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A holistic view of mouse enhancer
architectures reveals analogous pleiotropic
effects and correlation with human disease
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Abstract

Background: Efforts to elucidate the function of enhancers in vivo are underway but their vast numbers alongside
differing enhancer architectures make it difficult to determine their impact on gene activity. By systematically
annotating multiple mouse tissues with super- and typical-enhancers, we have explored their relationship with
gene function and phenotype.

Results: Though super-enhancers drive high total- and tissue-specific expression of their associated genes, we find
that typical-enhancers also contribute heavily to the tissue-specific expression landscape on account of their large
numbers in the genome. Unexpectedly, we demonstrate that both enhancer types are preferentially associated
with relevant ‘tissue-type’ phenotypes and exhibit no difference in phenotype effect size or pleiotropy. Modelling
regulatory data alongside molecular data, we built a predictive model to infer gene-phenotype associations and
use this model to predict potentially novel disease-associated genes.

Conclusion: Overall our findings reveal that differing enhancer architectures have a similar impact on mammalian
phenotypes whilst harbouring differing cellular and expression effects. Together, our results systematically
characterise enhancers with predicted phenotypic traits endorsing the role for both types of enhancers in human
disease and disorders.

Keywords: Super-enhancers, Typical-enhancers, Tissue-specificity, Expression, Phenotypes, Protein-protein
interactions, Transcription factors, Gene-phenotype prediction

Background
Mammalian gene expression and their parallel gene
networks are tightly controlled by non-coding regulatory
regions such as enhancers, their accompanying
transcription factors (TFs), chromatin re-modellers and
non-coding RNAs [1]. Large scale programs such as
ENCODE [2], FANTOM5 [3] and NIH Roadmap Epige-
nomics project [4] have generated an initial detailed

exploration of active enhancer and promoter regions in
a plethora of tissues and cell types forming a crucial data
source for study of regulatory regions. Putative en-
hancers have been predicted in multiple organisms with
> 1 million estimated in the mouse and human genomes
[2, 5–8]. ChIP-Seq analysis of chromatin modification
has been widely used to catalogue these potential enhan-
cer and promoter regions, with enhancer loci being
enriched in histone H3 lysine4 monomethylation
(H3K4me1) and lacking histone H3 lysine4 trimethyla-
tion (H3K4me3), while active enhancer sites have the
addition of histone H3 lysine27 acetylation (H3K27ac)
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[5, 9]. Contrastingly, active promoter regions have an en-
richment of H3K4me3 and H3K27ac, and a depletion of
H3K4me1 [5, 10]. Although these elements have been
comprehensively identified, catalogued and archived, nu-
merous questions still remain on the interpretation of
their biological relevance, effect on gene expression, and
overall impact on disease causation.
Stringent control of transcription is required for the

correct functioning of multicellular organisms, with
different regulatory regions occupying different roles;
promoters initiate transcription while enhancers control
the correct spatio-temporal expression of genes [11].
Looping of the chromatin brings the enhancers close to
the promoter regions of their target genes [12–14]. As a
result, the enhancers increase the rate of transcription
by increasing the number of factors involved in the
process. Most important factors among these include
the Mediator complex, which is a co-activator complex
binding to other TFs and RNA polymerase II [15]; cohe-
sin, which stabilises and sometimes even drives cell-type
specific enhancer-promoter communication bridges [15];
and factors important for paused RNA polymerase II re-
lease and elongation such as BRD4 [16]. How these in-
teractions and chromatin looping are established
remains largely unknown. However, regulatory elements;
TFs, chromatin modellers, enhancers and promoters
must be in close concert to promote transcription, while
their disruption may lead to disease in humans and re-
lated phenotypes in model organisms such as mouse [11,
17, 18]. Furthermore, over 90% of GWAS SNPs associ-
ated with human disorders occur within the non-coding
regions, with 64% of the non-coding SNPs in enhancer
(H3K27ac positive) regions [19–21]. Similarly, ~ 76% of
non-coding SNPs from GWAS are identified either
within DNaseI hypersensitive sites (DHS) or in high
linkage disequilibrium with a SNP within DHS [20]. In-
deed, the number and scale of putative disease variants
identified in the non-coding genome has driven the
characterisation of enhancers and their association to
pathological states. The pathology of disease in humans
is commonly studied in the laboratory mouse, typically
by analysing the phenotypes arising from targeted muta-
tions. Phenotyping initiatives like the International
Mouse Phenotyping Consortium (IMPC) [22, 23] iden-
tify phenotype-genotype associations by producing
mouse lines with a protein-coding gene knockout and
systematically recording the results from a battery of
phenotyping tests for each line. These standardised tests
cover a multitude of biological processes and provide
consistent descriptions of phenotypes for each functional
gene, which can be used in the understanding of human
traits and diseases. As with the coding regions of the
mouse genome, the study of enhancers and other non-
coding regions has been greatly facilitated by CRISPR

and on a case-by-case basis we are beginning to under-
stand the roles of enhancers in the susceptibility and
pathogenesis of disease [24–30]. However, despite recent
progress in the study of the non-coding genome, system-
atic genotype-phenotype analysis of enhancers and other
non-coding regions remains a substantial challenge.
Recently, dense clusters of active enhancers have been

recognised as a new class of regulatory element termed
super-enhancers (SEs) [31]. These elements spanning
large genomic regions are enriched with various chroma-
tin regulators and cofactors such as the Mediator com-
plex, p300, Brd4 and RNA polymerase II [21]. Mediator
binding and H3K27ac chromatin marks have been most
commonly used to segregate SEs from regular enhancers
referred to as typical-enhancers (TEs). Systematic map-
ping of SEs using H3K27ac chromatin mark across diverse
human tissues and cell lines show that SEs regulate genes
that define cell identity and drive high expression of their
target genes compared to TEs [21, 32–34]. While studies
in the mouse genome find similar results, they are cur-
rently limited to relatively few tissue types [31, 35–39].
Furthermore, SEs in human cell types have been shown to
frequently harbour disease-causing variation [21, 40, 41],
while TEs have been considered less important. However,
to date there has been no systematic study defining
genome-wide functional difference between SEs and TEs,
and their relationship to phenotypes.
Here, we systematically identified highly tissue-specific

enhancers in 22 mouse tissues, and further classified
them into SEs and TEs. Moreover, we linked these en-
hancers with genes associated with phenotypic effects in
the mouse. We find that though SEs drive high total-
expression (aggregated expression of all exons) and
tissue-specific expression (tendency of gene to be specif-
ically expressed in a tissue or cell line) of their associated
genes, large number of TEs in the genome enable them
to contribute greatly to the tissue-specific expression
landscape. For the first time our results show both SE
and TE associated genes are enriched for relevant phe-
notypes and diseases in the corresponding tissue-types,
and we show there is no significant difference in severity
and breadth of phenotypes produced from knockouts of
SE and TE associated genes, indicating the importance
of both enhancer types in disease causation. We go on
to use regulatory data combined with other molecular
characteristics to infer mammalian gene-phenotype asso-
ciations and identify potential novel pathogenic genes
which may be used for further characterisation.

Results
Systematic profiling of tissue-specific regulatory elements
(TSREs) in mouse
To systematically identify potential regulatory elements
in the mouse genome, we annotated genome-wide
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chromatin states using a multivariate hidden Markov
model called ChromHMM [42]. We constructed the
model using three primary histone marks (namely
H3K4me1, H3K4me3 and H3K27ac) in 22 mouse epi-
genomes from ENCODE [2]. These chromatin states can
be broadly categorised into active promoter, weak
promoter, strong enhancer and weak enhancer states
(Additional file 1: Figure S1). Overall, we annotated 923,
791 strong enhancer and 309,581 active promoter anno-
tations (each being 200 bp in length) across the 22 epi-
genomes (posterior probability of states ≥0.95). To
validate the accuracy of our predicted promoters and
strong enhancers, we compared them to known pro-
moter and enhancer elements in the mouse genome (see
methods). The predicted regulatory elements achieved a
recall sensitivity of 81.7% (18,543/22,707) for the pro-
moters of protein-coding genes, and 91.2% (331/363) for
enhancers. To accurately identify mouse TSREs, we im-
plemented the previously described TAU algorithm [43,
44] to calculate the tissue specificity index (τreg) of every
strong enhancer and active promoter (see methods). In
total across 22 mouse tissues, 31% of all strong en-
hancers were shown to be highly tissue-specific (τreg ≥
0.85) and 43% of active promoters. Both, also show a
high degree of positive correlation with DNaseI
hypersensitive sites (DHS) in the corresponding tissues
(Pearson’s correlation, p < 2.2e-16), confirming these
TSREs are highly tissue-specific (Fig. 1a-b, Additional
file 1: Figure S2).
To identify mouse SEs, we used the ROSE algorithm

[31] to combine tissue-specific enhancer elements within
a span of 12.5 kb into cohesive units and rank them
based on H3K27ac signal which distinguishes them from
TEs (Fig. 1c). The enhancer elements within the cohe-
sive units (for both categorised as SEs or TEs) are re-
ferred to as constituent enhancers (Additional file 1:
Figure S2d). Using this approach, 6.6% (5082) of all co-
hesive units (or 24% of all tissue-specific enhancers) are
SEs while 93.4% (71,824) are TEs (or 76% of all tissue-
specific enhancers) (Additional file 1: Figure S2e). As
expected, we found SE cohesive units are occupied on
average by 2.4x H3K27ac and span large genomic re-
gions (median size = 12.4 kb) compared to TEs (median
size = 0.4 kb) (Fig. 1d-e, Additional file 1: Figure S3). The
number of constituent enhancers are enriched in SEs
compared to TEs (Fig. 1f). Enrichment of H3K4me1 and
DHS at SEs is observed to be in agreement with
H3K27ac levels (Additional file 1: Figure S4). To deter-
mine whether the high levels of histone modification ac-
tivity at SEs are a consequence of the total genomic
length of their cohesive units, we compared the enrich-
ment of H3K27ac and H3K4me1 among their constitu-
ent enhancers to TEs. We find that constituent
enhancers within SEs show a higher density of H3K27ac

and H3K4me1 histone marks compared to TEs (Add-
itional file 1: Figure S5a and S5b), suggesting the in-
creased levels of chromatin activity in SEs is not a
consequence of the total genomic length of their cohe-
sive units. A similar trend was identified for RNA poly-
merase II indicating a potential role of enhancer RNAs
(eRNAs) in enhancer activity and gene regulation, as
reported in recent studies [45, 46] (Additional file 1:
Figure S5c).
SEs have been found to frequently overlap the genes

they regulate [21, 31]. A previous study in murine ESCs
identified more than 80% of SEs and TEs to interact with
their nearest active gene [47]. To explore the functional
role of enhancers we associated each enhancer element to
a potential target gene using a community accepted tool,
GREAT [48]. We identified 3617 and 14,791 protein-
coding genes associated with SEs and TEs in at least one
tissue or cell type, respectively (Additional file 2). The
resulting enhancer-gene associations were highly consist-
ent with previously identified topological associated
domains (TADs) (96% in cortex TADs and 93% in mESC
TADs) [49] (Additional file 1: Figure S6a, Additional file 3).
Similarly, 87% of associations overlapped with computa-
tionally derived enhancer-promoter units (EPUs) [6]. As
expected, the majority (62.53% of SEs, 57.25% of TEs) of
the tissue-specific enhancers are located within 50 kb from
the transcription start sites (TSSs) of their associated
genes (Additional file 1: Figure S6b-S6d). The predicted
SEs, TEs and their associated genes were used for all
subsequent analysis.

Typical and super-enhancers can boost tissue-specific
gene expression
Previous studies in human and mouse cell types have
shown SEs to be related with highly expressed genes
[21], however the studies in mouse were less compre-
hensive and limited to a few tissues [31, 35, 39, 50]. In
addition to this total-expression, a few studies have dem-
onstrated SEs to be associated with tissue-specific gene
expression in cell lines. For instance, genes associated
with SEs in multiple myeloma cell lines were preferen-
tially expressed in myeloma cells [32]. With the aim of
exploring whether this association prevails genome-wide,
across multiple tissue types and different enhancers, we
examined the impact of these newly identified enhancers
in 22 tissues. To inspect this, we utilised ENCODE
RNA-Seq data. To effectively identify any common ex-
pression patterns between genes, tissues and enhancers,
we constructed a dataset formed of genes expressed
within a particular tissue, termed gene-tissue pairs,
followed by categorisation on their type of enhancer
association, hence grouping them into three classes: (1)
gene-tissue pairs associated with SEs, referred to as
super-enhancer class (SEC); (2) gene-tissue pairs
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Fig. 1 Overview of TSREs identified in 22 mouse tissues. a Strong enhancers, b Active promoters: Heatmaps showing chromatin state posterior
probability of tissue-specific regulatory elements (Taureg ≥ 0.85) (left) and their corresponding DNAse1 signal (right) in every tissue. Each row is a
genomic location and columns represent different mouse tissues and cell lines. Grey columns show tissues for which data was not available. The
heatmaps have been sorted by the order of the tissues across the columns. (BAT: Brown Adipose Tissue; Bmarrrow: Bone Marrow; BmarrowDm:
Bone Marrow derived macrophage; CH12: B-cell lymphoma; Esb4: mouse embryonic stem cells; Es-E14: mouse embryonic stem cell line
embryonic day 14.5; MEF: Mouse Embryonic Fibroblast; MEL: Leukaemia; Wbrain: Whole Brain). c Distribution of H3K27ac ChIP-seq signal over
cerebellum-specific enhancers stitched together within 12.5 kb (n = 3741). Stitched cohesive units (x-axis) are ranked in an increasing order of
their input-normalised H3K27ac signal (reads per million, y-axis). This approach identified 237 SEs (highlighted in blue) and 3504 TEs in
cerebellum. d-e Metagene profile of mean H3k27ac ChIP-seq signal across all the SEs and TEs in cerebellum. The profiles are centred on the
enhancer regions and the surrounding 2 kb regions around each enhancer is shown. The length of the enhancer region is scaled to represent
the median size of SEs (22,600 bp) and TEs (600 bp) in cerebellum. The shaded area shows the standard error (SEM). f Distribution of constituent
enhancers within SEs and TEs across all 22 tissues. See also Additional file 1: Figure S2-S5
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associated with TEs, referred to as typical-enhancer class
(TEC); and (3) gene-tissue pairs associated with weak/
poised enhancers, referred to as weak-enhancer class
(WEC).
We found that both SEC and TEC are associated with

highly expressed genes in comparison to the WEC (SEC:
effect size (ES) = 0.95, p < 2.2 × 10− 16; TEC: ES = 0.86, p <
2.2 × 10− 16; Wilcoxon Rank Sum Test) but that the SEC
appears to have the highest level of total-expression (SEC
compared to TEC: ES = 0.56, p < 2.2 × 10− 16) (Fig. 2a,
Additional file 1: Figure S7a). Likewise, the SEC have
higher tissue-specific expression (quantified as τexp − frac,
see methods) compared to the TEC (ES = 0.62, p < 2.2 ×
10− 16; Wilcoxon Rank Sum Test) or WEC (ES = 0.96, p <
2.2 × 10− 16) (Fig. 2b). To further understand tissue-
specific expression of the genes within different enhancer
classes, we categorised it into three levels of low, inter-
mediate and high (see methods). We identified, 16.46%
(690/4191) of SEC, 4.42% (1923/43,484) of TEC and
3.38% (230/6795) of WEC to have high tissue-specific ex-
pression (Fig. 2c, Additional file 1: Figure S7b). Further
examination of the high tissue-specific expression category
shows the absolute number of genes within the TEC
(1923) is notably higher than in the SEC (690) or WEC
(230). Overall this data suggests the ratio of genes within
the SEC with high tissue-specific expression is at least 4
times larger than the genes within other enhancer classes.
However, their absolute number is smaller compared to
the TEC which contribute the largest amount (68%) of en-
hancer associated tissue-specific expression in the genome
(Fig. 2d). This body of work in mouse strengthens the the-
ory that super-enhancers can boost tissue-specific gene
expression, while highlighting that high numbers of
typical-enhancers, can also boost tissue-specific expression
and should not be overlooked.
While identifying SEs we observed they are comprised

of a large number of constituent enhancers (Fig. 1f). The
average number of constituent enhancers within SEs is 13,
compared to 3 in TEs. To this end, we examined whether
an increase in the number of constituent enhancers results
in an increase in total-expression of their associated genes.
To increase the power of this analysis, we combined both
the SEC and TEC into a single dataset. We correlated the
frequency of the constituent enhancers (total number of
constituent enhancers associated with a gene) within the
combined dataset with total-expression of their associated
gene, which revealed a weak positive correlation (Spear-
man’s correlation rho = 0.12, p < 2.2 × 10− 16) (Additional
file 1: Figure S8a). To ensure this observation was not
driven predominantly by one class of enhancer, we exam-
ined this correlation separately within SEC and TEC, and
found no notable difference between the two classes
(Additional file 1: Figure S8b and S8c). In contrast, weak-
enhancer elements show little to no correlation with total-

expression (Spearman’s correlation rho = − 0.03, p = 0.02)
of their associated genes (Additional file 1: Figure S8d).
Overall this shows that total-expression of a gene mod-
estly increases with an increase in the number of constitu-
ent enhancers, indicating a non-additive relationship
between them. This suggests that constituent enhancers
appear to exert a complex, instead of a simple additive ef-
fect on the transcriptional output.
Since a gene could be related to SEs or TEs in multiple

tissues, we inspected these multiple gene-enhancer asso-
ciations for their effect on tissue-specific expression. For
this purpose, we assessed the number of distinct tissues,
where an enhancer associated with a gene occurs, which
we define here as “enhancer tissue-types” (Fig. 2e). A
large portion (∼78%, 2821 out of 3617) of the SEC is as-
sociated with one enhancer tissue-type, i.e. the genes are
associated with SEs from one tissue (Fig. 2f). However,
only 27% (3956 out of 14,791) of the TEC have one en-
hancer tissue-type, while the remaining 73% are associ-
ated with TEs of two or more tissues (Additional file 4
provides the list of these genes). Furthermore, we see
that genes with a higher number of enhancer tissue-
types are associated with low values of τexp − frac (Fig. 2g),
hence increasing enhancer tissue-type association in-
creases ubiquitous expression.
We next turned our attention to the genes which are

associated with more than one enhancer tissue-type.
Since these genes are associated with enhancers in mul-
tiple tissues (two or more), we sought to examine what
type of enhancer has a higher propensity to adopt an
“enhancer usage switch”. We define “enhancer usage
switch” as the phenomenon where the enhancer usage
associated with a gene could differ across multiple tis-
sues. We use the number of constituent enhancers
(within SEs or TEs) associated with a gene-tissue pair as
a measure of its enhancer usage. The standard deviation
of its enhancer usage across the 22 tissues was used to
predict the level of “enhancer usage switch”. A gene with
a large “enhancer usage switch” score refers to an enhan-
cer usage which varies highly across the different tissues.
We compared the enhancer usage switch scores between
SEC and TEC with multiple enhancer tissue-types,
which shows that SEC exhibit significantly higher enhan-
cer usage switch across the tissues (ES = 0.89, p < 2.2 ×
10− 16; Wilcoxon Rank Sum Test) (Additional file 1: Fig-
ure S9). The genes with a high enhancer usage switch
score for SEC include: Ntm, Grm4, Foxa2, and Max,
whereas the genes with a high enhancer usage switch
score for TEC include: Csmd1, Ntrk3, Grin2a and Opcml
(Additional file 1: Figure S10; Additional file 5). Overall,
this analysis shows that both SEC and TEC display
enhancer usage switch, but SE usage of a gene varies
significantly more across different cell- and tissue-types
compared to TE.
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Enhancers drive phenotype and disease causation
Previous studies have identified SEs to be associated
with genes that regulate cell identity and are therefore
unlikely to be involved in a housekeeping role [21, 31].
To increase our understanding of the functional role of
SE and TE associated genes we performed Gene Ontol-
ogy (GO) enrichment analysis in 22 mouse tissues.
Genes associated with SEs belonging to the SEC cat-
egory are enriched for transcription factor binding activ-
ity (p = 10− 10), regulation of cell development (p = 10− 16)
and regulation of cell differentiation (p = 10− 23) (Add-
itional file 6). The breadth of this analysis demonstrates
novel cell identity associations in unexplored tissues in
the mouse. As expected, these are also important in the
control and regulation of tissue or cell identity. Some ex-
amples of these novel SE associated genes include Ucp1
(responsible for generating body heat in mammals [51])
in brown adipose tissue; Gata4 (critical for heart devel-
opment and cardiomyocyte regulation [52]) in heart;
Cxcr2 (regulates the emigration of neutrophils from
bone marrow [53]) in bone marrow; and Rbfox3 (splicing
regulator of neuronal transcripts [54, 55]) in cerebellum.
On the other hand, TEC appear to have different enrich-
ments in GO analysis and are linked with genes involved
in nucleotide and protein containing-complex binding
(p = 10− 6), cellular protein localisation (p = 10− 7) and
cell morphogenesis (p = 10− 5). Furthermore, TEC is
significantly enriched for housekeeping genes (p = 2.7 ×
10− 11, Odds Ratio (OR) = 1.49, 95% Confidence Intervals
(CI) [1.32, 1.68]), while SEC is depleted (p = 0.012, OR =
0.82, 95% CI [0.69, 0.98]).
To further explore the regulatory function of en-

hancers, we investigated mouse phenotypes and human
diseases associated with genes within SEC and TEC (see
methods). Significant enrichment in both phenotypes
and disease ontology terms in the corresponding tissue
types was identified (Fig. 3, Additional file 7), suggesting
a strong relationship between both SEC and TEC and
resulting pathological outcomes (disease causation). For
instance, genes associated with cerebellum-specific en-
hancers are enriched for phenotypes such as impaired

coordination (q = 4.83 × 10− 8) and abnormal synaptic
transmission (q = 2.46 × 10− 7), and diseases such as
bipolar disorder (q = 8.52 × 10− 7) and unipolar disorder
(q = 6.26 × 10− 5). Similarly, genes related to heart-
specific enhancers are enriched for phenotypes like ab-
normal cardiac muscle contractility (q = 9.05 × 10− 16)
and diseases like cardiomyopathy (q = 5.45 × 10− 14) (Fig.
3). In addition, enrichment of blood-related cancers
(such as Hodgkin Disease, q = 1.90 × 10− 12; T-cell
Leukemia, q = 1.41 × 10− 5) in CH12 enhancer associated
genes is consistent with the idea that oncogenes are
placed under the effect of strong enhancers during
cancer development leading to over-expression of these
genes [32, 56]. On the other hand, the WEC display
either an insignificant or a weak association with pheno-
types in majority of the tissues (Additional file 1: Table
S1).
However, there is a marked difference in the expres-

sion patterns of SEC compared to TEC, which is not
observed in their relationship with phenotypes. We ex-
plored this dichotomy further by comparing the pheno-
typing data from knockout mouse lines of genes in SEC
and TEC across all tissues within the IMPC data. We
reasoned that if SE associated genes are predominantly
related to phenotype occurrence, their associated gene
knockouts would cause a more severe phenotype condi-
tion (a phenotype with an increased effect size) relative
to knockouts of other genes (such as those associated
with TEs). We compared several standardised phenotyp-
ing procedures within the IMPC and observed a signifi-
cant difference in severity only for acoustic startle and
pre-pulse inhibition (ES = − 0.63, p = 0.001) (Fig. 4).
However, for the majority of the procedures, we ob-
served no significant difference in severity of phenotypes
between SEC and TEC (Open field test, ES = 0.19, p =
0.13; Grip strength, ES = 0.19, p = 0.55; DEXA, ES = −
0.02, p = 0.75; Heart weight, ES = 0.16, p = 0.63;
Hematology, ES = 0.16, p = 0.1). Next, we sought to
examine the breadth of the phenotypes associated with
SEC and TEC. For this purpose, we computed the num-
ber of top-level phenotype ontology terms associated

(See figure on previous page.)
Fig. 2 SEs promote high transcriptional activity and drive tissue-specific expression in mouse. a Box plot showing the total-expression (in log-
transformed RPKM) of different enhancer classes across 22 tissues. Each box plot shows the median, middle bar; interquartile range, the box;
whiskers, 1.5 times the interquartile range. b Box plot showing the tissue-specific expression of different enhancer classes across 22 tissues. The p-
values were calculated using Wilcoxon Rank Sum Test. c Distribution of genes within tissue-specific expression categories (low, intermediate and
high) in different enhancer classes. Y-axis for each tissue displays the density of genes scaled across the tissues, but not across the enhancer
classes. d Contribution of each enhancer class (in percentage) towards the total number of enhancer associated genes in the genome,
categorised by their tissue-specific expression. e A schematic to illustrate the calculation of distinct enhancer tissue-types for each enhancer-
associated gene. The number of distinct tissue types of various enhancers associated with the gene of interest are added to compute the
number of enhancer tissue-types for a gene. f Heatmaps showing the number of enhancer tissue-types in SEC and TEC. Each row is an enhancer
associated gene and columns represent its association with enhancers across 22 tissues and cell types. g Box plot showing the correlation
between the number of enhancer tissue-types and tissue-specific expression of SEC and TEC. The trend lines (green: SEs; orange: TEs) were
calculated using linear regression. See also Additional file 1: Figure S7 and S8
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with SE and TE associated gene knockouts from IMPC
(Additional file 1: Figure S11). No notable difference is
observed in the breadth of phenotypes between SEC and
TEC (ES = 0, p = 0.42), indicating both SE and TE associ-
ated gene knockouts are likely to produce comparable
number of phenotypes and therefore, have similar pleio-
tropic effects. Furthermore, we explored the mouse

essential genes by retrieving all the genes from IMPC
which generate a lethal knockout [57] to examine if the
SEC is enriched with lethality. There is no enrichment
of lethal genes among SEC (p = 0.24, OR = 1.08, 95% CI
[0.88, 1.30]) and TEC (p = 0.83, OR = 0.93, 95% CI [0.79,
1.09]). Finally, using GTEx data, we compared the num-
ber of expression quantitative trait loci (eQTLs)
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growth/size/body
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respiratory

skeleton

renal/urinary

cardiovascular 
and muscle

cellular, embryo 
and lethality

neurological/behavioural 
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immune and 
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system
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liver
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immune 
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Fig. 3 Mammalian phenotype and human disease ontology terms enriched in SEC and TEC. Listed are the most enriched mammalian
phenotypes and human diseases among SEC and TEC in each tissue. The cells in the heatmap display the FDR (q-value) associated with the
enriched terms and was calculated using the Benjamini-Hochberg method. The enrichment analysis was performed using ToppGene, which
retrieves mouse phenotype annotations from MGD and human disease annotations from ClinVar, DisGenNet, GWAS and OMIM
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associated with SEC and TEC and observed no signifi-
cant difference in the number of cis-eQTLs associated
with SEC and TEC (ES = 0, p > 0.56; Wilcoxon Rank
Sum Test) (Additional file 1: Figure S12). Overall these
results highlight that tissue- and cell-specific relevant
traits are associated with both SEs and TEs associated
genes.

Enhancer associated genes are connected in a dense
interactome
Having shown that enhancer associated genes are
enriched for tissue-specific traits, we hypothesised that
the proportion of these with no prior phenotypic anno-
tations related to the tissue maybe involved in disease-
causing pathways. To identify novel disease-associated
genes, we first analysed the protein-protein interactions
(PPI) among enhancer-associated genes in each of the
22 tissues, using the STRING database [58]. Then in
each network, we identified the genes currently known
to be associated with the corresponding tissue-type
phenotypic annotations from MGD [59], while the genes
with no-prior phenotypic information were labelled as
‘novel’. For each tissue, both the known and unknown
disease genes (referred to as known and novel respect-
ively) in the PPI network of enhancer-associated genes
are observed to be connected in a remarkably dense
interactome (Fig. 5, Additional file 1: Figure S13).

Interestingly, the novel genes (blue nodes) are highly
connected with the phenotype-associated genes (pink
nodes), suggesting a potential functional relationship be-
tween them. Simulating these PPI networks with random
protein-coding genes showed that novel genes connect
significantly more with known phenotype-associated
genes, compared to randomly added genes (p ≤ 0.016,
except thymus p = 0.056) (Additional file 1: Figure S14).
This outcome demonstrates enhancer associated genes
to be potentially engaged in the same functional pathway
as the known phenotype genes and therefore, could also
be linked with the corresponding phenotypes and ulti-
mately disease causation.

Preferential transcription factor binding in super-
enhancers
Enhancer regions contain many binding sites for TFs
which contribute to important tissue-specific functions
by regulating the target genes [60]. To investigate tran-
scription factor binding activity within SEs and TEs, with
the aim of identifying potential key regulators in each tis-
sue, we used publicly accessible ChIP-Seq data for mouse
TFs. For many TFs, the information available on their spe-
cific binding in various cell types is rather sporadic, thus
we flattened all available ChIP-Seq peaks for each TF into
single binding profiles referred to as “cistrome” (see
methods). Next, for each cell type, we systematically
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Fig. 4 Phenotype severity of SE and TE associated gene knockouts. Violin plots showing the percentage change (normalised effect size) in
phenotype procedures measured between enhancer associated gene knockouts and wild-type controls. The area under the violin is
proportionate to the number of data points in each category. The p-values were calculated using the Wilcoxon Rank Sum Test. All phenotyping
procedures show no significant difference in phenotype severity between SECs and TECs apart from Acoustic Startle and Pre-pulse Inhibition. See
also Additional file 1: Figure S11 and S12
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identified TFs, for which cistrome peaks significantly colo-
calised with their corresponding active enhancers.
First, we found that TFs which have significant coloca-

lisation with enhancer elements include regulators
known to be implicated in the corresponding tissue-
specific regulation (Fig. 6). For example, Spi1, with cis-
trome peaks colocalized with bone marrow enhancers, is
implicated in myeloid and B-lymphoid cell development
[61]; Gata4, with cistrome peaks colocalized with heart
enhancers, is involved in myocardial differentiation and
function [62]; and Dmrt1, with cistrome peaks coloca-
lized with testis enhancers plays a key role in male sex
determination and differentiation [63]. Overall, we ob-
served cistrome peaks of 214 TFs (509 TF-tissue pairs)
to significantly colocalise with TEs (with OR > 1; cor-
rected p-value < 10− 3) and 113 TFs (148 TF-tissue pairs)
with SEs across all tissues and cell types (Add-
itional file 8). The 214 TFs colocalised with TEs included
all the 113 TFs identified for SEs. Second, we observed
that some TFs with cistrome peaks significantly coloca-
lised with enhancers are expressed in a tissue-specific
manner in the corresponding tissues (Additional file 1:
Figure S15a). In total, we identified 56 such TFs with
highly tissue-specific expression (τexp − frac > 0.85) and
significant colocalisation with corresponding TEs, and
29 TFs with SEs across all tissues and cell types. Exam-
ples of such TFs include Hnf6 in liver (τexp − frac = 1),
Nkx2–5 in heart (τexp − frac = 1), Gata1 in MEL cells (τexp
− frac = 0.93) and Neurog2 in brain (τexp − frac = 0.98).
Overall, TF cistrome peaks were identified to signifi-

cantly colocalise with both SEs and TEs, but a greater
number of TFs were identified to colocalise with TEs
compared to SEs. This could be explained by the rela-
tively large number of TEs in the genome. To investigate
this further, for each TF with significant enhancer
localization, we computed their transcription factor
binding site (TFBS) density in SEs and TEs. The TFBS
density could be defined as a measure of TFBS cluster-
ing in SEs or TEs (see methods). To summarise our ana-
lysis, we counted the number of TF-tissue pairs which
have significantly greater TFBS density in SEs compared
to TEs, and vice-versa for TEs. Overall, we find that SEs
have more TF-tissue pairs with higher TFBS density
compared to TEs (Additional file 1: Figure S15b).
Altogether, this data indicates that although TEs are
more often colocalised by TF cistrome peaks, frequency
and degree of TFBS clusters is higher in SEs.

Combinatorial learning approach for phenotype
prediction
Our findings show mouse enhancer associated genes are
correlated to a great extent with tissue-specific gene ex-
pression as well as phenotypes. We explored the utilisa-
tion of this dataset to infer mammalian gene-phenotype
associations as has previously been done for protein-
protein interaction (PPI) and gene expression data [64–
66]. We implemented the random forest classifier to
predict gene-phenotype associations from 13 different
phenotypic domains, where each domain is relevant to
at least one tissue type in our dataset. For this learning
approach, we extracted gene features from TSRE pro-
files, expression data, transcription factor binding sites
and protein-protein interaction data in 22 mouse tissues
(Fig. 7a) (see methods). For the purpose of training this
random forest classifier and maximising its learning
process, we combined the SE and TE dataset together
and used their constituent enhancers (or tissue-specific
enhancers) to calculate the enhancer-associated gene
feature. We first trained a random forest classifier on a
subset of protein-coding genes using a combination of
various gene features as predictor variables and the top
level mammalian phenotype terms from MGD as the re-
sponse variable (true positives), while genes not associ-
ated with a phenotype in MGD were considered as true
negatives. This model was used to predict gene-
phenotype associations in the remaining set of genes not
used in the training of the model.
By integrating various features together, 10 combina-

tions were formed, constructing 10 distinct classifiers for
each phenotypic domain. The predictive power of each
classifier was assessed by generating Receiver Operating
Characteristic (ROC) and precision-recall (PR) curves
based on 5-fold cross validation, repeated 10 times with
different seeds. The classifier trained on all the gene fea-
tures combined achieved the best performance with a
mean AUC-ROC of 0.78 and AUC-PR of 0.27 across all
the phenotype domains (Fig. 7b, Additional file 1: Figure
S16, Additional file 9). However, high precision recall
rates (AUC-PR > 0.35) are observed in phenotypes with a
high number of known mammalian phenotype annotation
counts in MGD (such as behavioural/neurological, ner-
vous system, cardiovascular, immune and hematopoietic
system, see Additional file 1: Figure S17). Focusing on pre-
dicting gene-phenotype associations within the nervous
system domain, the classifier trained on all the gene fea-
tures achieved the greatest mean AUC-ROC of 0.80 and

(See figure on previous page.)
Fig. 5 Enhancer associated genes are connected in a dense interactome. The networks display protein-protein interaction maps of enhancer
associated genes. Nodes in each network represent enhancer associated genes and edges represent potential protein-protein interactions. Genes
associated with tissue-type relevant phenotypes are highlighted in pink and the shape of the node displays SE and TE associated genes (squares:
SEC, circles: TEC). See also Additional file 1: Figure S13 and S14
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Fig. 6 Master regulators enriched in SE and TE constituent enhancers. Heatmap showing the top 3 enriched TFs identified within SEs and TEs in
each tissue. The motifs associated with the enriched TFs are shown on the right. NA is shown for TFs with motifs not present in HOCOMOCO
v11. The rows of the heatmap are clustered using hierarchal clustering. See also Additional file 1: Figure S15

Sethi et al. BMC Genomics          (2020) 21:754 Page 12 of 22



Data Feature Description n Symbol

Regulatory 
elements

Tissue-specific enhancer 
profiles

Sum of posterior probabilities for all tissue-specific strong 
enhancers associated in each tissue

22

TSRE
Tissue-specific promoter 
profiles

Sum of posterior probabilities for all tissue-specific active 
promoters associated in each tissue

22

Transcription factor 
binding

Enrichment of motifs within cistrome regions overlapping 
500 bp upstream and 100 bp downstream of TSS

297
TF

Protein-protein 
interactions 
(PPI)

PPI with genes 
associated with 
enhancers

PPI score of a gene within tissue-specific enhancer 
network

22

TSRE_PPI
PPI with genes 
associated with 
promoters

PPI score of a gene within tissue-specific promoter network 22

PPI with genes 
associated with the 
phenotype

PPI score of a gene within a phenotype associated network 1
PPI

Expression Expression profiles Expression of a gene in each tissue 22 Exp

a

b

c d

Fig. 7 Predicting gene-phenotype associations in mouse. a Summary of the various gene features (grouped according to their data sources) used
to train the random forest classifier to predict gene-phenotype associations. b Bar plot comparing the predictive power of different random
forest classifiers across various phenotypes. Error bars denote standard deviation. The classifier trained on all gene features performs the best for
majority of the phenotype domains. c Receiver operating characteristic (ROC) curves comparing the performance of 10 random forest classifier
models applied to predict genes associated with nervous system phenotype. d Feature importance chart of the best performing model (Exp +
PPI + TSRE+TSRE_PPI + TF) showing the top 20 predictor variables important in nervous system phenotype predictions, as measured by the mean
decrease in accuracy (x-axis). The PPI feature was identified to be the most important in predicting genes associated with nervous system
phenotype, followed by expression in whole brain and cortex. Exp: expression; Enh: enhancer; Prom: promoter; TF: transcription factor. See also
Additional file 1: Figure S16 and S17
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AUC-PR of 0.42 (Fig. 7c). The PPI score with genes
known to be associated with nervous system phenotype
was identified to contribute the most in predicting ner-
vous system gene-phenotype associations, followed by ex-
pression data in whole brain and cortex (Fig. 7d). In fact,
PPI data is the most informative and the main contributor
to the performance of these classifiers in all the 13 pheno-
types. While the models trained solely on regulatory
features have limited predictive power, they improved the
performance of models when integrated with other fea-
tures, suggesting regulatory data are a useful addition for
modelling mammalian phenotypes.
In order to evaluate the validity of the predictions

from the model, we investigated the novel gene-
phenotype predictions made by these classifiers. The
predictions classified as incorrect are based on the
current knowledge of gene-phenotype associations, but
it is possible that there are no, or little, prior knowledge
about particular gene function, and thus are novel. This
also leads to undermining the true predictive power of a
classification model. For such reasons, the top false-
positive predictions are most interesting as they could
provide new hypotheses about gene function. To system-
atically examine the top false-positive predictions (pre-
diction score ≥ 0.90) in each phenotype domain, we used
the Open Targets Platform [67] and the DisGeNET dis-
covery platform [68] which links potential novel genes
to diseases via evidence based on genetic associations,
somatic mutations, animal models, expression, pathways,
drugs and text mining from literature. We identified that
~ 75% (495/659) of the false-positive predictions exam-
ined (see methods) with Open Targets and ~ 63% (338/
539) with DisGeNET could be potentially associated
with the corresponding disease (Additional file 1: Figure
S18) and hence, could serve as potential novel disease
targets. For example, out of the 76 top scoring false-
positives (prediction score ≥ 0.90) examined for nervous
system phenotype, 72 could be associated with nervous
system disease (p = 5.00 × 10− 9) based on evidence inte-
grated from a range of data sources by Open Targets
platform. Additional file 10 provides these novel predic-
tions for each phenotype and the evidence supporting
their association with the corresponding diseases.

Discussion
Regulatory elements have been identified as active in a
plethora of cell types and tissues, however there is lim-
ited understanding about their relationship to overall
gene function and the resulting gene-phenotype relation-
ships. To gain insights into the mammalian regulatory
landscape and its potential impact on phenotypic out-
come, we focused our analysis on tissue-specific en-
hancers. By generating a catalogue of super, typical and
weak enhancers in multiple mouse tissues we

systematically investigated their roles in gene function.
From multiple aspects such as gene expression, PPI net-
works and phenotypes, our study now provides evidence
that SE and TE associated genes share common pheno-
typic outcomes even though their expression profiles
and overall numbers in the genome differ.
SEs are comprised of dense enhancer clusters spanning

large genomic regions and are associated with master
transcription factors and other key cell identity genes
[21, 31]. We observed that compared to TEs, SEs con-
sists of a large number of constituent enhancers, how-
ever, the mechanistic mode of action of these individual
constituent elements is not well understood. It remains
unclear whether the constituent enhancers exert an
additive or a more complex cooperative effect on target
gene expression. Using our genome-wide enhancer
maps, we sought to examine the effect of constituent en-
hancer density on the total-expression of genes at a
genome-wide scale. Our results show that globally, total-
expression levels of genes are weakly correlated with the
number of constituent enhancers. The constituent en-
hancer density explains only a small fraction of the vari-
ation in gene expression, indicating a complex rather
than a linear additive relationship between constituent
enhancers and target gene expression. Not all constitu-
ent enhancers appear to contribute to the transcriptional
output with the same strength, suggesting some con-
stituent enhancers may make small contributions there-
fore helping to fine tune the expression patterns of their
associated genes. This observation is consistent with pre-
vious in vivo experiments showing the effect of deleting
individual SE constituents on target gene expression is
highly variable [50, 69, 70]. SE constituents have more
chromatin interactions among themselves [47], suggest-
ing these constituent enhancers may have an effect on
one another’s contribution towards the target gene tran-
scriptional activity. However, we cannot rule out the
possibility that some constituent enhancers may have a
redundant function in transcriptional activation [71]. It
should be noted this study is a computational prediction
and has limitations. In order to accurately calculate the
impact of constituent enhancers on target gene expres-
sion, it is important to know which constituent en-
hancers are real and/or active alongside the gene(s) they
regulate.
Prior research has thoroughly investigated the role of

SEs in complex traits, showing that disease-causing
SNPs are more enriched in SEs of disease-relevant cell
types [21, 40, 41]. However, little research has been con-
ducted to systematically examine the effect of SEs and
TEs on diseases. Here, we investigated the mammalian
phenotype and disease associations of SE and TE associ-
ated genes. We identified that both the SEC and TEC
are significantly enriched in phenotypes and diseases in
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the corresponding tissue-types (Fig. 3), emphasising that
phenotypes are governed by tissue-specific enhancers.
Using phenotyping data from knockout mouse lines of
enhancer associated genes, we show that there is no sig-
nificant difference in severity and breadth of phenotypes
produced from knockouts of SEC and TEC (Fig. 4, Add-
itional file 1: Figure S11), which underscores the import-
ance of both enhancer classes in disease causation. In
addition, no difference in enrichment of mouse essential
genes and number of eQTL associations was identified
among SEC and TEC. Overall, we did not find any sig-
nificant contrast between the potential phenotypic im-
pact of SEC and TEC, suggesting that functional testing
of all enhancers irrespective of categories is fundamental
in making any conclusions about their functional signifi-
cance and phenotypic impact. Although the majority of
key cell identity genes and TFs are associated with SEs,
the ‘peripheral’ genes associated with TEs appear to
equally contribute towards disease aetiology. A possible
explanation to this surprising result is the existence of
an ‘omnigenic’ architecture [72] where regulatory net-
works are densely inter-related such that TE associated
genes expressed in disease relevant cell types can collect-
ively impact the regulation of key cell identity genes. To
this end, we hypothesised that tissue-specific enhancer
associated genes are components of protein complexes
involved in aberrant disease-causing biochemical pro-
cesses and could be potential therapeutic targets. Our
PPI analysis show that enhancer associated genes with
no prior corresponding tissue-type phenotypic associa-
tions preferentially interact with known phenotype-
associated genes. This observation suggests that these
enhancer associated genes could serve as novel targets
for diseases.
Finally, using a machine learning approach, we system-

atically evaluated the capability of TSREs and other mo-
lecular properties to predict gene-phenotype associations
in mouse (Fig. 7). By comparing classifiers trained on
different gene features, we found the classifier with all
the gene features combined performs the best to predict
gene-phenotype associations. Our results also reveal that
PPI data have a high predictive capacity to infer mam-
malian gene-phenotype associations, while regulatory
data provides a modest but additive source of informa-
tion. Further examination of the top scoring false-
positive predictions shows their promising application in
generating hypothesis about gene function and in identi-
fication of potential novel disease targets. Such predic-
tion models can assist in prioritising genes in mouse
knockout and genome editing studies. They could also
help in selecting the most relevant phenotyping proce-
dures (which often involves costly assays) for transgenic
mice models.

Conclusion
In this study, we systematically characterised different
enhancer types with the goal of investigating their roles
in gene function. We found that super- and typical-
enhancers have different effect on gene expression, but
both are preferentially associated with relevant tissue-
type mammalian phenotypes and human diseases. We
show that genes associated with super- and typical-
enhancers exhibit no difference in phenotype effect size
or pleiotropy suggesting they share common phenotypic
outcomes. Our findings in a diverse range of mouse tis-
sues present opportunities for molecular experiments to
investigate regulatory mechanisms in mouse models of
human diseases.

Methods
Learning chromatin states and segmentation of the
mouse genome
First, the ChIP-Seq data for histone H3 lysine 4 mono-
methylation (H3K4me1), histone H3 lysine 4 trimethylation
(H3K4me3) and histone H3 lysine 27 monoacetylation
(H3K27ac) in 22 mouse tissues and cell lines were collected
from ENCODE project (LICR lab) in the form of sequence
alignments (BAM files mapped to mm9 mouse genome).
The 22 epigenomes include 14 adult tissues: BAT (brown
adipose tissue), bone marrow, cerebellum, cortex, heart,
kidney, liver, lung, olfactory bulb, placenta, small intestine,
spleen, testis and thymus; 2 embryonic tissues: limb and
whole brain; and 6 cell lines: bone marrow derived macro-
phage, CH12 (B-cell lymphoma, GM12878 analog), Esb4
(mouse embryonic stem cells), Es-E14 (mouse embryonic
stem cell line E14), MEF (mouse embryonic fibroblast),
MEL (leukemia, K562 analog). Next, we used a multivariate
hidden Markov model called ChromHMM to integrate all
the ChIP-Seq data and summarise into easily illustratable
annotations. The chromatin states were jointly learned
across 22 mouse tissues using default parameters. Several
HMM models were produced consisting of 4–8 chromatin
states and identified the 6 state model to provide sufficient
resolution to isolate biologically meaningful chromatin
states. The resulting chromatin states were then annotated
based on the biological significance of the frequencies of
combined histone marks. Using this approach, potential ac-
tive promoter (404,016), weak promoter (647,185), strong
enhancer (1,075,608) and weak enhancer (2,068,844) anno-
tations were mapped across 22 mouse tissues and cell types.
To validate our predicted promoter states (states 1 and 2),
we compared 217,678 unique non-overlapping promoters
to 22,707 known protein coding genes (mm9 ensembl
genes v67; 10 kb upstream, 100 bp downstream of TSS) and
recovered 81.66% of known promoters. Similarly, to valid-
ate the strong enhancer predictions (state 4), we compared
386,222 unique non-overlapping enhancers to 363 experi-
mentally validated VISTA mouse enhancers and recovered
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91.18% of VISTA enhancers from our predictions. Chroma-
tin states with < 0.95 posterior probability were filtered
resulting in 923,791 strong enhancer (state 4); 309,581 ac-
tive promoter (state 2); 2,531,993 weak enhancer (state 6);
and 427,251 weak promoter (state 1) high confidence
annotations respectively.

Identifying tissue-specific regulatory elements
To identify tissue-specific regulatory regions across the
22 tissues, we implemented the Tau method which has
been previously used to detect tissue-specific expression
[43, 44]. Tau is a measure of tissue specificity index
which takes into account number of tissues and normal-
ised expression in each tissue and outputs a score for
each gene. To implement this method, we constructed
matrices of chromatin state posterior probabilities for
strong enhancers, active promoters, weak enhancers and
weak promoters with dimension n × s, where n is the
number of regulatory elements and s is the number of
tissues (i.e. 22). Each row of the matrix is a genomic lo-
cation of the regulatory element (200 bp in length) and
columns represents its posterior probability across all
the tissues. The matrices were filtered such that only the
regulatory elements with a posterior probability ≥0.95 in
at least one tissue were retained. The Tau score for each
regulatory element was calculated by the following
equation:

τreg ¼

XN

i¼1

1 − bxið Þ

N − 1
; bxi ¼ xi

max xið Þ ð1Þ

where N is the number of tissues and xi is the posterior
probability value. Using the thresholds suggested in [43],
the regulatory elements were categorised into low
(τreg ≤ 0.15), intermediate (0.15 < τreg < 0.85), high
(0.85 ≤ τreg < 1) and absolute tissue-specific (τreg = 1).

Correlating TSREs with DNaseI hypersensitive sites
For DNasel accessible regions, we collected DNasel
hypersensitivity sites (DHS) in 11 tissues (Cerebellum,
CH12, Es-E14, Heart, Kidney, Liver, Lung, MEL, Spleen,
Thymus, Wbrain) from ENCODE (UW lab) in the form
of hotspots. The mean of DNaseI signal was computed
wherever multiple replicates were available within
ENCODE. The genomic coordinates of tissue-specific
enhancer and promoter elements were compared with
DNaseI hypersensitive hotspots using BEDTools [73]
and the DNaseI signal in each tissue or cell line was ex-
tracted. We restricted the extraction of DNaseI signal to
cases where 100% of the enhancer or promoter region
overlapped the DHS hotspot, otherwise no DNaseI activ-
ity was assumed and a value of “0” was assigned to that
enhancer or promoter. This resulted in a matrix of

DNaseI signal corresponding to the posterior probability
matrix of tissue-specific enhancers and promoters. To
quantify the concordance between TSREs (tissue-specific
enhancers and promoters) and DHS, Pearson’s correl-
ation between posterior probability of their respective
chromatin state and the corresponding DNasel signal
was calculated. The pairwise correlations between the
tissues were visualised in a heatmap and rows and col-
umns were ordered based on hierarchical clustering
(Additional file 1: Figure S2b and S2c).

Distinguishing super-enhancers from typical-enhancers
To identify SEs in mouse, we implemented an approach
similar to previously used by [31]. Using the ROSE algo-
rithm, tissue-specific enhancers within a distance of
12.5 kb were stitched together into cohesive units and
ranked based on their H3K27ac signal. A TSS exclusion
size of 2000 bp was used to exclude tissue-specific en-
hancers within ±2 kb of a known TSS to remove any
promoter bias. The algorithm calculates a threshold of
the inflection point for H3K27ac signal. The stitched
cohesive units with H3K27ac signal higher than the esti-
mated threshold are defined as SEs while the remaining
cohesive units are termed as TEs.
The metagene profiles of mean H3K27ac signal across

all the SEs and TEs (Fig. 1d, Additional file 1: Figure S3)
were generated using ngs.plot [74]. Metagene plots are
centered on the enhancers and display average ChIP-Seq
read density over all the enhancer regions and surround-
ing windows of 2 kb. For visual comparison between
profiles of SEs and TEs in a tissue, the range of the y-
axis were synchronised. For comparing the H3K4me1,
H3K27ac and DNAseI hypersensitivity signal over the
stitched enhancers (Additional file 1: Figure S4), the read
density over these regions was calculated in reads per
million (rpm). For H3K4me1 and H3K27ac ChIP-Seq
signal, the input control density was subtracted in rpm.
The read density for each feature was then normalized
by dividing the signal at each enhancer by the maximum
signal in each feature. The stitched enhancers for each
feature on x-axis are ranked according to the H3K27ac
ChIP-Seq signal.

Effect size calculation
The non-parametric effect size (ES) was calculated as
the difference in medians of the two groups divided by
the pooled median absolute deviation (MAD). The
following formula was used:

ES ¼ Median1 −Median2
MADpooled

;MADpooled ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MAD2

1 þMAD2
2

2

s
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Associating TSREs to potential target genes
We used GREAT [48] to associate tissue-specific regula-
tory elements to potential target genes in each tissue. In
cases where GREAT predicted multiple target genes for
a particular TSRE, the nearest gene was selected as the
primary predicted target for all further downstream ana-
lysis. GREAT was run using default parameters on mm9
assembly and the whole genome was selected for control
background regions. The coordinates of TSREs and their
associated genes in all tissues are provided in Additional
file 2. To examine the consistency of our enhancer-gene
assignments with other datasets, we compared them to
previously reported topologically associated domains
(TADs) [49] and enhancer-promoter units (EPUs) [6] in
mouse. The enhancer-gene pairs across the 22 tissues
were merged together for this comparison. The TADs
(in mESC and cortex) were compared to the enhancer-
gene pairs to examine if the enhancer-gene pair overlaps
the same TAD (Additional file 3). Only the cases where
both enhancer and its associated gene overlapped a
TAD were used. We identified 96.62 and 93.57% of our
enhancer-gene pairs to be in the same TADs annotated
in cortex and mESC respectively. A similar comparison
was done with EPUs which revealed 87.23% of our
predicted enhancer-gene pairs to be in the same EPU.

Expression analysis of enhancer associated genes
For investigating the expression of enhancer associated
genes, RNA-Seq data for all 22 tissues and cell lines was
collected from ENCODE as read alignments (BAM files).
Data for cell lines CH12 and Es-E14 was collected from
Standford/Yale lab while rest of the data was retrieved
from LICR lab. From the BAM files, the read counts
over all genes (mm9, ensembl v67) were quantified using
HTSeq [75] and expression of each gene was calculated
in RPKM (Reads Per Kilobase of transcript per Million
mapped reads) in each tissue/cell line. A mean RPKM
value was calculated for multiple biological replicates
from ENCODE.
To examine the relationship between enhancers and

expression of their target genes, data from all 22 tissues
was combined into gene-tissue pairs and grouped into
three classes based on their enhancer association: (1)
gene-tissue pairs associated with SEs (SEC); (2) gene-
tissue pairs associated with TEs (TEC); and (3) gene-
tissue pairs associated with weak/poised enhancers
(WEC). In order to quantify tissue-specific expression of
target genes, we calculated the tissue specificity index
for each gene using the Tau method described earlier.
We constructed a matrix of expression values with di-
mensions t × s, where t is the total number of genes and
s is the number of tissues/cell lines. Genes not expressed
in any tissue were deleted from the matrix leaving genes
expressed in at least 1 tissue. The RPKM values were

log2 transformed and quantile normalised (QN) (using
the normalize.quantiles function in preprocessCore R
package) to allow easier comparison of gene expression
across tissues. Genes were then sorted by ascending QN
value and divided into deciles of equal density and
placed into 10 bins. The lowest decile (lowest 10% of
genes by QN value) was placed in bin 1, the next lowest
was placed in bin 2, and so on until the top 10% of QN
values were placed in bin 10. The Tau value (τexp) for
each gene was calculated as:

τexp ¼

XN

i¼1

1 − byið Þ

N − 1
; byi ¼

yi
max yið Þ ð2Þ

where N is the total number of tissues, yi is the normal-
ised expression bin profile component of the gene in
tissue i. In order to associate τexp values to tissues, Tau-
fraction (τexp − frac) for each gene in every tissue was cal-
culated as τexp�ri

M where ri is the expression of the gene
(in RPKM) in tissue i and M is the maximum expression
of the gene (in RPKM) across all the tissues. Based on
τexp − frac score, the genes were categorised into low (τexp
− frac ≤ 0.20), intermediate (0.20 < τexp − frac < 0.85) or high
(τreg ≥ 0.85) tissue-specific expression in the correspond-
ing tissues. Housekeeping genes were identified based on
a strict τexp threshold. Genes with low τexp score (≤0.20)
are uniformly expressed across all the tissues and were
considered to be housekeeping genes. We identified
1252 housekeeping genes using this threshold out of
which 1171 were protein-coding genes.
To visualise the distinct number of enhancer tissue-

types calculated for each enhancer-associated gene (Fig.
2f), we generated two binary matrices for SEC and TEC
in 22 tissues. The rows in the matrix represented enhan-
cer associated genes and columns represented different
tissues. A value of “1” or “0” was assigned to the cells in
the matrix depending on if the gene was identified to be
associated with the enhancer of that tissue or not re-
spectively. The heatmaps in Fig. 2f were first sorted on
the number of enhancer tissue-types and then sorted by
the order of tissues across the columns.

GO, mammalian phenotype and disease enrichment
analysis
To investigate the molecular functions and biological
processes linked with enhancer associated genes, we
combined the SE and TE associated genes across the 22
tissues to make two unique lists. This resulted in 3617
genes to be only associated with SEs and 11,437 genes to
be only associated with TEs. These gene sets were then
used for GO enrichment analysis using ToppGene suite
[76] (Additional file 7). The enrichment of mammalian
phenotypes and human diseases was calculated
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individually in each tissue using the ToppFun tool in
ToppGene suite. The enrichment of housekeeping genes
among SEC and TEC was calculated using Fisher’s exact
test. For background, total number of protein coding
genes in our annotation set was used. SEC is signifi-
cantly depleted for housekeeping genes (155/3617; p =
0.012, OR = 0.82) while TEC is enriched (686/11,437;
p = 2.7 × 10− 11, OR = 1.49).

Mouse gene knockout data
The mouse phenotyping data of enhancer associated
gene knockouts was extracted from IMPC (International
Mouse Phenotyping Consortium). All the statistically
significant genotype-phenotype associations and their
phenotyping data in IMPC release version 5.0 were used.
This version compromised of phenotype data for 3323
gene knockouts, with 2900 genes significantly associated
with at least one phenotype attribute (p < 10− 4). To
quantify the severity of phenotypes, we used the percent-
age change value from each procedure. The percentage
change is normalised effect size, which is scaled to make
it comparable across various procedures and parameters
[77]. The percentage change between SE and TE associ-
ated genes was compared for several standardised
phenotyping procedures. The phenotype procedure pro-
tocols are described in IMPReSS (https://www.mouse-
phenotype.org/impress). All the parameters within a
procedure were grouped together for this analysis. For
computing the enrichment of mouse essential genes in
SEC and TEC, genes producing a lethal homozygous
knockout (960 genes out of 2900) were used.

GTEx expression quantitative trait loci
The official set of GTEx v8 significant variant-gene asso-
ciations based on permutations and conditionally inde-
pendent eQTLs mapped using stepwise regression were
used for the analysis. For each gene in SEC and TEC, we
extracted and counted the total number of eQTL associ-
ations. This analysis was performed in the following
tissues: cerebellum, cortex, heart, liver, lung, small intes-
tine, spleen and testis.

Known gene-phenotype associations
All the gene-phenotype associations in mouse were
extracted from MGD. The Mouse Phenotypic Alleles
report (MGI_PhenotypicAllele.rpt) was collected from
MGD on 14th June 2017.

Protein-protein interaction maps
The predicted protein-protein interactions among the
genes of interest were extracted from the STRING data-
base [58] using the R package STRINGdb. A score
threshold of 900 was implemented to extract potential
interactions with the highest confidence and reduce

false-positives. These interaction maps were visualised as
networks using the iGraph package in R. The known
gene-phenotype associations (from MGD) in the net-
work were labelled as “known” while the remaining
genes were marked as “novel”. A permutation test was
performed to identify if the observed number of interac-
tions between known and novel genes are more than
what we would expect by random (Additional file 1: Fig-
ure S14). We added randomly selected protein-coding
genes equal to the number of genes known to be associ-
ated with phenotypes in the network and extracted their
interactions from STRING. The number of interactions
(edges) between randomly added genes and known
phenotype genes were then counted. This was repeated
1000 times to produce a distribution of expected num-
ber of edges and the p-value was calculated as p ¼ y=N ,
where y is number of permuted random-known edges
greater than the observed novel-known edges and N is
the total number of items in our distribution (i.e. 1001).

Cistrome data
For the analysis of transcription factor binding sites
colocalised with different enhancer sets, we used a cell
type independent cistrome, the general genomic map of
regions bound by particular TFs in any cell type [78].
The cistrome is based on uniformly reprocessed ChIP-
Seq data from the GTRD database [79] across all the cell
types and conditions. The cistrome regions are classified
into four reproducibility categories (A,B,C,D): A - re-
gions supported by ChIP-Seq data from two different ex-
perimental data sets (at least one was accompanied by
control data) and different ChIP-Seq peak calling tools;
B - regions supported by peak calls from two different
experimental data sets (at least one was accompanied by
control data); C - regions supported by peak calls from a
single experimental data set with control data and differ-
ent peak calling tools; D - all other reproducible regions
(supported by more than one peak). A and B categories
were taken into the analysis by default. For TFs with a
limited number of ChIP-Seq data sets, we added regions
from C and D categories when it was necessary to get at
least 100 peaks. As an additional filter for cistrome, we
used TF binding motifs from HOCOMOCO to annotate
motif occurrences in cistrome regions with SPRY-
SARUS [80] using the default motif p-value threshold of
5 × 10−4 [81] and then discarded cistrome segments
without motif occurrences.

Enrichment of TFBS in SEs and TEs
To calculate the enrichment of TF binding within SE
and TE constituents, we first merged the neighbouring
constituent enhancers within 400 bp into prolonged
extended enhancer segments in each tissue. These
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extended enhancer segments were then used to generate
the control regions; more precisely, for each enhancer
segment of length L, we located two segments (enhancer
shades) of length L, one at 100 L upstream and the other
at 100 L downstream. This produced a set of control
segments of the same lengths and similar global genomic
context as the enhancer segment under study. We
checked if any control segments overlapped other con-
stituent enhancers, but such cases contributed only 1–
2% of the total number of control regions and were
safely ignored. The extended enhancer segments and
control regions were then intersected with the cistrome
peaks of each TF and split into two groups; overlapping
(if least 1 bp overlapped) and non-overlapping with the
cistrome. The Fisher’s exact test on 2 × 2 contingency ta-
bles was used to assess the statistical significance of TF
cistrome peaks overlapping constituent enhancers (SE or
TE) versus control regions (Additional file 8). The
resulting p-values were corrected for multiple testing
using Bonferroni correction. Note that the cistrome seg-
ments of a TF could significantly colocalise with en-
hancers in several different cell types, therefore, we
counted the number of significant enrichments as TF-
tissue pairs. We also performed the analysis with only
the cistrome segments that contain high scoring motif
hits from HOCOMOCO. The results were very similar
to the analysis where all cistrome segments were consid-
ered; about 10% of TFs did not have known binding mo-
tifs, and for TFs with known motifs, about 90% of
significant TF-tissue pairs were independent from
whether the motifs were considered or not (Additional
file 8).

TFBS density analysis
To calculate the TFBS density of each TF, we intersected
each enhancer element with the TF cistrome peaks.
Within these overlapping regions, we predicted the bind-
ing motif occurrences of the corresponding TF using
HOCOMOCO-v11 motifs. In cases where HOCO-
MOCO contained multiple motif models for a single TF,
all motifs were used and the binding sites exceeding the
cistrome p-value threshold of 0.0005 were retained.
Density was calculated as the total genomic coverage of
motifs (in bp) divided by the total coverage of enhancer-
cistrome intersection (in bp). We calculated densities for
only those enhancers (constituent enhancers of SEs or
TEs) which had at least one motif occurrence in its
intersection with the cistrome. The Wilcoxon Rank Sum
Test was then used to compare the TFBS densities of
TF-tissue pairs in SEs and TEs (each TF-tissue pair was
compared individually between SEs and TEs). The non-
corrected p-values were used to order the TF-tissue
pairs by their level of TFBS density disparity between
SEs and TEs. The TF-tissue pairs were grouped into bins

based on their p-value and the number of TF-tissue
cases where its TFBS density was more in SEs compared
to TEs, or vice versa, were counted (Additional file 1:
Figure S15b).

Predicting gene-phenotype associations
To predict mammalian gene-phenotype associations, fea-
tures were extracted from TSREs, expression, transcrip-
tion factor binding and PPI data for all protein-coding
genes. From the TSRE profiles across 22 tissues, strong-
enhancers and active promoters associated with each
protein-coding gene were extracted. A score represent-
ing the tissue-specific enhancers and promoters in each

tissue was computed as Sgt ¼
PN

i¼1
ðPÞ , where Sgt is the

score of gene g in tissue t; N is the total number of
strong enhancer or active promoter elements associated
with gene g in tissue t; and Pi is the posterior probability
of the associated strong enhancer or active promoter
element emitted by the ChromHMM model. The RPKM
values for each gene, quantified using ENCODE’s RNA-
Seq data in 22 tissues were used as a feature for expres-
sion data. For TF binding associated with each gene, we
first we selected all cistrome regions overlapping − 500
bp and + 100 bp of TSS (for each gene, we considered all
transcripts from gencode vM15). Then, we calculated
the -log10(p-value) of HOCOMOCO motif hits within
these cistrome regions (aggregating over all motifs if
there were multiple models for a particular TFBS). The
respective values for each TF were taken as the TFBS
features. The final set of the TFBS features covered all
TFs for which we had the ChIP-Seq cistrome peaks and
a binding motif model (n = 297). For PPIs, all the protein
interactions in mouse were collected from STRING
database version 10.5. For a gene g, its PPI connectivity
with all strong enhancer and active promoter associated

genes in tissue t was calculated as PPIgt ¼
PN

i¼1
ðIÞ , where

N is the total number of enhancer or promoter associ-
ated genes in tissue t and Ii is the combined interaction
score between gene g and ith gene. Similarly for each
gene, its PPI connectivity with all genes known to be as-
sociated with the phenotype domain to be predicted was

computed as PPIg − phen ¼
PM

i¼1
ðIÞ , where I is the inter-

action score and M is the total number of known pheno-
type associated genes from MGD.
The random forest classifier was implemented in R

using randomForest and caret package [82]. We sought
to predict gene-phenotype associations from 13 different
phenotypes relevant to at least one tissue type in our
dataset. The known gene-phenotype associations from
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MGD (top level MP annotations) served as true-
positives for the classifier models. The random forest
classifier was trained on a subset of genes (using default
parameters), where features described above were used
as predictor variables and phenotype calls from MGD as
the response variable. This model was used to predict
gene-phenotype associations in the remaining set of
genes not used in the training of the model. The pre-
Process function in caret was used to centre and scale
all the gene features. Down-sampling was employed on
the training data to avoid the impact of class imbalance
on model fitting. Model optimisation across these pa-
rameters was performed using k-fold cross validation
technique, to choose the model with the best ROC
(parameters used: method = “repeatedcv”, number = 5,
repeats = 5, metric = “ROC”). In order to compare the
predictive capability of various gene features, 10 different
models with different gene feature combinations were
built for each phenotype domain (130 models in total).
Each of these classifier was assessed by generating ROC
and PR curves based on 5-fold cross validation repeated
10 times. The cross validation results were then averaged
for comparison and reporting purposes. The top false
positives hits (prediction probability ≥0.90) were exam-
ined using the Open Target Platform and the DisGeNET
discovery platform to validate the novel predictions. Pre-
dictions from only those phenotype domains were inves-
tigated which had a corresponding disease class in Open
Targets and DisGeNET platform. As a result, predictions
from 12 phenotypes were examined with Open Targets
platform and predictions from 9 phenotypes were
examined with DisGeNET (see Additional file 10).
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