humans [42], rodents [43], and dairy cows [4]. Our
study’s enrichment analyses identified several path-
ways in PP1 and PP2 samples that likely modulate
the inflammatory process in AT postpartum (Fig. 3C).
Our DEG (Fig. 3C‘) and IPA (Fig. 5b) analyses
highlighted the cytokines IL6, CXCL2, and CCL2 as
upstream targets for pathways involved in the recruit-
ment and activation of phagocytes and phagocytosis.
Zhang and colleagues characterized lipolysis induced
IL6 secretion as a hormone-sensitive lipase activation-
dependent event in rodents [44]. In dairy cows, post-
partum AT IL6 upregulation is a commonly described
transcriptomic finding [45]. Both the macrophage in-
flammatory protein 2-alpha, encoded by CXCL2, and
monocyte chemoattractant protein-1, encoded by
CCL2, are promoters of macrophage infiltration into
AT [46]. Postpartum upregulation of these genes in
AT was reported by our group and others using RT-
qPCR approaches [13, 27].

Macrophage infiltration is a significant characteristic
of lipolysis induced inflammation in AT [47]. In-
creased expression of CDI4 postpartum in this group
of cows provides further evidence for the enhanced
trafficking of macrophages into AT during lipolysis as
the CD14 protein is a macrophage marker in cattle
[48]. This finding coincides with reports from differ-
ent research groups demonstrating an increased num-
ber of macrophages in AT postpartum, especially in
cows with high lipolysis rates using transcriptomics
[27], flow cytometry [8], and immunohistochemistry

Page 9 of 13

[45, 49]. A new finding of our present study is the
identification of TREM2 as DEG. This gene encodes
for a transmembrane glycoprotein that binds with
apolipoproteins and phospholipids. TREM2 expression
is abundant in macrophages with an anti-
inflammatory phenotype and is a marker for high
cholesterol metabolism and oxidative phosphorylation
capacity [50]. Since phenotyping AT macrophages is
difficult in bovines, TREM2 expression in PPE cows
warrants further investigation as it could represent a
new marker for mononuclear cells with metabolic
functions also described in the literature as metabolic-
ally activated macrophages [51].

The DEG analysis in our study demonstrated a post-
partum upregulation of genes encoding the complement
proteins C3 and C5. These results align with proteomic
studies by Zachut and colleagues identifying the same
peptides with a similar enhanced expression pattern
postpartum compared to pre-calving timepoints [52]. C3
is the main effector protein of the complement system.
Convertases cleave C3 to generate C3a and C3b and C5
to yield C5a and C5b upon activation by the inflamma-
tory process. C3a downstream product C3adesArg (i.e.,
acylation stimulating protein) and C5a are both potent
inhibitors of lipolysis and promoters of triacylglycerol
synthesis and glucose transport in adipocytes and muscle
cells [53, 54]. C3a and C5a are good examples of how in-
flammatory mediators released during the resolution
stage of inflammation may exert a negative feedback
loop that reduces lipolysis in adipocytes.

The IPA analysis results in our study link, for the
first time in dairy cattle, the expression of TLR4 and
IL6 with lipid release pathways. This connection is
well described in human and rodent studies. Activa-
tion of TLR4 by endotoxins or FA stimulates the
phosphorylation and degradation of IkB proteins via a
MyD88-dependent pathway. This leads to the trans-
location of NF-kB, which triggers the synthesis of
pro-inflammatory cytokines, including IL6 and TNFa
[55]. The latter promotes lipolysis by impairing the
expression and function of perilipin. This causes the
thinning of the protein envelope of the lipid droplet,
making it more susceptible to HSL’s action [56]. TLR4
can also activate the mitogen-activated protein kinase
/extracellular signal-regulated kinase (MEK/ERK) pathway
in a MyD88-independent manner. MEK/ERK pathway
phosphorylates the beta-adrenergic receptors and PKC, ul-
timately leading to HSL and perilipin phosphorylation [57,
58]. Additionally, MEK/ERK stimulates TNFa production
[59]. Given the high incidence of inflammatory diseases
with high levels of circulating endotoxins in PPE cows
[60], further research should focus on elucidating the
mechanisms that link TLR4 activation with dysregulation
of lipolysis.



Salcedo-Tacuma et al. BMC Genomics (2020) 21:824

Adipose tissue remodeling

Lipolysis is a catabolic process that leads to a drastic
reduction in the mass of the AT in PPE cows. As
with any remodeling process, this change requires ro-
bust proteolytic activity, which in the animals in the
present study was reflected in enhanced transcription
of metallopeptidase and angiogenesis-related pathways.
Our DEG analysis indicated postpartum upregulation
of the matrix metalloproteinases ADAMTS4 and
ADAMI2 that are members of ADAM/ADAMTS sys-
tem. Both genes encode proteins belonging to the dis-
integrin and metalloproteinases group of proteases.
The transcription of ADAMTS4 produces a homonym
enzyme that acts on aggrecan. Although this proteo-
glycan is more abundant in cartilage, it is also present
in AT and is a potent promoter of adipogenesis in
preadipocytes. The activity of ADAMTS4 is a deter-
minant in the action of aggrecan on adipocyte pro-
genitor cells. Remarkably ADAMTS4 is abundantly
present in periods of AT expansion postnatally [61].
ADAM12 or meltrin alpha is a metalloprotease disin-
tegrin. Similar to ADAMTS4, ADAMI12 is a proadipo-
genic factor, and its metalloprotease activity is
required for the differentiation of perivascular preadi-
pocytes into adipocytes [62]. Therefore, the upregula-
tion of this aggrecanase may be an early indicator of
the reactivation of adipogenic and lipogenic activity
after the lipolysis peak postpartum.

Adipose tissue oxidative stress

Lipolysis is a pro-oxidant event as triglyceride hy-
drolysis and the release of FA increase mitochondrial
respiration and promote the production of reactive
oxygen species (ROS) [38]. In this group of cows,
periparturient lipolysis led to the activation of path-
ways regulating responses to ROS and oxidative stress
(Fig. 3E). It is important to emphasize the postpartum
enhancement of the transcription of genes related to
heme processing, including HMOXI, HP, and STEA
P2. Heme oxygenase 1 is encoded by HMOXI and is
the rate-limiting enzyme of heme degradation that re-
leases biliverdin, ferritin, and carbon monoxide [63].
As for STEAP2, this gene encodes the metalloprotease
STAMP1 that reduces iron [64]. In AT, haptoglobin
(encoded by HP) exerts an antioxidant role, and its
expression is triggered by inflammatory responses
such as those induced by lipolysis [65]. Heme induces
lipolysis in adipocytes through a mechanism that in-
volves the generation of pro-oxidants and lipid perox-
idation products [63]. Importantly, IPA analyses of
our data identified HMOXI together with C3 as pos-
sible upstream determinants in the production of
ROS (Fig. 5¢). Also, IPA analysis identified carbon
monoxide as a link between heme processing and

Page 10 of 13

macrophage infiltration. Carbon monoxide is the
product of heme oxidase 1 and is a promoter of mat-
uration of monocytes into macrophages as it induces
the expression of CDI14 [66]. Taken together, the
transcriptomic patterns of heme processing proteins
and carbon monoxide indicate that in healthy PPE
cows, as those in the present study, the AT rapidly
deploys antioxidant defenses to reduce the pro-
lipolytic effects of heme and other inducers of oxida-
tive stress and at the same time trigger the rapid
resolution of inflammation by enhancing the matur-
ation of infiltrating monocytes.

In our present study, DEG, pathway, and IPA ana-
lyses identified the nuclear receptor VDR as a key
target gene that is involved in several upregulated
processes post-calving. Vitamin D exerts many of its
effects through the activation of VDR. These include,
but are not limited to, inhibiting lipolysis, activating
lipogenesis and adipogenesis, minimizing adipocyte
apoptosis, promoting adiponectin secretion, and exert-
ing an anti-inflammatory effect in AT (reviewed ex-
tensively in [67]). The role that VDR plays in the
adaptation of AT to PPE metabolic challenges is un-
known in dairy cows; therefore, further research is
warranted especially given the allelic variations in
coding regions of the bovine VDR gene [68].

Finally, it is important to note that this study fo-
cused on AT and did not include samples from the
liver, mammary gland, uterus, or other organs with
significant physiological changes during PPE. There-
fore establishing the exact mechanisms that drive spe-
cific AT responses during PPE based on the data
presented is difficult. For example, systemic inflamma-
tion and uterine involution can also induce AT in-
flammatory responses directly and therefore enhance
the lipolysis induced inflammation.

Conclusion

Our present study presents a transcriptomic analysis that
identified gene networks, processes, and pathways that
orchestrate the adaptations of AT to the lipolytic re-
sponses that characterize the PPE in dairy cows. Results
provide a comprehensive characterization of the gene
expression dynamics at 1 and 2 weeks postpartum com-
pared to a sample collected 1week before parturition.
DEG and pathway enrichment analyses identified im-
portant gene targets for periparturient AT processes
such as lipid mobilization (ABCAI, FASN, ELOVS), in-
flammation (C3, C5, CCL2 IL6, CXCL2, and TREM?2)
extracellular matrix remodeling (ADAMTS4 and
ADAM12), and redox signaling (HMOX1, HP, STEAP2,
and VDR) and demonstrate the complex interactions
among these essential functions during PPE.
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