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Abstract

Background: DNA methylation (DNAm) profiling has emerged as a powerful tool for characterizing the placental
methylome. However, previous studies have focused primarily on whole placental tissue, which is a mixture of
epigenetically distinct cell populations. Here, we present the first methylome-wide analysis of first trimester (n = 9)
and term (n = 19) human placental samples of four cell populations: trophoblasts, Hofbauer cells, endothelial cells,
and stromal cells, using the Illumina EPIC methylation array, which quantifies DNAm at > 850,000 CpGs.

Results: The most distinct DNAm profiles were those of placental trophoblasts, which are central to many
pregnancy-essential functions, and Hofbauer cells, which are a rare fetal-derived macrophage population. Cell-
specific DNAm occurs at functionally-relevant genes, including genes associated with placental development and
preeclampsia. Known placental-specific methylation marks, such as those associated with genomic imprinting,
repetitive element hypomethylation, and placental partially methylated domains, were found to be more
pronounced in trophoblasts and often absent in Hofbauer cells. Lastly, we characterize the cell composition and
cell-specific DNAm dynamics across gestation.

Conclusions: Our results provide a comprehensive analysis of DNAm in human placental cell types from first
trimester and term pregnancies. This data will serve as a useful DNAm reference for future placental studies, and we
provide access to this data via download from GEO (GSE159526), through interactive exploration from the web
browser (https://robinsonlab.shinyapps.io/Placental_Methylome_Browser/), and through the R package planet,
which allows estimation of cell composition directly from placental DNAm data.
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Background
A well- functioning placenta is critical for the healthy
development of the fetus during pregnancy. DNA
methylation (DNAm) profiling of the placenta has been
increasingly used to characterize underlying processes
associated with adverse perinatal outcomes (e.g. mater-
nal preeclampsia, fetal growth restriction and preterm
birth) as well as to study the influence of maternal
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exposures on epigenetic programming. DNAm is an epi-
genetic modification that can regulate or respond to
changes in gene expression [1, 2]. However, because het-
erogeneous tissues, such as the placenta, are made up of
several cell types, each with a distinct DNAm signature,
whole-tissue measurements are ultimately an average of
the DNAm signatures of the constituent cell types,
weighted by their respective frequency in the bulk tissue
sample. Therefore, changes in DNAm measured in com-
plex tissues can often be attributed to variation in cell
composition rather than DNAm changes that occur in
the constituent cell populations [3]. This makes
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interpretation of placental DNAm studies difficult until
placental DNAm is characterized at a cell-specific
resolution.
During the first few cell divisions after fertilization,

there is a wave of genome-wide erasure of DNAm,
followed by de novo DNAm in the inner cell mass [4].
Deriving from the inner cell mass are fetal tissues and
the mesenchymal core component of the placental
chorionic villi (CV). Within the mesenchymal core, stro-
mal cells (SC) and fetal macrophages called Hofbauer
cells (HB) can be seen in the placental stroma as early as
18 days post conception [5], which are thought to derive
from mesenchymal stem cells. HBs are distinct from de-
cidual macrophages and fetal/maternal monocytes [6];
they display high phenotypic diversity, promoting angio-
genesis early in gestation and later participating in the
immune response to pathological processes and infec-
tion [7, 8]. Placental vasculature is critically important
for proper functioning of the placenta, and depends on
the development of vessels beneath the trophoblast layer.
These vessels are formed from endothelial cells (EC) that
derive from the chorionic mesoderm [9]. Encompassing
the mesenchymal core is a thick trophoblast (TB) epithe-
lial cell layer, which displays a hypomethylated profile
[10]. TBs comprise a set of functionally distinct sub-
types, each with their own unique function [11, 12]:
Cytotrophoblasts (CTB) are stem-like cells that harbor
regenerative abilities and give rise to the two major sub-
types of TB, the extravillous trophoblast (EVT) and the
syncytiotrophoblast (STB). EVT are motile cells that
travel to maternal tissue and remodel maternal vascula-
ture, while STB are a multi-nucleated epithelial layer lin-
ing the CV that perform critical roles in hormone
production and nutrient transfer.
As a consequence of its distinct developmental origin,

dramatic differences in DNAm between placenta and
somatic tissues have been observed [10]. Globally, the
placenta is hypomethylated compared to other tissues,
which was originally attributed to reduced methylation
of repetitive element DNAm [13, 14], but was later re-
solved to be primarily due to placental-specific partially
methylated domains (PMDs) [15]. PMDs are long re-
gions of intermediate/low DNAm surrounded by regions
of higher DNAm that exist in a highly cell-specific fash-
ion [16]. It is unclear if these PMDs have a distinct func-
tion or are footprints of earlier developmental events
between embryonic and extraembryonic tissues. Parent-
of origin specific DNAm, which is associated with gen-
omic imprinting, is also more commonly found in the
placenta than other tissues [17]. Almost all known
imprinted genes are imprinted in the placenta, and many
are exclusively imprinted in the placenta [18–21]. Inter-
estingly, a number of placental-specific imprinted genes
are polymorphically imprinted [18]. It is possible that
cellular and genetic heterogeneity can contribute to
polymorphic imprinting, as well as variability in DNAm
generally. Supporting this, a significant role for genetic
control of placental DNAm variation was recently charac-
terized [22]. These studies have contributed to our under-
standing of the unique epigenetics of the placenta, but it
remains unclear if these features are maintained in all con-
stituent placental cell types or are confined to specific ones.
Placental DNAm is often studied in the context of

health in relation to disease and environmental expo-
sures. A common study design is the epigenome-wide
association study (EWAS) [23], where differentially
methylated CpGs (DMCs) are identified in a high-
throughput manner, usually with microarray or sequen-
cing based approaches. However, placental DNAm stud-
ies are almost all carried out using whole CV and are
therefore subject to challenges of interpretability due to
potential cell composition variability [24]. Unlike other
tissues, such as adult blood and umbilical cord blood,
addressing cell composition variability in placenta is dif-
ficult due to a lack of reference placental DNAm pro-
files, which enables bioinformatic estimation of cell
composition from cellular deconvolution techniques
[25]. These methods operate by modelling the whole tis-
sue measurements as a weighted sum of cell type -spe-
cific DNAm signatures, where the weights correspond to
the relative proportion of each constituent cell type in
the whole tissue sample, and can be determined using
least-squares or non-constrained regression approaches
[25–27]. Without reference DNAm profiles for each cell
population, researchers sometimes account for cell com-
position using reference-free deconvolution methods.
However, the effectiveness of reference-free deconvolu-
tion in capturing cell composition variation has not yet
been assessed in placenta.
To address these challenges, in this study we have gen-

erated DNAm reference profiles for 4 major human pla-
cental cell populations using the 850 k Illumina EPIC
DNA methylation microarray, which profiles more than
850,000 CpGs. Our study is the first to characterize the
DNAm of major placental cell populations with a high-
resolution approach, across first trimester and term pla-
centas. We show that cell-specific DNAm occurs at
thousands of CpG sites, of which a subset can be used
to infer cell composition using cellular deconvolution.
Our study underscores the importance of cell-specific
approaches in placental studies, especially when measur-
ing epigenetic features such as DNAm.

Results
Major human placental cell types have highly specific
methylation patterns
To characterize the dynamics of CpG methylation
during human placental development, we performed
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microarray profiling (Illumina EPIC methylation array, n
CpGs = 737,050 after removal unreliable probes) in sam-
ples of matched CV and 4 fluorescence-activated cell
sorted (FACS) cell- types (Additional File 1: Figure S1A),
from 9 first trimester (6.4–13 weeks gestational age) and
19 term (36.4–40.4 weeks) pregnancies (Table 1). Im-
munofluorescence staining of flow cytometry sorted cells
(Additional File 1: Figure S1B-E) determined high purity
for TB (KRT7+, 97%), HB (CD68+, 95%), and EC
(CD31+, 88%) and lower purity for SC (VIM+, 73%).
Several bioinformatic approaches, such as array-based
sex inference [28], and genotype clustering, were used to
identify contamination with maternal DNA (Additional
File 1: Figures S2A-F, Additional File 2: Supplementary
methods). We restricted analysis to samples with an esti-
mated maternal cell contamination of less than 35%,
with the majority of first trimester samples having less
than 20%, and term samples less than 10% (Additional
File 1: Figure S2G). This resulted in the exclusion of: 6
HB, 1 EC, and 4 TB from first trimester, and 1 HB from
term samples. Final sample numbers in all downstream
analyses are shown in Table 1.
To determine major factors that drive DNAm vari-

ation, we first applied principal components analysis
(PCA) to all 126 CV and cell samples. Three distinct
clusters were observed when samples were projected
onto PCs 1 and 2 (total percent variation explained =
64%; Fig. 1a). Samples in these clusters were i) TB and
CV, ii) SC and EC, and iii) HB. Cell type was strongly as-
sociated with the first 3 PCs (p < 0.001), while gesta-
tional age (i.e. “Trimester”) was the second strongest
identifiable factor driving DNAm variation, being
associated with PCs 4 and 5 (p < 0.001, Additional File 1:
Figure S3). Technical variables such as “Batch”, “Row”,
and “Chip ID” explained less variation in comparison to
biological variables. Sex was associated with PCs 6 and
8–11 (p < 0.01). The close clustering of TB with CV (ori-
ginal unsorted tissue) is consistent with this being the
predominant cell type in whole villi.
We next wanted to define the extent and patterns of

cell-specific DNAm. At a Bonferroni-adjusted p < 0.01
Table 1 Number of cell-specific and matched chorionic villi samples
Illumina EPIC methylation array. Surface markers for flow cytometry

Chorionic villi

Trophoblast (EGFR+/KRT7+)

Hofbauer (CD14+/CD68+)

Endothelial (CD34+/CD31+)

Stromal (VIM+)

Mean Gestation age (mean and range in weeks)

Sex (n Males)
and an absolute difference in mean methylation (Δβ) >
25%, we found 75,000–135,553 and 9136–117,528 (term
and first trimester, respectively) cell-specific differentially
methylated CpGs (DMCs; Fig. 1b; Additional File 3: first
trimester DMCs, Additional File 4: term DMCs). The
differences in the number of DMCs between first trimes-
ter (n = 3–9) and term (n = 18–19) are likely due to less
power from the smaller sample size for first trimester
samples compared to term. When comparing across
term samples, we detected more DMCs for TB and
HB (n = 135,553 and 130,733) compared to SC and
EC (80,153 and 75,525; respectively). This was also
true for first trimester samples: there were more
DMCs for TB and HB (117,528 and 78,309) than SC
and EC (9136 and 18,867). We further classified these
DMCs by whether their methylation was in the “less
than” (compared to all other cell types) or “more
than” direction. Most TB DMCs were in the less
methylated direction (61% - first trimester, 88% term),
whereas HB DMCs were often more methylated than
other cell types (74% - first, 72% term). A list of 38,656–
86,355 differentially methylated regions (DMRs) were
identified (FDR < 0.01) using the R package dmrcate for
each cell type and gestational age; these results are pre-
sented in Additional Files 5 and 6.
To characterize the functional relevance of placental

cell-specific DMCs, we tested these CpGs for enrich-
ment in various genomic elements (chi-squared test,
FDR < 0.05; term DMCs in Fig. 1c, first trimester DMCs
in Additional File 1: Figure S4). Cell-specific DMCs were
depleted in gene-related elements such as promoters,
exons, 5′ UTRs, and 3′ UTRs. Instead, we saw signifi-
cant enrichment in non-coding regions, such as open
seas, CpG island shores, intergenic regions, introns, and
enhancers. The level and direction of enrichment was
highly consistent across first trimester and term cell
DMCs. Less methylated DMCs were enriched for pla-
cental PMD regions [15] for TB but depleted for all
other cell types. Functional enrichment analysis tested if
GO or KEGG pathways were associated with cell-
specific DMCs. We adjusted for the variable number of
from first trimester and term placentas, measured on the
and immunofluorescence staining are shown in brackets

First trimester Term

7 19

5 19

3 18

8 19

9 19

10.8 (6.4–13) 39.0 (36.4–40.4)

4 9
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Fig. 1 Genome-wide characterization of placental cell DNA methylation. a Principal components analysis (PCA) was applied to all samples and
CpGs. Samples are projected onto axes PC1 and PC2 which account for 41% and 23% total variance, respectively. b Results from the differential
methylation analysis using the R package limma are shown here. DMCs, defined as those tests passing a Bonferroni-adjust p-value < 0.01, and a
difference in group means > 0.25, were divided into less methylated and more methylated compared to all other cell types. c Enrichment analysis
of term cell-specific DMCs was carried out on genomic elements using a chi-squared test and a Bonferroni-adjusted p-value < 0.01. The expected
(background) frequency, which is the percentage of total tested CpGs in each genomic element, is shown as a black line. d Average term
placental cell-specific DNA methylation across TFAP2C transcripts on chromosome 6, and e INHBA transcripts on chromosome 7. Differentially
methylated regions (defined as regions with a high density of differentially methylated CpGs), are highlighted with a grey background. Y axis
ranges from 0 to 100% DNA methylation
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CpGs per gene to reduce bias in gene set analysis. EC
and HB DMCs were enriched (FDR < 0.05) for terms
related to intercellular interactions such as “cellular re-
sponse to external stimulus”, whereas stromal DMCs
yielded more intracellular processes related to maintain-
ing tissue structure, such as “actin cytoskeleton” and
“collagen binding”. Trophoblast DMCs were enriched
for two KEGG pathways, “ECM-receptor interaction”
and “Regulation of actin cytoskeleton” (Additional File 7:
Table S5 and S6).

Cell-specific DNAm occurs at highly functionally-relevant
genes
A number of regions with a high density of DMCs were
located in or nearby functionally- and pathology-
relevant genes. TFAP2C, which encodes a pan-
trophoblast marker, were highly methylated in TB com-
pared to other cell types in the promoter and upstream
region; whole CV showed a similar profile to TB (Fig.
1d). This region contains several predicted enhancers
[29], which may require DNAm for recruiting transcrip-
tion factors. Alternatively, other regions more distal to
TFAP2C may be responsible for regulation of this gene’s
transcription. Other trophoblast-specific markers, such
as GCM1, MMP2, SLC1A5, and GATA3, also had re-
gions of highly cell-specific DNAm localized near their
transcription start sites (Additional File 1: Fig. S5).
We also observed high DMC density regions in genes
for which placental DNAm and/or expression differ-
ences have been associated with preeclampsia [30], in-
cluding INHBA (Fig. 1e), JUNB, TEAD3, NDRG1, and
CGA (Additional File 1: Figure S6). Out of 540
preeclampsia-associated CpGs previously identified by
Table 2 Number of preeclampsia-associated CpGs from Wilson et a
for preeclampsia-associated CpGs was statistically significant for each

n cell-specific
DMCs

n DMCs that are preeclampsia-
associated

Pro
spe

Trophoblast 135,553 147 (0.11%) 27.2

Stromal 80,153 105 (0.13%) 19.4

Endothelial 75,525 109 (0.14%) 20.2

Hofbauer
Cells

130,733 131 (0.10%) 24.3
Wilson et al. 2018 that were also captured in our
processed data, a statistically significant (Bonferroni
adjusted p < 0.01) fraction ranging from 19.4–27.2%
were also identified as exhibiting cell-specific DNAm
for term samples (Table 2) [30].
We hypothesized that genome-wide differences in

DNAm could in part relate to differences in the expres-
sion and DNAm at genes that regulate the deposition,
maintenance, and removal of DNAm, such as DNMT1,
DNMT3A, DNMT3B, DNMT3L, and TET1. In these
genes, we found that a high proportion of CpGs in the
promoter region (61, 36, 31, 83, 18%, respectively) were
differentially methylated by cell type. However, consider-
ing the variable number of CpGs associated with each
gene’s promoter, these percentages were not significantly
greater than genes of similar CpG coverage (Fig. 2 ab).
Differential methylation within DNAm-regulating genes
was highly localized (Figs. 2c). The promoter of DNAm-
maintenance gene DNMT1, which is known to be specif-
ically imprinted in the placenta [31], shows the expected
intermediately methylated (i.e. ~ 50%) pattern for all cell
types except HB, which is completely unmethylated
(Fig. 2c). This suggests that DNMT1 is imprinted in TB,
SC, and EC, but not in HB.

DNA methylation characterization of Syncytiotrophoblast
and Hofbauer cells
We used the pan-trophoblast marker EGFR to isolate
TB using FACS. Because mature EVTs exist primarily in
maternal tissue, and STBs are structurally incompatible
with FACS isolation protocols, our TB sample likely
consists primarily of CTB. In order to better understand
the relationship between STB and the isolated TB cells,
l. 2018 that are cell-specific DMCs for term samples. Enrichment
term cell-specific set of CpGs at a Bonferroni-adjusted p < 0.01

portion out of 599 preeclampsia CpGs that are also cell-
cific DMCs

Odds
ratio

% 1.66

% 1.98

% 2.22

% 1.49
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Fig. 2 Differential methylation at DNA methylation -regulating genes. a On a per-gene basis, the number of promoter CpGs that are differentially
methylated by at least one cell type, out of the total number of promoter CpGs per gene. The y = x line is shown (blue), where genes with 100%
of promoter CpGs are differentially methylated. The green line is a smoothed average. b Distribution of the percentage of promoter CpGs per
gene that are differentially methylated. The dotted line represents an array-wide average. c DNA methylation at CpGs associated with DNMT1 for
term placental samples (top). CpGs in CpG islands, imprinted regions, PMDs, and enhancers are indicated (middle). Associated UCSC transcripts
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we compared a subset of TB with matched STB from
the same placenta that was obtained from enzymatic
separation using Collagenase IA (referred to as eSTB;
n = 5) from term CV samples. This digestion protocol
which extracts the outer layer of the CV, produces a
sample enriched for STB, but is likely to also contain a
proportion of non-STB cell types. To compare eSTB
samples globally to other cell types, we projected eSTB
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onto PCs 1 and 2 to see where they cluster in relation to
other samples. On PCs 1 and 2, eSTB clustered closely
with TB and CV samples, indicating high similarity be-
tween these three populations (Fig. 3a). Throughout ges-
tation, the STB proportion increases, and is greater in
nuclei number compared to CTB at term [32]. To
determine if TB or eSTB samples were more similar to
CV, unsupervised hierarchical clustering was applied on
the top 1000 most variable probes, and resulted in CV
clustering with eSTB (Fig. 3b), which is consistent with
the expectation that CV consists primarily of STB. Sup-
porting this, we found more DMCs (Bonferroni p < 0.01,
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absolute difference in mean DNAm > 25%) between TB
and eSTB (n DMCs = 4666), than between CV and eSTB
(n DMCs = 72). Differential methylation at specific CpGs
localized to genes known to be expressed in STB, such
as CGA, CYP19A1, PAPPA2, PARP1, SLC13A4, and
SLC22A11 (Fig. 3c) [33–36]. The direction of DNAm at
these CpGs was mostly consistent with expected pat-
terns of genes that are more active in eSTB compared to
TB and other placental cell types (i.e. more methylation
at introns, less methylation at promoters).
The distinct DNAm profiles observed in placental HB

suggests a distinct developmental trajectory. Indeed, the
functional role and phenotypic diversity of HBs is com-
plex and thought to vary across gestation, however, they
show similar morphological and cell marker characteris-
tics as adult and fetal monocytes [7]. Therefore, to com-
pare placental HBs to other immune cells, we compared
their DNAm profiles to a curated 450 k DNAm database
of flow-sorted cord blood cell types (n = 263) [37]. We
included only term HBs in this comparison since the
available cord blood data was collected from term sam-
ples. To determine which cord blood cell types HB are
most similar to, we applied unsupervised hierarchical
clustering on the top 1000 most variable CpGs across
each dataset. We observed that HB form their own dis-
tinct cluster (Fig. 3d), indicating they likely have unique
functional properties compared to other immune cells at
similar developmental stages. This finding supports pre-
vious reports of distinct DNAm between HBs, fetal/ma-
ternal monocytes, and decidual macrophages [6]. HBs
cluster most closely with monocytes and granulocytes,
consistent with them having a common developmental
origin.

Canonical placental epigenetic features are not always
present in all constituent cells
To determine if previously identified placental specific
features of DNAm are cell specific, we compared cell-
type specific DNAm at partially methylated domains
(PMDs), genomic imprinting, and repetitive elements
[15, 18, 38]. PMDs are large (> 100 kb) regions of
lower average methylation (< 70%) compared to sur-
rounding regions. Placental PMDs are thought to con-
tribute to the observation that placental DNAm on
average is much lower than other human tissues [10].
To characterize their cell-specificity, we calculated the
percentage of CpGs that are found in previously de-
fined placental PMDs [15] with DNAm falling into
20% intervals (0–20%, 20–40%, 40–60%, 60–80%, 80–
100%). We observed that DNAm levels in PMDs is
highly cell-specific (Fig. 4a). TB, like CV, have more
CpGs with low levels of DNAm in PMDs (0–40%)
compared to other cell types. HB show a strong bias
towards higher DNAm levels, with over 43% of CpGs
in PMDs exhibiting > 80% DNAm. We observed some
changes within cell types between trimesters. All cell
types have lower levels (0–40%) of methylation in
term compared to first trimester. All cell types except
TB have less intermediately (40–60% intervals) meth-
ylated CpGs at term compared to first trimester. HB,
in contrast, have more intermediately (40–60% inter-
vals) methylated CpGs in third trimester. In summary,
the methylation levels at CpGs in PMD regions were
at the expected levels (relatively low methylated com-
pared to surrounding regions) for CV and TB; some-
times hypermethylated for EC and SC; and were
almost always highly methylated for HB, at levels typ-
ically found in somatic cells.
In examining specific regions containing PMDs, a

strong bimodal pattern of methylation was observed,
where regions of lower methylation (overlapping known
placental PMD regions), which were surrounded by re-
gions of higher methylation (Fig. 4 BC). TB DNAm
levels followed closely the levels measured in CV, sup-
porting that placental PMDs are likely reflecting mainly
TB-specific DNAm patterns. In contrast, DNAm in HB
often deviated from the other cell types, typically show-
ing higher levels of methylation within PMDs. SC and
EC often “followed” CV DNAm levels, but were not
nearly as consistent as TB cells in this respect.
We also looked at imprinted differentially methylated

regions (DMRs) that are covered by the EPIC array.
While many imprinted DMRs are maintained in somatic
tissues, others are highly specific to the placenta [18–
21]. To evaluate whether placental-specific imprinting is
maintained in constituent placental cell populations, we
first combined the results from four studies [18, 19, 21,
39] to form a list (Additional File 7: Table S7) of
placental-specific (n CpGs = 981; n genes = 111) and
non-placental specific (i.e. imprinted in other tissues)
DMRs (n CpGs = 1085; n genes = 307). To determine if
CpGs were intermediately-methylated, as would be ex-
pected for an imprinted DMR, we counted the propor-
tion of CpGs with an average DNAm across both alleles
that were in a range between 25 and 75% methylation.
For CpGs in non-placental specific imprinted DMRs, the
mean percentage of CpGs in the intermediate range
across each cell type and in CV in term samples was
69% (Fig. 4d). For placental-specific imprinted CpGs, the
percentage of CpGs falling into this DNAm range was
much more variable. As expected, in the term placental
samples, TB and CV had a high percentage (76, 81%, re-
spectively) of CpGs in this DNAm range. SC and EC
had a lower, but still a majority, percentage of CpGs in
this range (64, 64%, respectively). In contrast, HB cells
had almost no CpGs (12%) in this range; almost all
CpGs were unmethylated (< 25%). These proportions
were similar in first trimester samples, except with EC
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Fig. 4 DNA methylation at partially methylated domains (PMDs), and imprinted differentially methylated regions (DMRs). a The percentage (y-
axis) of CpGs in placental PMDs, falling into specific methylation intervals (0–20%, 20–40%, 40–60%, etc.) is shown for each cell type and trimester.
b DNAm across specific regions on chromosome 21 (B) and 4 (c). PMDs are highlighted with a grey background. d Density plots (y-axis) of
imprinted DMRs in term samples, divided into those that are imprinted in multiple tissues, (i.e. non-placental-specific; 1085 CpGs total; top) and
placental-specific (981 CpGs total; bottom). The percentage of CpGs falling within 25%–75% is shown above each plot. e Cell-specific DNAm at
the C19MC placental-specific imprinted DMR. This placental-specific imprint overlies a CpG island upstream of the miRNA cluster. f DNAm at
placental-specific imprinted region for DCAF10
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and SC showing less intermediate methylation and more
CpGs with less methylation at placental-specific imprints
(Additional File 1: Figure S7A). These results suggest
that placental-specific imprinting is maintained primarily
in TB, and to a lesser degree EC and SC, and is virtually
absent in HB. When considering the parental origin of
imprinted DNAm [18–21, 39], paternally- methylated re-
gions had more CpGs falling within 25–75% as com-
pared to maternal ones (Additional File 1: Figure S7BC).
We only estimated this in non-placental specific
imprinted DMRs, since almost all validated placental-
specific imprinted DMRs are maternally methylated.
DNAm at specific imprinted DMRs was examined. As

described above, TB and CV had intermediate (> 25, <
75%) DNAm at nearly all CpGs located in placental-
specific imprinted regions (Fig. 4d). Most of these CpGs,
in contrast, are hypomethylated for HB cells, consistent
with this cell type having a different developmental ori-
gin than other placental components (embryonic versus
extraembryonic). However, at the imprinted DMR asso-
ciated with the placental-specific expressed microRNA
cluster C19MC, this pattern is reversed: HB have hyper-
methylation at this region (Fig. 4e) as is reported for
somatic adult/fetal tissues [18]. For SC and EC, these cell
types generally show lower levels of DNAm than TB/CV
at the placental-imprinted DMRs, sometimes matching
that in HBs and other times showing levels somewhere
between HB and TB/CV. Such patterns are observed for
genes such as DCAF10 (Fig. 4f), fibroblast growth factors
FGF8, FGF12 (Additional File 1: Figure S8AB), and at
epigenetic regulator JMJD1C (Additional File 1: Figure
S9A). However, for a few DMRs, levels of DNAm in SC/
EC matched that of TB/CV, such as ones associated with
the DNAm maintenance gene DNMT1 (Fig. 2c) and
FGF14 (Additional File 1: Figure S9B). Higher DNAm
than TB/CV was only observed for 1 gene (RASGRF1,
Additional File 1: Figure S10).
DNAm at repetitive elements, such as Alu and LINE1

elements, can be placental-specific and have been hy-
pothesized to often be important regulatory components
of placental processes [40]. To determine if DNAm at
repetitive elements is consistent across placental cell
populations, we analyzed the subset of 850 k CpGs that
map to Alu (n = 15,289) and LINE1 (22,006) elements.
Compared to CV, TB had lower LINE1 DNAm (mean
difference in DNAm = − 1.5%, p = 0.04), and HB had
much higher DNAm (+ 9.7%, p < 0.001; Additional File
1: Figure S11A). Similar relationships are seen for Alu
elements (Additional File 1: Figure S11A). TB had lower
(− 1.2%, p = 0.02), HB had higher (+ 7.0%, p < 0.001), and
EC had higher (+ 2.1%, p < 0.001) DNAm in Alu CpGs,
when compared to CV. To explore large-scale DNAm
differences, we averaged DNAm across all 850 k probes
and compared each cell type to CV. We found these re-
lationships to be similar to those with the subset of re-
petitive elements probes (Additional File 1: Figure
S11A). HB had higher DNAm compared to CV (+ 5%,
p < 0.001), and all other cell types had lower DNAm
(Additional File 7: Table S8). The relationships we found
for repetitive elements and global DNAm between cell
types and CV were also largely consistent in our first tri-
mester samples (Additional File 7: Table S8, Additional
File 1: Figure S11B). To determine genome-wide repeti-
tive element DNAm, we used the random forest -based
‘REMP’ algorithm [41] to predict 438,664 Alu CpGs and
39,136 LINE1 CpGs that are not covered by the EPIC
array. Relationships between cell types and CV for pre-
dicted and non-predicted repetitive elements were
mostly the same, except TB DNAm in predicted Alu
and LINE1 CpGs was not significantly different com-
pared to CV (Additional File 7: Table S8, Additional File
1: Figure S11C).

Cell-specific DNAm dynamics across gestation
To determine how DNAm changes in placental cell pop-
ulations over gestation, we compared first and third tri-
mester cell samples at 737,050 CpGs. We found 108,814
(TB); 94,619 (SC); 63,433 (EC) and 1550 (HB) significant
cell-specific gestational-age dependent DMCs (Bonfer-
roni p < 0.01, Δβ > 0.05). Strikingly, almost all of the TB
DMCs show an increase in DNAm from first trimester
to term (98.2%; Fig. 5a). Most gestational-age DMCs for
HB and SC also show an increase in DNAm from first
trimester to term (75.6 and 56.6%, respectively). In con-
trast, EC DMCs show less DNAm in the term compared
to first trimester (77.1%).
Several interesting KEGG pathways and GO terms

were significant (FDR < 0.05) in our functional enrich-
ment analysis (Fig. 5 BC). Immune pathways (“Cytokine-
Cytokine receptor interactions”) and metabolism-related
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Fig. 5 Gestational-age dependent DNA methylation within each placental cell population. a The distribution of the changes in DNA methylation
between first and third trimester, within each cell type. Only statistically significant (Bonferroni p < 0.01) and biologically relevant (mean change in
DNAm > 5%) differences are shown. Number of gestational age associated DMCs are labelled above each plot. b Functional enrichment analysis
for GO terms tested with the R package missMethyl. c Functional enrichment analysis for KEGG pathways tested with the R package missMethyl.
D) Enrichment for genomic features: CpG island-related elements, enhancers, PMDs, and gene features
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terms (“metabolic pathways”, “ATP binding”, “kinase ac-
tivity”) for trophoblast gestational-age dependent DMCs
suggest a highly active state throughout gestation affect-
ing multiple placental functions. As expected, stromal
terms were highly associated with cellular/tissue struc-
ture -related terms, such as “extracellular matrix
organization”, and “Regulation of actin cytoskeleton”. No
significant pathway or GO terms were found significant
for HB gestational-age DMCs. Most gestational-age
dependent DMCs were enriched with open sea regions,
regardless of direction of methylation (Fig. 5d). HB
DMCs that increase in methylation with gestational age
were the only cell type DMCs that were heavily enriched
for enhancers (Bonferroni p < 0.001). Trophoblast DMCs
that increase in methylation with gestational age were
enriched for CpG island shores, open seas, and inter-
genic regions (Bonferroni p < 0.001). All cell type-
specific gestational-age dependent DMCs were depleted
(Bonferroni p < 0.001) for promoter regions, suggesting
that genome-wide promoter DNA methylation is mostly
stable from first trimester to term.

Assessing cell composition in chorionic villi
Using placental cell DNAm profiles as a reference, we
assessed cellular composition in CV samples using cellu-
lar deconvolution. To select cell-type discriminating
CpGs, the pickCompProbes function from the R package
minfi [42] was used, which takes the top 100 most hypo-
and hyper-methylated CpGs ranked by F-test statistic for
each cell type. Gestational-age specific references were
created for first trimester and term. For first trimester
samples, reference probes were selected from all first tri-
mester cell samples, but also term nucleated red blood
cells (nRBCs) and eSTB samples were used since these
cell types are also present in early gestation [43]. For
nRBC samples, 11 DNAm profiles from umbilical cord
blood from public databases were included [37]. Refer-
ence CpGs determined from first trimester (Fig. 6a) and
term (Fig. 6b) placental samples were highly cell-specific
(Additional File 7: Table S9 and S10 for first trimester
and term respectively).
To determine the best-performing cellular deconvolu-

tion method, 1500 in silico bulk mixtures were generated
based on our cell data with known cellular composition
proportions. These deconvolution methods were com-
pared: constrained projection (CP) [26], robust partial cor-
relations (RPC) [25], and support-vector regression /
CIBERSORT (CBS) [27]. All three methods were tested
using the implementation from the R package EpiD-
ISH [44], and the constrained projection approach
was used from implementations in both EpiDISH and
minfi [42] R packages. Performance was high and
consistent across algorithms and cell types (R2 =
0.88–0.99, RMSE = 0.02–0.08, MAE = 0.01–0.4; Add-
itional File 1: Figure S12A; Additional File 7: Table
S11). However, RPC slightly outperformed other ap-
proaches (R2 = 0.96, MAE = 0.024, RMSE = 0.045).
Biases towards under−/over- estimation for certain
cell types were small but were consistent across algo-
rithms (Additional File 1: Figure S12B): SC tended to
be overestimated (mean difference between estimated
and actual = + 0.33% to 0.98%), HB were underesti-
mated (− 0.03% to − 0.38%). TB were underestimated
(− 0.07% to 0.94%), and nRBCs do not show as much
bias (+ 0.03 to − 0.21%).
To assess the validity of placental cell deconvolution es-

timates, we applied deconvolution to previously published
placental samples that are enriched for specific cell popu-
lations. Deconvolution was applied to cultured trophoblast
samples (n = 90) from Yuen et al. 2013 [12], that were cul-
tured to 24 h (predominantly CTB phenotype) or to 48 h,
after which many CTB cells have fused into STB; each set
of samples was also subjected to varying oxygen levels
(1%, 8%, 20%). Cultured STB had higher estimated STB
relative to sample-matched cultured CTB (Fig. S13A). The
small changes in STB:CTB between culturing times are
consistent with the small DNAm differences that were re-
ported in Yuen 2013 [12], and suggest that although fu-
sion of cytotrophoblast was achieved, further culturing
would be required to produce a mature STB phenotype
akin to term placenta. We then applied deconvolution to
first, second trimester, and term enzymatically separated
mesenchyme (n = 3) and matched samples of outer TB
layer of chorionic villi (n = 3) from Hanna et al. 2013 [18],
the latter of which were isolated in the same manner as
eSTB in the present study. Despite batch effects and array
differences (450 k vs 850 k), the term TB sample was esti-
mated to be mostly syncytiotrophoblast (97%; Additional
File 1: Figure S13B). Deconvolution estimates for tropho-
blast isolated from first and second trimester placentas
were also mostly TB with some presence of the mesenchy-
mal components, in particular some SC. Matched mesen-
chyme samples, as expected, were enriched for SC, and
EC. Overall, these findings are consistent with our
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understanding that enzymatic separation enriches for cer-
tain populations but cannot produce homogenous cell
populations. Lastly, we applied cell deconvolution to
chorionic villi samples (n = 5) that were enriched for
large visible stem villi. These samples had cell compo-
sitions that were heavily enriched for SC (mean = 51%,
sd = 4%), compared to matched “normally” -processed
chorionic villi (mean = 11%, sd = 2%; Additional File 1:
Figure S13C).
RPC cellular deconvolution was applied to our 7 first
trimester and 19 term CV samples. There was significant
gestational-age specific variation in the estimated per-
centage of eSTB, TB, and SC (Table 3; Fig. 6c). eSTB
were the most abundant cell type in all (19/19) term
samples (mean = 58%), whereas SC was the most abun-
dant in most (5/7) first trimester samples (mean = 43%).
There were significant changes from first trimester to
term samples: there was a significant mean increase of



Table 3 Mean of cell composition estimates (%) for first
trimester and term CV samples using RPC cellular
deconvolution. Standard deviation is shown in parentheses

First (n = 7) Term (n = 19)

Syncytiotrophoblast 35 (9) 58 (8)

Trophoblast 16 (12) 20 (6)

Stromal 43 (13) 12 (3)

Hofbauer cells 3 (2) 2.34 (1)

Endothelial 3 (2) 7 (1)

Nucleated red blood cells 0 (0) 0 (0)

Yuan et al. BMC Genomics            (2021) 22:6 Page 14 of 20
23% in eSTB (Bonferroni-adjusted p < 0.001), a decrease
in SC (− 31%; adjusted p < 0.001) and a small increase in
EC (+ 5%; adjust p < =0.005). A detectable contribution
of nRBCs was not estimated in any sample using RPC
deconvolution. No significant (adjusted p > 0.01) differ-
ences in cell composition were observed between male
(n = 9) and female (n = 10) samples (Fig. 6d; Additional
File 7: Table S12), or between European/Caucasian (n =
11) and East Asian (n = 6) samples (Fig. 6e; Additional
File 7: Table S12) for term CV. Within-trimester gesta-
tional age (estimated and reported) was not significantly
associated with cell composition (Additional File 7:
Table S12), although numbers were small.

Discussion
We performed a comprehensive analysis of DNAm for
human placental cell types using the Illumina EPIC
methylation array. Previous placental cell DNAm studies
have focused on a lesser number of cell types [45], used
lower resolution approaches [46], or focused on a nar-
row gestational age range (e.g. only first trimester, or
only term). Using the EPIC array, which targets CpG
sites in gene-rich regions and non-coding regulatory ele-
ments, this study describes the DNAm profiles of major
human placental cell types from first trimester and term
placentas, and identifies cell-specific and gestational age
–dependent DNAm.
After the wave of de novo DNAm in the inner cell

mass and trophectoderm, global differences in DNAm
exist between these two blastocyst cell layers and their
derivatives. These differences result in genome-wide pat-
terns with the placenta showing a unique hypomethy-
lated DNAm profile compared to other somatic tissues
[47]. Earlier studies suggested that the hypomethylated
placenta was partly due to lower DNAm at repetitive el-
ements such as LINE1 [13, 14, 40]. We show that LINE1
and ALU DNAm is higher in HB compared to other pla-
cental cell types, but otherwise displays low cell-
specificity. Later studies indicated that placental hypo-
methylation could be largely attributed to long regions
of consistently low methylation (PMDs), and that this
type of patterning was unique to the placenta [15]. We
found that PMDs are more pronounced in TB, and are
absent from HB. The impact of PMDs is unclear and
may in part reflect that in the blastocyst, the trophecto-
derm does not undergo de novo DNAm. Whether PMDs
serve a functional role in the placenta is also unclear,
but our understanding of their relevance would benefit
from characterizing the timing of their development. We
note that although our study is genome-wide, the num-
ber of CpG loci analyzed (n = 737,050) is only a fraction
of the epigenome (~ 3%), and is biased towards genomic
regions with annotated functionality (e.g. near genes and
regulatory elements). Therefore, findings of this study
should be interpreted with these limitations in mind. To
comprehensively understand repetitive element and
PMD DNAm, higher resolution approaches such as
whole genome bisulfite sequencing will be necessary.
Not all CpG sites undergo dynamic changes in DNAm

status throughout development. Genomic imprinting,
defined as parent-of-origin specific gene expression, is
typically associated with regulatory regions (promoters/
enhancers) that exhibit parent-of-origin dependent
DNAm. Imprinting is an evolutionary phenomenon that
exists only in eutherian mammals [17], which suggests a
potential important relationship between placental func-
tion and imprinting. Consistent with this, there is an en-
richment for imprinted genes that are specific to the
placenta [18–21]. Although our study lacks parental infor-
mation, previously identified placental-specific imprinted
DMRs tend to show the expected intermediate DNAm
levels in TB, and to a lesser degree, in EC and SC. For ex-
ample, the placental-imprinted gene, DNMT1, is only
unmethylated at its promoter in HB, while other placental
cell types are hemi-methylated. DNAm-mediated down-
regulation of DNMT1 expression has been shown in
whole placental tissue [48], and our data suggest that that
DNAm-mediated regulation of DNMT1 varies by placen-
tal cell population. All placental-specific imprints exam-
ined in this study showed the expected intermediate
methylation for TB and CV samples, and hypomethylation
for HB. The methylation patterns of HBs are consistent
with an origin from fetal monocytes. The variability in the
patterns of DNAm at these imprinted CpGs for mesen-
chymal components, EC and SC, could be from variability
in the timing of erasure of these imprints. Future investi-
gations in resolving parental-origin-specific DNAm and
expression are needed. In contrast, our data suggest that
common (non-placental specific) imprinted CpGs are
maintained in all placental cell populations.
To address the challenges of cell composition variabil-

ity in placental DNAm studies, we have generated
DNAm profiles for 4 major human placental cell popula-
tions as well as enzymatically isolated STB, and assessed
their utility as references for cellular deconvolution. Like
other tissues [26, 37, 49], placental cell composition can
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be estimated with any of the commonly used deconvolu-
tion approaches. However, it was not possible to inde-
pendently validate the DNAm-based cell composition
estimates presented in this study with other quantitative
measures of cell composition (e.g. with histology) and it
is not possible to get measures on the identical sample
assayed for DNAm. Instead, we validated bioinformati-
cally estimated cell composition in cultured trophoblasts
and in previously published samples that are enriched
for certain populations (e.g. by enzymatically stripping
away the outer layers of chorionic villi). Estimated cell
composition in first trimester and term samples was also
consistent with our understanding of how placental cell
composition changes across gestation. The ratio of CTB:
STB is relatively equal at 13 weeks gestation [32]. But as
trophoblastic surface area increases as pregnancy pro-
gresses [50], at term, 90% of nuclei exist in STB and the
remainder are in CTB [32]. This corresponds to a large
observed increase in the eSTB component (+ 58% from
first trimester), becoming the predominant cell popula-
tion at term. However, we note that within the STB, nu-
clei are also heterogeneous in their chromatin state,
where there are 4 times more transcriptionally inactive
nuclei compared to active ones [51]. This property, com-
bined with how similar CTB and STB methylation pro-
files are, may limit the ability to accurately estimate
eSTB proportion. There were also no nRBCs estimated
as present in either first trimester or term placentas,
suggesting that their contribution to placental cell com-
position may be very small, at least in uncomplicated
pregnancies. Together, these observations suggest that
this approach is able to capture large relative changes,
but may be imprecise when assessing smaller changes.
Future studies with independent measures of cell com-
position, such as from histology, will be essential for
assessing the accuracy of this approach, as has been
done for cell deconvolution in other tissues such as
adult/cord blood and brain [26, 37, 49].
There was also significant interindividual variation in

cell composition that could not be fully explained by
within-trimester gestational age variation, suggesting
that other factors contribute to cell composition variabil-
ity. In this study, we found that chronological (i.e. re-
ported) and biological (i.e. estimated from DNAm)
gestational age, sex, and ancestry were not significantly
associated with cell composition. But the sample size
supporting these findings was small and future studies
with more appropriate power are needed to answer how
much these factors play in contributing to placental cell
composition variability. We also caution that the accur-
acy of cell composition estimates on first trimester sam-
ples relies on the degree of gestational-age dependent
variation in term eSTB and nRBC reference CpGs, which
could not be assessed in this study.
Another challenge to this study, and others which use
a single or few marker genes/proteins to isolate /define
cell populations, is addressing heterogeneity within rela-
tively homogenous cell populations. As mentioned previ-
ously, TB contains several subtypes, such as CTB, STB
and EVTs. In this study, our TB is likely mostly CTB but
contains some proportion of immature precursors to the
other TB subtypes, given that pan-trophoblast markers
EGFR+ were used for cell isolation. HB (CD14+/CD68+)
and SC (VIM+) can also able to be divided into mean-
ingful subtypes [7]. It will be essential to placental epi-
genetics research to develop DNAm references for other
placental cell subtypes. This will be especially important
in studies on placental pathologies (and likely also in
many other phenotypes), where certain TB subtypes are
more affected than others, such as preeclampsia [52]
and placenta accreta [53]. Associated changes in cell
composition with preeclampsia may explain the finding
that many CpGs with altered DNAm in preeclampsia
[30] are also highly cell-specific. Cellular heterogeneity
will always be a challenge when using techniques that
take measurements in samples that consist of a mixed
population of cells. However, cell deconvolution applied
in placental DNAm studies will significantly improve in-
terpretation of the resulting measurements and findings.

Conclusions
This study provides a comprehensive characterization of
the placental methylome at a cell-specific resolution. A
major finding of this study was that many canonical
placental-specific DNAm features are maintained in tro-
phoblasts, often not observed in Hofbauer cells, and
variably maintained in mesenchymal components, endo-
thelial and stromal cells. Because samples were obtained
from healthy subjects, this data serves as a reference for
prioritizing the study of epigenetically regulated genomic
regions. Additionally, this cell-specific reference data can
be directly used to estimate placental cell composition
from placental chorionic villi DNAm, which will be use-
ful when interpreting findings from future placental
DNAm studies.

Methods
Patient recruitment
Placental tissues were obtained with approval from the
University of British Columbia / Children’s and
Women’s Health Centre of British Columbia Research
Ethics Board (H04–70488, H16–02280, H13–00640).
Women for a scheduled C-section with a healthy term
(> 37 weeks) singleton pregnancy were recruited with
written informed consent at BC Women’s Hospital, Van-
couver Canada. In addition, first trimester samples from
elective terminations were obtained in a deidentified
manner. A total of 9 first trimester (6.4–13 weeks) and
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19 term (36.4–40.4 weeks) placental samples were ob-
tained; all were screened for large chromosome abnor-
malities using CNV calling on the EPIC array, and found
to be normal. No gross pathologies were noted.

Tissue processing and cell isolation
Fresh term placenta samples from 3 to 4 sites were taken
from the fetal side of the placental disc to avoid mater-
nal contamination and pooled for processing. Chorionic
villi samples were washed several times in 1X PBS to
eliminate all traces of visible blood and physically ho-
mogenized using razor blades. For term placental sam-
ples the tissue was then incubated twice in a denuding/
digestion HEPES buffer containing HBSS, Dispase, tryp-
sin and DNase I for 30min at 37C°, to allow the separation
of most of the syncytiotrophoblast layer of the chorionic
villi. The remaining tissue was then washed in HBSS media
with 2% FBS (HF media) and subsequently digested using
Collagenase/Hyaluronidase Digestion DMEM Buffer with
DNase I, at 37oC for 1 h with vortexing every 30min. The
supernatant was collected. This is followed by a wash of the
remaining cell pellet with HF media, gentle centrifugation
at 4 °C for 10min and further digestion of the cell pellet,
with gentle mixing with a pipette, using of 0.25% trypsin so-
lution for 2min at room temp. The pellet is then washed
again with HF media and digested once again with a Dis-
pase/DNase I solution by gentle mixing with a pipette. This
is followed by a final wash in HF media and filtering of the
sample using first 100um and then 40um sieves to elimin-
ate any remaining chunks of tissue. The cells are then
counted and frozen in freezing media at − 80 °C until used
for FACS. The freezing process eliminates a great deal of
the remaining non-nucleated red blood cells.
For first trimester samples, the entire placental sample

was processed after identification and removal of most
of the decidual tissue. The sample was mechanically ho-
mogenized using razor blades and then digested with
Collagenase/Hyaluronidase DMEM Buffer at 37 °C for 1
h. The tissue was then washed with HF media and fur-
ther digested with a 0.25% trypsin solution by gentle
mixing with a pipette for 2 min. The pellet is then
washed again with HF media and digested once again
with a Dispase/DNase I solution by gentle mixing with a
pipette for 2 min. The sample was finally washed with
HF media and filtered through a 40um sieve. The cell
pellet was resuspended in HF and cells were counted
and subsequently frozen in freezing media at -80oC until
used for FACS.
To isolate human placental cell types with

fluorescence-activated cell-sorting (FACS), cells were
first thawed and then washed using HF media. Sus-
pended cells in HF media were then filtered through a
40-um sieve (VWR, CA21008–949) and then counted
using a hemocytometer. Trypan Blue (0.4%, Amresco,
K940-100ML) was used to identify live / dead cells. A
final cell solution was made at a concentration of 10 mil-
lion cells per ml, which was then stained with the fol-
lowing antibodies purchased from eBioscience: 7-AAD
(1:25, 00–6993-50), CD235a FITC (1:50, 11–9886-42),
CD45 APC-eFluor780 (1:100, 47–0459-42), CD14 PE (1:
50, 12–0149-42), CD34 APC (1:25, 17–0349-42), and
EGFR PeCy7 (Biolegend, 1:50, 352,909). Approximately
200,000 cells for term placental samples and 125,000
cells for first trimester were obtained for each cell type
using the BCCHR FACS Core equipment. DNA was ex-
tracted from cell-sorted samples and matched whole villi
using Qiagen DNeasy Blood & Tissue kit (Qiagen, 69,
504 / 69,506).
Enzymatically isolated Syncytiotrophoblasts (eSTB)

were obtained from term villi samples using an enzym-
atic digestion protocol. Briefly, approximately 0.5 cc of
chorionic villi were washed thoroughly several times
with 1X PBS to eliminate all visible traces of blood with-
out disrupting the tissue and then incubated for 10 min
in 1 ml of Collagenase IA 1mg/ml (Sigma). The tube
was then vortexed for 30 s, if cloudy, 3 ml of Hanks Bal-
anced salt solution (HBSS) was added to the digest let-
ting it settle for 2 min. The supernatant containing
mostly syncytiotrophoblast (STB) and some cytotropho-
blast (CTB) was collected in a separate tube, the pellet
was centrifugated and washed in 1X PBS before DNA
extraction. This HBSS step is repeated once and all
supernatant is pooled in the same tube. If the initial col-
lagenase IA digest is not cloudy after the initial 10 min
digestion, the whole villi were digested for an additional
2 min before adding the HBSS.

Measuring DNA methylation in placental samples
DNA quality was checked using a NanoDrop ND-1000
(Thermo Scientific) as well as by electrophoresis on a 1%
agarose gel. Bisulfite conversion was carried out using
the EZ DNA Methylation Kit (Zymo, D5001 and
D5002), before amplification and hybridization to the
Infinium Methylation EPIC BeadChip (Illumina, WG-
317) following the manufacturer’s protocol. An Illumina
iScan reader was used to scan the chips and produce
raw data files (IDATs).

DNA methylation data processing
To assess various quality metrics, IDAT files were
loaded directly into R (v3.6.1) using the minfi package
(v1.32.0) and ewastools [28] (v1.6). Poor quality and un-
reliable probes (detection p-value > 0.01, bead count < 3,
cross-hybridizing [54], probes with SNPs within 5 bp of
the CpG site in the probe direction [54]), and probes lo-
cated on sex chromosomes were removed (n = 109,410).
Analysis was restricted to a final set of 737,050 autosome
probes. All samples had high (7500–15,000 average
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median intensity readings in the methylated and
unmethylated channels, and passed manufacturer-
determined default thresholds for 17 control probes.
The possibility of sample mislabelling was verified com-
paring reported sex and inferred sex based on X
chromosome copy number (ewastools) [28]. Identical ge-
notypes between matched cell-sorted and whole chori-
onic villi samples were verified using the EPIC array’s 59
SNP probes (ewastools) [28]. This genotype-check also
identified a number of first trimester cell-sorted samples
with evidence of maternal contamination, which were
removed from further analyses (n = 12). Upon inspection
of global DNAm patterns with PCA, we identified and
removed 2 outlier samples that we suspect were contam-
inated with cells from other genotype-matched samples.
Further details on detecting maternal contamination are
described in Additional File 2. After quality control and
probe filtering, noob [55] and BMIQ [56] normalization
was applied to the DNAm data.

Differentially methylated CpGs (DMCs) analysis
All analyses were conducted in R version > 3.6.1. To
identify differentially methylated CpGs (DMCs), the R
package limma [57] (v3.42.0) was used to apply CpG-
wise linear models with empirical Bayes posterior
variance estimators [58]. Unless otherwise stated, the
“one-versus-all” approach was applied, where for each
CpG, the mean DNAm of one cell type was compared
to the mean of all other samples (excluding villi).
DMCs were defined as those tests that were statisti-
cally significant at a bonferroni-adjusted p-value of <
0.01, and also a showed a difference in mean DNAm
> 25%. For functional enrichment analysis of identified
DMCs, the R package missmethyl (v1.20.0) was used
to account for the variable number of CpGs that can
be associated with each gene [59]. For testing enrich-
ment of DMCs for various genomic features (e.g.
CpG islands, promoters, enhancers) and preeclampsia-
associated CpGs, chi-squared tests were applied using
the base-R function chi.sq.test. Annotations for UCSC
transcripts (e.g. promoters, introns, exons, etc.), en-
hancers, and CpG islands were taken from the R
package annotatr, which downloads annotation data
from UCSC directly. Significant enrichment/depletion
was defined as those with a Bonferroni-adjusted p <
0.01. DMRs were identified using the R package
dmrcate (v2.0.7), using an FDR cutoff of < 0.01, with
default settings.

Partially methylated domains
To assess cell-specific placental DNAm in partially
methylated domains (PMDs), coordinates for previously
identified placental PMDs were taken from Schroeder
et al. 2011 [15]. Original hg18 coordinates were mapped
to hg19 using the UCSC LiftOver tool implemented in
the R package liftover (v1.10.0). Due to differences in
genomic content between the two genome versions, re-
mapping broke up many PMD regions into smaller ones.
Fifteen of these smaller “pieces” mapped to different
chromosomes, so were removed from further analysis.
To account for bias in array-specific coverage towards
CpGs lying in promoters, CpG islands, and CpG island
shores, these CpGs were removed, as previously de-
scribed [15].

Imprinted regions
Location data for imprinted regions was created by com-
bining results from five previous human imprinting
studies [18–21, 39]. A variety of approaches and tech-
nologies were used in these studies, such as whole gen-
ome bisulfite sequencing, methyl-sequencing, and
Infinium 450 k methylation arrays. We took outer coor-
dinates for overlapping regions. A final list of imprinted
regions can be found in Additional File 7, Table S7.
Repetitive element mappings were determined by

downloading the “rmsk” track from UCSC genome
browser (hg19) and then overlapping these regions with
the 850 k array CpGs. Mean DNAm was calculated by
averaging over each set (Alu, LINE1, all CpGs) of CpGs
for each sample. Predicted genome-wide DNAm for Alu
and LINE1 CpGs was done using the Bioconductor R
package REMP [41] (v1.8.2), using default settings.

Public cord blood DNAm data
A curated database of cord blood cell types DNAm data
ran on the 450 k methylation array was used. This data
was downloaded from the R package FlowSorted.Cord-
BloodCombined.450 k and noob normalized [37]. For as-
sociated analyses, the common probes from this dataset
and our EPIC data were used. Heatmaps/clustering was
applied using the R package pheatmap. Where possible,
colour-blind friendly palettes were used with the R pack-
age viridis.

Cellular deconvolution
Reference probes for cellular deconvolution were de-
termined using the pickCompProbes function from the
R package minfi (v1.30.0) separately for first trimester
and third trimester samples. The Houseman et al.
2012 constrained projection (CP) approach was ap-
plied using implementations in the minfi and EpiD-
ISH (v2.0.2) R packages. Other algorithms tested were
robust partial correlations (RPC) and CIBERSORT
(CBS), both implemented in the EpiDISH package.
Default parameters were used for all functions, except
“constraint” was set to “equality” for using the CP ap-
proach from EpiDISH. In silico mixtures were gener-
ated by the following procedure: 250 proportion
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samples were drawn from a uniform distribution be-
tween 0 and 1. These are the first 250 proportions
for one cell type. Two hundred fifty additional pro-
portions were drawn from a uniform distribution be-
tween 0 and the first proportion for the next cell
type. This was repeated for a total of 6 times for 6
cell types. These 5 sets of 250 sampled proportions
make up 250 in silico mixtures. Because this proced-
ure only ensures that the first set of percentages are
uniformly distributed from [0,1] and the remainder
are biased towards increasingly smaller values, we re-
peated this entire procedure for each cell type, each
time starting with a different cell type, for a total of
1500 in silico mixtures. Performance metrics to com-
pare algorithms were computed using the r package
yardstick (v0.0.4). Linear modelling with Bonferroni-
multiple testing adjustment was done to test differ-
ences in cell composition by sex and by ethnicity. In-
ferred ethnicity was computed via the R package
planet (v0.2.0) [60], and corroborated with the first 2
principal components of high density (~ 2.3 million
SNPs) genotyping data
Supplementary Information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-07186-6.

Additional file 1 Figure S1 Fluorescence-activated cell-sorting and im-
mune fluorescence staining. A) Fluorescence-activated cell-sorting (FACS)
workflow schematic. B-E) Immunofluorescence staining (IF) of term cell-
sorted sample with known characteristic cell type markers that were not
selected for in the FACS procedure. Nuclei are shown via DAPI staining
(blue). Scale bars: 100 μm. B) Trophoblasts (KRT7: green, VIM: red). C) Hof-
bauer cells (CD68: green). D) Endothelial cells (CD31: green). E) Stromal
cells (VIM: red). Figure S2 Identifying maternal contamination. A) Total in-
tensity over all probes from X and Y chromosomes normalized to total
autosomal intensity can be used to determine sex. B) Within-donor
sample-sample correlation on SNP probes. C) SNP distributions (n = 59
probes). D) Theoretical relationship between the average probability SNP
is an outlier from the expected distribution, and maternal contamination.
E) Empirically observed relationship between the average probability a
SNP is an outlier, and normalized Y intensity, in male samples. Normalized
Y intensity is a quantifiable measure of maternal contamination in male
samples. F) Training a linear predictor of maternal contamination in male
samples, then applying it to female samples. Figure S3 Principal compo-
nent (PC) associations with phenotype variables. Principal components
were tested for their association with various biological and technical
sample variables. Each PC was tested individually in a simple linear model
with each sample variable. Figure S4 First Trimester differentially methyl-
ated CpGs enrichment for genomic location. First trimester differentially
methylated CpGs were tested for enrichment at various genomic features
(e.g. CpG island, enhancers, gene transcripts, PMDs). Figure S5 Mean
DNAm for each cell type across CpGs in selected functionally-relevant
genes. Average term placental cell-specific DNA methylation across select
genes. Differentially methylated regions (defined as regions with a high
density of differentially methylated CpGs), are highlighted with a grey
background. Figure S6 Mean DNAm for each cell type across CpGs in se-
lected preeclampsia genes. Average term placental cell-specific DNA
methylation across select genes. Differentially methylated regions (de-
fined as regions with a high density of differentially methylated CpGs),
are highlighted with a grey background. Figure S7 Density graphs of
CpGs in imprinted regions. A) Density plots (y-axis) of imprinted regions
divided into those that are imprinted in more than one tissue (top) and
placental-specific (bottom). The percentage of CpGs falling within 25%–
75% is labelled in each plot. First trimester samples are shown. B) Mater-
nal imprinted regions. Density of DNAm at CpGs in maternally imprinted
regions. The total percentage of CpGs that have 25% - 75% DNAm are
shown in each plot. C) Paternally imprinted regions. Figure S8 DNAm at
imprinted regions for specific genes. A) Cell-specific DNAm at placental-
specific imprinted regions for genes FGF8 and B) FGF12 Figure S9
DNAm at imprinted regions for specific genes. A) Cell-specific DNAm at
placental-specific imprinted regions for genes JMJD1C and B) FGF14. Fig-
ure S10 DNAm at imprinted regions for specific genes. A) Cell-specific
DNAm at placental-specific imprinted regions for genes RASGRF1. Figure
S11 DNAm summarized over repetitive elements. A) Repetitive element
DNA methylation. CpG sites overlapping Alu and Line 1 (L1) elements
were determined using the ‘rmsk’ track from UCSC. Mean DNAm over
these CpGs was calculated for each sample. B) First trimester mean
DNAm across repetitive elements and all 850 k CpGs. C) REMP-predicted
repetitive element DNAm in third trimester samples. Figure S1 Compari-
son of cell deconvolution algorithms. A) Estimated percentage by decon-
volution (y-axis) by actual percentage used to construct in silico mixtures
(x-axis). Performance metrics are shown for each algorithm and cell type.
RMSE, root mean squared error; R2, R squared; MAE, mean absolute error.
B) Distribution of deviations from deconvolution estimates and actual
percentages for in silico mixtures. The mean deviation (estimated minus
actual) is labelled in each panel as text, and as the dotted vertical line.
Figure S13 Validating cell composition estimates. A) Cell deconvolution
was applied to n=5 (labelled A-E) cultured trophoblast samples from
Yuen et al. 2011 produced trophoblast-dominant samples. Trophoblast
samples were treated in varying oxygen levels (1%, 8%, 20%). Half were
maintained as CTB (top) and the other half was cultured for 48 h (bot-
tom), which promotes syncytialization. B) Enzymatic treatment to separ-
ate chorionic villi samples into inner mesenchyme and outer trophoblast
layer samples. Both types of samples are heterogeneous in cell compos-
ition but mesenchymal samples are enriched from endothelial and stro-
mal cells, whereas the outer chorionic villi samples are mostly
trophoblast. C) Chorionic villi was processed to isolate large stem villi,
produced samples that resulted in mainly stromal in proportion com-
pared to normally processed villi. CTB: cytotrophoblast; STB: syncytiotro-
phoblast. (PPTX 9610 kb)

Additional file 2 Supplementary Methods Detecting contamination
in cell sorted samples

Additional file 3 Table S1 Linear modelling results for differentially
methylated CpGs. Results are presented for every tested CpG. First
trimester results.

Additional file 4 Table S2 Linear modelling results for differentially
methylated CpGs. Results are presented for every tested CpG. Third
trimester (term) results.

Additional file 5 Table S3 DMR results for each cell type for first
trimester comparisons (CSV 8251 kb)

Additional file 6 Table S4 DMR results for each cell type for term
comparisons (CSV 11093 kb)

Additional file 7 Table S5 GO enrichment for cell DMCs. Table S6
KEGG enrichment for cell DMCs. Table S7 List of imprinted genes and
regions from multiple studies. Table S8 Linear modelling results of
repetitive element methylation and cell type. Table S9 600 reference
probes for cell deconvolution for term/third trimester. Table S10 600
reference probes for cell deconvolution for first trimester. Table S11
Performance metrics for deconvolution algorithms on in-silico mixtures.
Table S12 Statistical testing results for cell composition versus sex, ethni-
city, and gestational age. Each cell type proportion was tested against
each sample variable.
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