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Mal-Prec: computational prediction of
protein Malonylation sites via machine
learning based feature integration
Malonylation site prediction
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Abstract

Background: Malonylation is a recently discovered post-translational modification that is associated with a variety
of diseases such as Type 2 Diabetes Mellitus and different types of cancers. Compared with experimental
identification of malonylation sites, computational method is a time-effective process with comparatively low costs.

Results: In this study, we proposed a novel computational model called Mal-Prec (Malonylation Prediction) for
malonylation site prediction through the combination of Principal Component Analysis and Support Vector
Machine. One-hot encoding, physio-chemical properties, and composition of k-spaced acid pairs were initially
performed to extract sequence features. PCA was then applied to select optimal feature subsets while SVM was
adopted to predict malonylation sites. Five-fold cross-validation results showed that Mal-Prec can achieve better
prediction performance compared with other approaches. AUC (area under the receiver operating characteristic
curves) analysis achieved 96.47 and 90.72% on 5-fold cross-validation of independent data sets, respectively.

Conclusion: Mal-Prec is a computationally reliable method for identifying malonylation sites in protein sequences.
It outperforms existing prediction tools and can serve as a useful tool for identifying and discovering novel
malonylation sites in human proteins. Mal-Prec is coded in MATLAB and is publicly available at https://github.com/
flyinsky6/Mal-Prec, together with the data sets used in this study.

Keywords: Post-translational modification, Malonylation, Machine learning, Principal component analysis, Support
vector machine

Background
Post-translational modification (PTM) participates in
many biological processes through protein function regu-
lations. It has been well recognized that PTM identifica-
tion is critical in the prevention and medical treatment of
certain diseases. Lysine malonylation (Kmal) is a novel

type of PTMs that was initially detected by mass spec-
trometry and is widely present in both eukaryotic and pro-
karyotic organisms [1]. For instance, Kmal has been
enriched in key signaling molecules in mouse liver [2],
plant cells [3] and the gram-positive bacterium Saccharo-
polyspora spinosa, etc. [4, 5]. Although many efforts have
been devoted to investigating the cellular mechanisms of
Kmal, its biological significance remains poorly under-
stood [2, 6]. Recognition of malonylation sites in
substrates represents an initial but crucial step in elucidat-
ing the molecular mechanisms underlying protein
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malonylation. With the development of high-throughput
mass spectrometry techniques, many Kmal-containing
peptides have been identified [7, 8]. However, considering
the dynamic properties and low abundance of malonyla-
tion and the limitation of experiment methods, identifica-
tion of the exact substrates or sites on a large scale
remains challenging.
To date, various computational tools have been devel-

oped to predict malonylation sites in protein sequences
[9–14]. For instance, Xu et al. [9] used minimum
Redundancy Maximum Relevance (mMRM) model to
construct a prediction tool named Mal-Lys by incorpor-
ating residue sequence order information, position-
specific amino acid propensity, and physicochemical
properties for each peptide. Wang et al. [10] built a
predictor called MaloPred, which took into accounts of
five features including amino acid compositions (AAC),
amino acids binary encoding (BINA), encoding based on
grouped weight (EBGW), K nearest neighbors feature
(KNN), and position specific scoring matrix (PSSM).
Their information gains (IG) were then evaluated to se-
lect most meaningful and significant features. Hasan and
Kurata [11] proposed a prediction tool called identifica-
tion of Lysine-Malonylation Sites (iLMS), which used
the composition of profile-based k-Spaced Amino Acid
Pairs (pkSAAP), dipeptide amino acid compositions
(DC) and amino acid index properties (AAindex) to en-
code the segment. Chen et al. [12] constructed a LSTM-
based ensemble malonylation predictor (LEMP), which
combined the long short-term memory (LSTM) algo-
rithm with word embedding and the random forest algo-
rithm with novel encoding of enhanced amino acid
content. In addition, Taherzadeh et al. [13] developed
the SPRINT-Mal tool and found that evolutionary infor-
mation and physicochemical properties are the two most
discriminative features. A structural feature called half-
sphere exposure provides additional improvement to the
prediction performance. Bao et al. [14] proposed the
IMKPse model that utilized general PseAAC as the clas-
sification features and employed flexible neural tree as
classification model. Although many achievements have
been made in the prediction of malonyl acylation modi-
fication sites, there is still much room for improvement
in the prediction performance.
In this study, we investigated whether dimensionality

reduction algorithm PCA is useful for predicting malo-
nylation sites. Another issue that we attempted to ad-
dress here is whether the integration of sequence
features could generate better prediction accuracy. On
the basis of our results, Mal-Prec significantly outper-
formed existing predictors and indicated that PCA, to-
gether with three sequence features, one-hot encoding,
physiochemical properties (AAindex), and composition
of k-spaced amino acid pairs (CKSAAP), is able to

improve the accuracy of prediction. Thus, Mal-Prec
could serve as a powerful tool for identifying malonyla-
tion sites in proteins.

Results and discussion
Determination of CKSAAP features
Though many approaches have adopted CKSAAP
features to predict PTM sites, most of them only used
the CKSAAP features generated by single K value and
did not identify optimal K for constructing the CKSAAP
feature. In order to obtain valid CKSAAP features, we
analyzed the performance of different combination of
CKSAAP features. In particular, we not only analyzed
the CKSAAP features obtained by single K value ranging
from 0 to 6, but also analyzed their combined effects. All
data sets were dimensioned to 100 using PCA. We used
LIBSVM tool which is available on https://www.csie.ntu.
edu.tw/~cjlin/libsvmtools/. By using the grid search
method, we optimized the two important parameters of
SVM, c and g, which are the penalty parameters and
kernel parameters respectively in the SVM algorithm.
Finally, we set c = 10 and g = 2 in the SVM model and
the radial basis function was adopted as the kernel func-
tion. 5-fold cross-validation was executed for 50 times to
optimize the parameters in the training model. The re-
sults are shown in Supplementary Table 1, according to
which, Acc, F1, and MCC do not change much under
different K value. For example, the Sen value changes
from 81.46 to 98.63%, the Spec value changes from
65.72 to 82.24%. Thus, it is difficult to figure out which
is more suitable.
Thereafter, we made comparisons by combining all

features together (CKSAAP, one-hot encoding, AAin-
dex). The parameters c and g in SVM were set to 1.9
and 0.07 by grid search, respectively. The performance is
shown in Supplementary Table 2, according to which,
we can see that when K was set to 0 to 6, the perform-
ance of the proposed method did not change too much.
Acc, Sen, Spec, F1, and MCC changed from 88.58 to
89.87%, 89.01 to 90.38%, 87.53 to 89.77%, 88.65 to
89.87%, and 79.79 to 81.81%, separately. When combing
feature vectors computed by different K value, the result
has a certain law, which is shown in Fig. 1, from which
we could see that when we combined the first 4
CKSSAP features together, the accuracy achieves the
best score, so do in the other four metrics. Thus, in this
paper, we set K as 0,1,2, and 3, and got the CKSAAP
feature vectors were 441*4 = 1764-dimensions.

Effectiveness of PCA
In order to determine the suitable dimensions of PCA
for our prediction, we run the training model when the
dimensions equal to 50, 100, 150, 200, 250, and 300, sep-
arately. 5-fold cross-validation was executed for 50 times
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to optimize the parameters. The results are shown in
Table 1.
In Table 1, when the dimensions equal to 100, the

proposed method performed best, and average ACC,
Sen, Spec, F1, and MCC can reach to 91.24, 91.71, 90.83,
91.18, and 84.03%, separately. Supplementary Figure 1
shows the accuracy curve in different dimensions. It is
apparent that accuracy curve is a convex function. When
the dimensions are equal to 100, the accuracy reaches
the maximum of 91.24%. When the dimension value is
greater than 100, larger the dimension gets, lower the
accuracy is.
Supplementary Table 3 shows the performance of 5-

fold cross-validation when implementing the proposed
method on human data set. It can be seen that the aver-
age Acc, Sen, Spec, F1, and MCC can reach 91.24, 91.71,
90.83, 91.18, and 84.03%, separately. The standard devia-
tions of these criteria values are 1.24, 2.50, 2.10, 1.43,
and 2.09%, respectively. The ROC curves of the 5-fold
cross-validation are listed in Fig. 2. The average AUC
value is 96.47%.
For the purpose of analyzing the role of PCA in our

proposed method, we applied the same procession of
our proposed approach without PCA. The parameter c

and g were set to 2 and 0.1 by grid search. The perform-
ance of the 5-fold cross-validation is shown in
Supplementary Table 3, in which, the average Acc, Sen,
Spec, F1, and MCC reach to 73.51, 64.37, 82.62, 70.78,
and 60.43%. And the standard deviations of these criteria
values are 1.99, 2.32, 2.63, 2.64, and 1.89%, respectively.
For a more intuitive analysis, we adopted Fig. 3 to show
the comparison of different metrics result using PCA or
not. Non-PCA represents PCA was not used, PCA
represents the dimensions are reduced to 100 using
PCA. From Fig. 3 we could see that, by comparing to
the proposed method without PCA, the average Acc,
Sen, Spec, F1, and MCC of the proposed method with
PCA could increase 17.73, 27.34, 8.21, 20.4, and 19.6%,

Fig. 1 Comparison of accuracy of different CKSAAP feature combinations

Table 1 5-fold cross-validation results of different dimensions

dimensions Acc (%) Sen (%) Spec (%) F1 (%) MCC (%)

50 85.91 86.09 85.68 85.94 75.77

100 91.24 91.71 90.83 91.18 84.03

150 90.20 91.00 89.48 90.30 82.31

200 88.11 89.53 86.65 88.39 79.02

250 84.61 86.15 83.10 84.73 73.91

300 82.31 84.34 80.36 82.27 70.89
Fig. 2 ROC curves of 5-fold cross-validation performed by SVM
(dimensions equal to 100)
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respectively. That means PCA can effectively improve
the performance of the algorithm.

Performance comparison of different feature combination
For the purpose of further identifying the role of various
features, we analyzed the performance of each feature
and multiple feature combinations. The performance
comparison of each single feature was shown in Supple-
mentary Table 4, from which we could see that the
CKSAAP outperforms the other two features, especially
in terms of ACC, Sen, Spec, and F1, which are almost
20% ~ 30% higher than the other two features. Mean-
while, while the performance comparison of multiple
features was shown in Supplementary Table 5, which
shows the performance of different features combin-
ation. The CKSAAP (exclude) means exclude the
CKSAAP from the three features, so it represents the
combination of AAindex and One-hot. The AAindex
(exclude) and One-hot (exclude) also has the same
meaning. All represents the combination of three fea-
tures. From Supplementary Table 6 we could see that
the combination of AAindex and One-hot performs best
in all of those two features combined. It is interesting
because we know CKSAAP performs best in the com-
parison of a single feature. Thus, we can use a Chinese
saying to summarize this phenomenon, three cobblers
combined makes a genius mind. This is to say, the com-
bination of the three features works best. For a more
intuitive analysis, we applied the column chart to show
the performance comparison of the seven kinds of
feature combination. In Supplementary Figure 2, the
ECKSAAP means exclude the CKSAAP from the three
features. The AAindex and One-hot also have similar

meaning. It can be seen that the proposed method which
combined all features achieves best in all metrics. The
ECKSAAP ranks second in terms of Acc, Spec, F1, and
MCC.
According to the above analysis, after combining the

four attributes of CKSAAP, one-hot encoding and nine
attributes of AAindex, and then using PCA to reduce
the dimension to 100, Mal-Prec can achieve better
performance.

Comparison of classical algorithms
We also compared Mal-Prec with other four classical
classifiers on the training data sets, including Random
Forest (RF), K-nearest neighbors (KNN), Ensemble of
decision tree and Naive Bayes (NB) [15–17]. The
Euclidean distance was used in KNN algorithm, and
the number of its neighbor is 2. The number of deci-
sion trees in RF and Ensemble was 20 and 50, separ-
ately. 5-fold cross-validation was conducted 50 times
to each of them. The performance comparisons are
shown in Table 2.
Even though it is well known that the ensemble classi-

fier is more accurate and robust than individual

Fig. 3 The comparison of different metrics result using PCA or not

Table 2 The performance comparisons of different classical
classifiers

classifier Acc (%) Sen (%) Spec (%) F1 (%) MCC (%)

KNN 59.68 26.73 92.18 34.34 34.98

NB 83.24 84.17 82.36 83.39 72.11

RF 68.25 62.41 74.04 66.27 56.36

Ensemble 64.11 60.11 68.20 62.50 53.69

Mal-Prec (SVM) 91.24 91.71 90.83 91.18 84.03
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classifiers, it can be seen from Table 2 that, compared
with other classical classifiers, Mal-Prec model performs
best in all metrics. That means different data set requires
different models.

Performance on independent data set
For objective performance comparison, the independent
data set which is truly blind to the training data set was
adopted to evaluate the performance of the proposed
method. As seen in Table 3, the proposed method
performs best, including Acc, Sen, Spec, F1, and MCC
values of 90.65, 89.71, 91.59, 90.62, and 83.04%,
respectively.
Figure 4 shows the ROC curves from combinations of

different features on the independent data set. It can be
seen that, on the independent data set, the proposed
method (all features) has a AUC value of 90.72%, the
ECKSAAP ranks second, and the rest are ECKSAAP,
EOne-hot, EAAindex, AAindex, One-hot, which are the
same as the result on the testing data set. This further
confirms that Mal-Prec constructed by incorporating
those three features and PCA has a good effect.

Comparison of the state-of-the-art approaches
We compared the proposed method with some state-of-
the-art approaches for predicting malonylation sites, in-
cluding Mal-Lys, MaloPred, iLMS, LEMP, SPRINT-Mal.
Table 4 shows the comparison of the proposed method
and some state-of-the-art approaches.
The reasons for the good performance of our pro-

posed method can be summarized as two points.
Firstly, PCA is utilized to extract features. PCA is a
dimensionality reduction method, which extracts more
effective characteristic information. Secondly, the
support vector machine classifier is used for classifica-
tion. All the above proves that the SVM classifier
combined with principal component analysis and
three features (PseAAC, One-hot, CKSAAP) is more
suitable for predicting the malonylation sites than the
state-of-the–art approaches.

Feature analysis
We also analyzed sequence occurrence frequency on
every position using Two Sample Logo with t-test (P-
value < 0.05). Figure 5 shows that the malonylation and
non-malonylation peptides have considerably different
sequence preferences. Glycine (G), Leucine (L), Alanine
(A), and Valine (V) were significantly richer than those
in non-malonylation ones. However, Lysine (K) and
Glutamic acid (E) were much abundant in non-
malonylation peptides. Thus, we believe that the differ-
ence between the two peptides could be a new method
to distinguish them.

Conclusions
In this study, a novel method entitled Mal-Prec was de-
veloped to predict human malonylation sites. The best
prediction performance was achieved when using PCA
to reduce the dimensionality of feature combination
(CKSAAP, AAindex, and one-hot) to 100, rather than
combined those features all together. By individual
comparison of three features (CKSAAP, AAindex, and
One-hot), we found that CKSAAP with the incorpor-
ation of the first four features, performed best. While
the AAindex and one-hot combination performed best
in two features combination. This indicated that simply
incorporating more features may not achieve the best re-
sults. Based on the results obtained by 5-fold cross-
validation, Mal-Prec remarkably outperforms existing
predictors and could serve as a useful tool for identifying
and discovering novel malonylation sites in human pro-
teins. In addition, although good performance has been
obtained by using Mal-Prec, there is still space for the
method to be refined. First of all, more peptide features,
such as structure properties, evolutionary information,
and so on, could be incorporated for the prediction. In
future, we will take more feature constructions into
account to achieve better prediction performance. Sec-
ondly, we have not solved the data set imbalance prob-
lem. Down-sampling method is popular but not good
enough for data set imbalance. We will introduce other
approaches to solve the imbalance problem, such as
one-side selection (OSS) and sampling based on cluster-
ing (SBC), etc. Finally, we are planning to develop a
webserver for the method, by doing which other re-
searchers could try this novel method for malonylation
site predictions.

Methods
Data collection and preprocessing
In this study, the data sets were retrieved from literature
[10, 13]. A total of 1768 sequence fragments from 934
human proteins were collected. To reduce the redun-
dancy and avoid artificial bias, CD-HIT was employed to
remove redundant sequences with equal to or more than

Table 3 Performance of different feature combinations on the
independent data set

Features Acc (%) Sen (%) Spec (%) F1 (%) MCC (%)

CKSAAP 77.55 77.14 77.97 77.59 65.18

AAindex 61.73 65.43 57.97 63.26 52.61

One-hot 58.71 61.43 55.94 59.97 51.44

CKSAAP (exclude) 86.19 86.86 85.51 86.36 76.19

AAindex (exclude) 79.42 80.57 78.26 79.77 67.30

One-hot (exclude) 71.08 76.29 65.80 72.65 58.65

ALL 90.65 89.71 91.59 90.62 83.04
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40% similarities [18]. Then the processed sequences
were truncated into 17-residue long sequence segments
with lysine (K) located at the center. Each of peptide
fragment was defined as follows:

P ¼ R − nR − nþ1…R − 1KR1R2…Rε ð1Þ

Where Rε represents the th ε-th downstream peptide
from the center K while R-n represents the n-th up-
stream sequence fragment, and so forth. The length of
the sequence fragment is n + ε + 1. Since there might be
fewer amino acids around the center K, as shown in
Supplementary Figure 3, the downstream peptide form
the center K is less than ε, so we can use X to fill in
those residues. Thus, the dataset was made up of 20 na-
tive amino acids and the dummy code X. Different stud-
ies may select varied length of malonylation peptide

segments for analysis. In this project, we set ε = 8 and
n = 8 and the length of the peptide segment is 17. Thus,
the complete sequence segment P describing a lysine be-
longs to either of two classes (δ1, δ2). If the represented
lysine is a malonylation site, then δ1 =0, otherwise δ2 =1.

P∈ δ1; δ2ð ÞT δ1; δ2∈ 0; 1ð ÞT ð2Þ

Accordingly, 1735 sequence fragments from 931 hu-
man proteins were selected as positive dataset. Sequence
fragments around lysine (abbreviated as Lys or K) that
are not included in the positive data set were constituted
as negative dataset. After doing all of this, we obtained
45,607 negative samples. Unbalanced dataset may lead
to false prediction, hence we used the down-sampling
method to construct a balanced dataset [19]. Therefore,
our data set is balanced which contains 3470 sets of

Fig. 4 ROC curves performed by different feature combinations on the independent data set

Table 4 Comparison of state-of-the-art approaches in terms of Acc and AUC in different organisms

Approach Feature Species Acc (%) AUC (%)

mRMR+SVM [9] K-gram+AAindex N/A N/A 79.35

IG + SVM [10] AAC + BINA (sequence-based) E. coli 72.30 75.50

EBGW (physicochemical) Mouse 74.65 82.70

KNN + PSSM (evolutionary) Homo sapiens 73.72 87.10

IG + SVM [11] PKsaap+AAindex+DC Mouse N/A 73.90

Homo sapiens N/A 74.30

LSTM+RF [12] EAAC+word embedding Mouse 88.00 82.40

Homo sapiens

SVM [13] Binary+PSSM+AAindex+Structured (ASA + SS + HSE + IDR) Mouse N/A 76.00

Proposed method AAindex+One-hot+CKSAAP Homo sapiens 90.65 90.91
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data, half of the positive and negative sets. In order to
validate the performance of the predictor, we split 20%
of the dataset (695) as independent dataset, the
remaining are training dataset (2775).

Flowchart of the proposed method
Flowchart of the malonylation site prediction method
Mal-Prec proposed in this paper is shown in Fig. 6. The
prediction steps of the Mal-Prec are described as
follows:

1. Data collection and preprocessing. Dataset was
collected through literature and NCBI websites.
Sliding window was then used to select a peptide
having a length of 17 with lysine at the center
point. Positive data set and negative data set were
constructed with equal quantity by down-sampling
method.

2. Feature representation. CKSAAP, AAindex, and
One-hot coding method were chosen as features to
represent each peptide segment in this study.

3. Dimensionality reduction. High dimensional data
set may lead to the curse of dimensionality [19]. To

solve this problem, we used PCA for dimensionality
reduction, and also analyzed the suitable dimension
of the data set.

4. Classification. Different data requires corresponding
algorithms [20]. Comparing to other classical
classifier algorithms, we chose SVM as classification
algorithm in Mal-Prec.

5. Model performance evaluation. To find the suitable
parameters and avoid potential over-fitting issue, we
adopted the 5-fold cross-validation algorithm and
employed classical metrics, such as Acc and Sen,
etc., to assess the performance of the algorithm.

Feature construction
Binary encoding (one-hot encoding)
Binary encoding is also called one-hot encoding, which
could transform amino acids into orthogonal numeric
vectors, and has been applied in many protein sequence
analyses. Since there are 21 types of amino acids (20
conventional amino acids and 1 pseudo amino acid X),
each peptide sequence can be represented as a 21-
dimensional vector. For example, the protein sequence is
‘ACDEFGHIKLMNPQRSTVWYX’. Thus, alanine (A) is

Fig. 5 The statistical two-sample logo with t-test on human datasets (P-value < 0.05)

Fig. 6 Schematic illustration of the Mal-Prec method from protein data selection to k-fold cross-validation
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encoded as ‘100000000000000000000’. In particular,
the pseudo amino acid X is encoded as
“000000000000000000001”. Suppose the peptide se-
quence is ‘VAERAALEKLDANQEYK’, we obtained a
17*21-dimensional vector for the peptide after encod-
ing (Supplementary Figure 4).

Physiochemical properties (AAindex)
AAindex is a database of numerical indices representing
various physicochemical and biochemical properties of
amino acids. AAindex (release 9.2) consists of three sec-
tions: (1) AAindex1 including 566 properties for the
amino acid index of 20 numerical values; (2) AAindex2
containing amino acid mutation matrix, and (3) AAin-
dex3 with protein contact potentials. The database could
be found at the following URL address https://www.gen-
ome.jp/aaindex/. In this paper, nine physical and chem-
ical properties are used, which are hydrophilicity value,
mean polarity, isoelectric point, refractivity, average
flexibility indices, average volume of buried residue,
electron-ion interaction potential values, transfer free
energy to surface, and consensus normalized hydropho-
bicity. The length of each peptide is 17, so the physio-
chemical properties is 17*9-dimensional vector. The
physical and chemical properties are shown in Table 5
below.

Composition of K-spaced amino acid pairs (CKSAAP)
CKSAAP reflects the composition of K-spaced amino
acid pairs that have been successfully applied in many
PTM predictions with a competitive performance [30–
35]. CKSAAP counts the occurrence frequencies of the
k-spaced amino acid pairs in a peptide sequence. For de-
tails, because there are 20 types of amino acids and 1
pseudo amino acid X, 21*21 = 441 amino acid pairs
could be formed. After we extracted the amino acid
pairs separated by K (K = 0, 1, 2, ...) amino acids, we
could count the probability that these residues will ap-
pear in this 441 amino acid pairs. Hence the generation

of a 441-dimensional feature vector. Take the peptide
‘VAERAALEKLDANQEYK’ as an example. With the
length set to 17, when k = 0, 17 amino acid pairs {VA,
AE, ER, ..., YK,KX} could be extracted, that is, each
amino acid and its next adjacent amino acid are com-
bined to form a pair. Therefore, we use NVA counts oc-
currences of VA, which is recorded as:

NVA ¼ occurrences VAð Þ ð3Þ
Then we count the probability that these residues will

appear in 441 amino acid pairs.

NVA;NAE;NER;……:ð Þ441 ð4Þ

Operation algorithm
Support vector machine
Support Vector Machine (SVM) is a classical supervised
classifier based on VC (Vapnik-Chervonenkis) dimen-
sional theory and structural risk minimization principle
[36]. It has good generalization ability. The principle of
SVM is to map the samples of the input space to the
high-dimensional feature space through the kernel func-
tion, so as to obtain the optimal classification hyper-
plane of the lower VC dimension in the high-
dimensional kernel space. It has achieved good perform-
ance in many fields, such as protein-protein interaction,
protein secondary structure prediction, cancer classifica-
tion and subtyping, biomarker/Signature discovery, drug
discovery for cancer therapy, cancer driver gene discov-
ery, and so on [37–39]. In this paper, SVM is adopted as
a classifier.

Principal component analysis
PCA (Principal Component Analysis) is a commonly
used data analysis method [40]. It is often used for di-
mensionality reduction of high-dimensional data because
transformation of the original data into a set of linearly
independent representations could then be used to ex-
tract the main feature components of the data [40–42].

Performance measures
We employed 5-fold cross-validation to conduct model
selection, which can effectively avoid over-learning and
under-learning and the result was also more persuasive
[43]. In 5-fold cross-validation, the whole training data
set was divided into 5 subsets with roughly equal size
randomly, each subset is in turn taken as test set and the
remaining 4 subsets are used to train the classifier. In
addition, in order to provide a more intuitive and easier-
to-understand method to measure the prediction quality,
the following set of five metrics have been used to evalu-
ate the prediction performance, which are Accuracy
(Acc), Sensitivity (Sen), Specificity (Spec), F1 score, and

Table 5 Nine physicochemical properties used in this study

Properties description Reference

Hydrophilicity value Hopp and Woods [21]

Mean polarity Radzicka and Wolfenden [22]

Isoelectric point Zimmerman et al. [23]

Refractivity Treece et al. [24]

Average flexibility indices Bhaskaran and Ponnuswamy [25]

Average volume of buries residue Chothia [26]

Electron-ion interaction potential
values

Cosic [27]

Transfer free energy to surface Bull and Breese [28]

Consensus normalized
hydrophobicity

Eisenberg [29]
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Matthews correlation coefficient (MCC). The selected
performances have been demonstrated in eqs. (5)–(9).

Acc ¼ TPþ TN
TPþ FPþ TNþ FN

ð5Þ

Sen ¼ TP
TPþ FN

ð6Þ

Spec ¼ TN
TN þ FP

ð7Þ

F1 ¼ 2� SN � PPV
SN þ PPV

ð8Þ

MCC ¼ TP� TNð Þ − FP� FNð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPþ FNð Þ � TNþ FPð Þ � TPþ FPð Þ � TNþ FNð Þp ð9Þ

Where TP, TN, FP and FN represent the numbers of
true positives, true negatives, false positives and false
negatives, respectively [44]. In addition, the receiver op-
erating characteristic (ROC) curves are plotted based on
Sen and Spec by taking different thresholds [45] and
their area under the ROC (AUC) values were also calcu-
lated based on the trapezoidal approximation [46].
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