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Differential network analysis of bovine
muscle reveals changes in gene
coexpression patterns in response to
changes in maternal nutrition
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Abstract

Background: Coexpression network analysis is a powerful tool to reveal transcriptional regulatory mechanisms,
identify transcription factors, and discover gene functions. It can also be used to investigate changes in
coexpression patterns in response to environmental insults or changes in experimental conditions. Maternal
nutrition is considered a major intrauterine regulator of fetal developmental programming. The objective of this
study was to investigate structural changes in gene coexpression networks in the muscle of bull beef calves
gestated under diets with or without methionine supplementation. Both muscle transcriptome and methylome
were evaluated using next generation sequencing.

Results: Maternal methionine supplementation significantly perturbed coexpression patterns in the offspring’s
muscle. Indeed, we found that neither the connection strength nor the connectivity pattern of six modules
(subnetworks) detected in the control diet were preserved in the methionine-rich diet. Functional characterization
revealed that some of the unpreserved modules are implicated in myogenesis, adipogenesis, fibrogenesis, canonical
Wnt/β-catenin pathway, ribosome structure, rRNA binding and processing, mitochondrial activities, ATP synthesis
and NAD(P) H oxidoreductases, among other functions. The bisulfite sequencing analysis showed that nearly 2% of
all evaluated cytosines were differentially methylated between maternal diets. Interestingly, there were significant
differences in the levels of gene body DNA methylation between preserved and unpreserved modules.
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Conclusions: Overall, our findings provide evidence that maternal nutrition can significantly alter gene
coexpression patterns in the offspring, and some of these perturbations are mediated by changes in DNA
methylation.
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Background
Transcriptome analysis is an essential tool to uncover
the molecular basis of phenotypic variation. The advent
of RNA sequencing has dramatically improved the
characterization and quantification of transcriptomes
[1]. The most common use of RNA sequencing is the
identification of differentially expressed genes, that is,
genes that show differences in expression between con-
ditions. However, genes and gene products do not usu-
ally work in isolation, but they are connected in complex
networks. There is increasing interest in moving beyond
differential expression and examine transcriptional pro-
files in the context of molecular networks [2]. It is well-
accepted that genes that are controlled by the same set
of transcription factors or are involved in the same bio-
logical processes tend to have similar expression profiles
[3]. This principle is known as guilt-by-association and
represents the basis for the reconstruction of gene net-
works using RNA sequencing data. These networks,
commonly called gene coexpression networks, are undir-
ected graphs where nodes correspond to genes and
edges represent pairwise expression similarities.
Gene coexpression networks can be used for different

purposes. One popular application consists in the
characterization of the topology of the reconstructed
network and examination of interesting nodes and coex-
pression structures. This single network analysis focuses
on the mechanisms allowing the identification of tran-
scription factors (hub genes), the functional annotation
of unknown genes, i.e., the association of genes of un-
known function with well-described biological processes,
and the detection of transcriptional regulatory programs
[4]. Another application consists of evaluating gene
coexpression networks but across conditions. Here, the
term condition is very broad and can refer to different
tissues, different developmental stages, or even different
treatments. This application, commonly known as differ-
ential network analysis, focuses on determining changes
in the topology of the networks across conditions. For
instance, it is possible to examine whether connec-
tions or subnetworks defined under normal conditions
(control group) are reproducible and preserved in the
testing group (treatment group) [5]. In this scenario,
differences in the topology of these two networks
would indicate that coexpression patterns were signifi-
cantly perturbed by the treatment. Note that

expression similarities (coexpression) hint common
regulatory mechanisms (coregulation), and hence,
changes in the network might indicate that the treat-
ment has disrupted coregulation mechanisms, func-
tional links and biological processes. Undoubtedly,
this shift in focus from differentially expressed genes
to differentially connected genes provides more holis-
tic insights about gene regulation.
It is well-documented that different intrauterine in-

sults can induce permanent changes to the structure,
physiology, and metabolism of the offspring. This
phenomenon has been termed fetal programming and
may have lasting or lifelong consequences [6]. Maternal
nutrition is considered a major intrauterine environmen-
tal factor and it is now known that maternal nutritional
status during pregnancy can induce remarkable effects
on fetal development [7]. There is growing evidence that
maternal nutrition can alter epigenetic marks of the fetal
genome, such as DNA methylation [8]. Indeed, this link
between maternal nutrition and subsequent modification
of fetal epigenome, including changes in gene expres-
sion, is one of the molecular mechanisms proposed to
explain the phenomenon of fetal programming [9].
The main objective of this study was to assess whether

maternal nutrition in beef cattle can disrupt gene coex-
pression patterns in the offspring. Maternal nutritional
treatments consisted of control or methionine-rich diets
offered during periconceptional and early gestation pe-
riods. Both muscle transcriptome and methylome of bull
beef calves were evaluated using next generation sequen-
cing. Note that DNA methylation depends on the avail-
ability of methyl donors, such as methionine, and hence,
we hypothesized that maternal methionine supplementa-
tion could alter the fetal epigenome, which in turn could
induce significant changes in the topology of gene
networks.

Results
RNA-sequencing analysis
The RNA-sequencing of the muscle transcriptome
yielded about 50 million paired-end reads per sample.
Roughly 87% of the reads were mapped to the ARS-
UCD1.2 bovine genome assembly using the software
Hisat2 (see Additional File 1). After removing highly
abundant genes (such as myosins, tropomyosins, and
troponins) and lowly expressed genes (genes with 5 or
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less read counts in at least 9 biological replicates), a total
of 12,786 genes were retained for the network analysis.

Network construction and module identification
We first characterized the muscle transcriptome under
normal conditions. As such, the inference of the gene
coexpression network and subsequent module identifica-
tion was performed using only samples derived from the
maternal control diet. A total of 7034 genes with high
across-sample expression variance were included in this
network analysis. A soft-threshold equal to 24 was derived
from the high scale-free fitting index (R2 ≥ 0.8; Fig. 1a),
resulting in a mean connectivity equal to 31.45 (Fig. 1b). A
total of 147 preliminary modules were detected using a
dynamic tree cut process, and after merging highly corre-
lated modules (Pearson’s correlation ≥ 0.8; Fig. 1c), a total
of 14 modules, including the background set (grey mod-
ule) were retained for subsequent analysis (Fig. 2a).

Module preservation
After we characterized the muscle transcriptome in the
control diet, we investigated the impact of the nutri-
tional treatment (maternal methionine supplementation)
on gene coexpression patterns. As such, we compared
the structure of coexpression networks between control
and methionine diets to identify changes in the topology
(Fig. 2b). These changes were evaluated using a

permutation test with 2000 iterations. Twelve module
preservation statistics were calculated for each of the 14
modules previously identified in the control diet (see
Additional File 2). A total of six modules were consid-
ered as unpreserved (Zsummary ≤ 2), five modules were
considered as preserved with weak to moderate evidence
of preservation (2 < Zsummary ≤ 10), and finally two mod-
ules showed strong evidence of preservation (Zsummary >
10) (Fig. 3). Overall, the six unpreserved modules were
considered as gene coexpression modules or subnet-
works that were significantly perturbed by the maternal
methionine diet.

Module characterization
The six unpreserved modules were further investigated to
reveal their functional roles and gain insights about the bio-
logical processes that were impacted by maternal methio-
nine supplementation. This functional characterization was
performed using a Fisher’s exact test, a hypergeometric-
based overrepresentation test commonly used to evaluate 2
× 2 contingency tables. Six different biological databases
were evaluated, including Gene Ontology (GO), Kyoto
Encyclopedia of Genes and Genomes (KEGG), Reactome,
InterPro, Medical Subject Headings (MeSH), and Molecular
Signatures Database (MSigDB). Figure 4 shows the func-
tional characterization for antiquewhite2, the most pertur-
bated module. Interestingly, our analysis revealed that

Fig. 1 Network topology for various soft-thresholding powers. a Scale-free topology fitting index (y-axis) as function of the soft-thresholding
power (x-axis). b Mean connectivity (y-axis) as function of the soft-thresholding power (x-axis). c Tree plot of initial module eigengenes (MEs) in
the maternal control diet using soft threshold = 24
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Fig. 2 Gene coexpression networks. a Gene cluster dendrogram in the maternal control diet. A total of 147 preliminary modules were detected using
a dynamic tree cut process, and after merging highly correlated modules (correlation ≥0.8), a total of 14 modules were retained for subsequent
analysis. b Gene cluster dendrogram in the maternal methionine diet. Changes in the structure of gene coexpression networks between maternal
diets were evaluated using a permutation test
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genes in this unpreserved module are closely related to (i)
myogenesis, adipogenesis, and fibrogenesis, (ii) ribosome
structure, (iii) rRNA binding and processing, (iv) mitochon-
drial activities, (v) ATP synthesis, and (vi) NAD(P) H oxido-
reductases. Moreover, genes in the module violet are
implicated in the regulation of canonical Wnt signaling
pathway, a signal transduction pathway that is involved in
different embryonic processes, such as cell fate specifica-
tion, cell proliferation, and cell migration. Additional File 3
reports the full list of significant functional terms, including
term ID, term name, total number of genes in the module,
and Fisher’s P-value.

DNA methylation analysis
Whole-genome bisulfite sequencing produced roughly
350M paired-end reads per sample. The software Bis-
mark was used to map the reads to the ARS-UCD1.2 bo-
vine genome assembly, yielding a 70% mapping rate (see
Additional File 1). A total of 5,136,556 cytosines (CpG
context) were evaluated (read coverage ≥ 8), and 101,094
were identified as differentially methylated between ma-
ternal diets (methylation change ≥ 20%, q-value ≤ 0.10).
Based on the ARS-UCD1.2 annotation file, cytosines
were classified as (i) within a gene (gene body: exons
and introns), (ii) within the regulatory region (5.5 kb

upstream the gene), or (iii) located in an intergenic re-
gion. As results, we targeted a total of 25,491 genes an-
notated in the cow genome that had at least one
evaluated cytosine (either gene body or regulatory re-
gion), and 10,247 of the 25,491 had at least one differen-
tially methylated cytosine. Of interest, a total of 6735 of
the 7034 genes used in the network analysis had methy-
lation data. Additional File 4 reports the DNA methyla-
tion results, including gene ID and number of cytosines
per genomic region. Additional File 5 reports the full list
of differentially methylated cytosines and the corre-
sponding genomic regions.

DNA methylation and module preservation
We investigated if there were significant differences in
DNA methylation between genes in preserved and
unpreserved modules. For each gene, we calculated the
methylation level as differentially methylated cytosines
divided by all the cytosines evaluated. We calculated the
methylation level either for the gene body or the regula-
tory region. Notably, the distribution of methylation
level in the gene body was significantly different in genes
located in unpreserved modules (n = 1146) compared to
genes in preserved modules (n = 5589) (Kolmogorov-
Smirnov test, P-value ≤ 0.01, Fig. 5). We observed the

Fig. 3 Permutation-based composite preservation statistics. a Summary statistics Zsummary (y-axis) as function of module size (number of genes).
Non-preserved modules, i.e. subnetworks significantly perturbed by maternal nutrition, were identified using Zsummary≤ 2. b Summary statistics
medianRank (y-axis) as function of module size (number of genes). High median rank values suggest strong evidence of perturbation
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same result if only transcription factors are considered.
On the other hand, there was no difference in the distri-
bution of methylation level in the regulatory region be-
tween preserved or unpreserved modules, neither for all
genes nor for only transcription factors.

DNA methylation and network properties
We also investigated the relationship between DNA
methylation and three different gene network properties,
namely differential coexpression score, module member-
ship, and intramodular connectivity. Interestingly, for
those genes located in preserved modules, we found a
negative relationship between methylation level and
intramodular connectivity, considering either the gene
body (regression coefficient β = −0.23, P-value = 0.009,
Fig. 6) or the regulatory region (regression coefficient β
= −0.10, P-value = 0.013, Fig. 6). Contrary, there was no
relationship (P-value > 0.05) between methylation level
and intramodular connectivity for genes in unpreserved
modules. Moreover, a significant negative relationship
was found between methylation level in the regulatory
region and module membership (regression coefficient β
= −0.02, P-value = 0.048), but again only for genes in
preserved modules. Additional File 6 reports methylation
levels and network properties for all the genes evaluated.

Discussion
Global coexpression network analysis provides a power-
ful approach to uncover the molecular basis of pheno-
typic variation. Gene coexpression networks are typically
used to infer and annotate gene functions, prioritize can-
didate regulatory genes, and reveal transcriptional regu-
latory mechanisms. Lately, there has been greater
emphasis on the use of network analysis to elucidate the
changes in gene expression patterns in response to
changes in experimental conditions or environmental in-
sults. The present study was specially designed to reveal
structural changes in gene coexpression networks due to
a maternal methionine-rich diet. Maternal nutrition rep-
resents a major intrauterine environmental insult that
can induce permanent changes in the offspring. Here,
we evaluated gene coexpression networks in the muscle
of bull beef calves gestated under a control or
methionine-rich diet, we functionally characterized the
subnetworks altered by maternal methionine supple-
mentation, and we investigated the link between net-
work perturbation and DNA methylation. Our results
provide evidence that maternal nutrition can signifi-
cantly perturb gene coexpression patterns in the off-
spring, and some of these changes might be mediated by
alterations in DNA methylation.

Fig. 4 Functional characterization of non-preserved modules. Six gene annotation databases were analyzed: Gene Ontology (GO), Kyoto
Encyclopedia of Genes and Genomes (KEGG), Medical Subject Headings (MeSH), InterPro, Reactome and Molecular Signatures Database (MSigDB).
The y-axis displays the term ID and the total number of genes in each functional term. The black dots represent the significance of enrichment
(Fisher’s exact test, −log10 P-value, top x-axis) and the bars represent the percentage of significant genes in each functional term (bottom x-axis)
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Maternal methionine supplementation significantly
disturbed gene coexpression patterns in the offspring’s
muscle. In fact, following the methodology proposed by
Langfelder and collaborators [5], we identified six mod-
ules or subnetworks that significantly changed between
experimental conditions. This permutation-based
method basically evaluates if the two most important as-
pects of module topology, namely density and connectiv-
ity, are preserved between a reference condition and a
test condition. Here, we found that neither the connec-
tion strength nor the connectivity pattern of these six
subnetworks detected in the control diet were preserved
in the methionine-rich diet. There is growing evidence
that certain intrauterine insults impact gene coexpres-
sion patterns, which in turn may alter fetal development
programming. For instance, Deyssenroth et al. [10] re-
ported that alterations in gene coexpression networks in
human placenta are associated with abnormal fetal
growth and development. Lombardo et al. [11] showed
that maternal immune activation via infection during
pregnancy disrupts fetal brain gene coexpression net-
works, and this disruption is associated with an in-
creased risk for autism spectrum disorder. Recently, we
reported that exposure to gossypol in utero and during
lactation altered the development and gene expression

of the testicles, including a significant perturbation of
coexpression patterns among spermatogenesis-related
genes [12]. Overall, our findings provide further evidence
that intrauterine insults, such as diet, not only can
change gene expression but also alter coexpression pat-
terns, which in turn suggests alterations in coexpression
mechanisms.
The functional characterization revealed that some of

the unpreserved modules are directly implicated in myo-
genesis, adipogenesis, and fibrogenesis. Notably, it is
well-documented that maternal nutrition alters fetal
skeletal muscle development by interfering with these
three important processes [13]. For instance, Zhu and
collaborators have shown that nutrient deficiency in ru-
minants from early to mid-gestation negatively impacts
myogenesis, reducing muscle fiber number and also
muscle mass [14, 15]. In addition, Tong and collabora-
tors have reported that maternal overnutrition enhances
adipogenesis in fetal skeletal muscle [16, 17]. Similarly,
Du et al. [13] reported that maternal undernutrition with
supplementation of ruminal bypass protein from day 60
to day 180 of gestation significantly affect adipogenesis,
changing marbling scores of steer progeny. Moreover,
pigs with reduced birth weight due to malnutrition in
utero have greater content of collagen in their skeletal

Fig. 5 Comparison of methylation levels between preserved and unpreserved modules. Methylation level was calculated as differentially
methylated cytosines divided by all the cytosines evaluated. For each gene, including transcription factors, methylation level was evaluated in the
regulatory region (transcription start site, promoter and upstream region) and also inside the gene body (exons and introns). The distribution of
methylation level in the gene body was different in genes located in unpreserved modules compared to genes in preserved modules
(Kolmogorov-Smirnov test, P-value ≤ 0.01)
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muscle [18]. Note that myogenesis, adipogenesis and
fibrogenesis are vital aspects of muscle physiology, dir-
ectly impacting lean muscle mass, marbling and also col-
lagen content, and hence, any disturbances in these
processes may have long-term consequences, impacting
muscle growth and meat quality.
We also found unpreserved subnetworks related to

regulation of canonical Wnt/β-catenin pathway. By act-
ing through autocrine and/or paracrine mechanisms, the
Wnt family of secreted glycoproteins affects different as-
pects of cell physiology, such as cell proliferation, cell
differentiation or maintenance of precursor cells [19,
20]. Interestingly, in skeletal muscle, β-catenin regulates
the expression of two transcription factor, namely PAX3
and GLI, which are essential for skeletal myogenesis [21,
22]. Indeed, some studies have shown that blocking the
β-catenin pathway reduces the total number of myocytes
[23, 24]. Shang and colleagues showed that the upregula-
tion of Wnt signaling promotes myogenesis, whereas
downregulation of this pathway promotes adipogenesis
[25]. Moreover, we identified terms related to basic cell
structures/functions, including ribosome structure,
rRNA binding and processing, mitochondrial activities,
ATP synthesis and NAD(P) H oxidoreductases. Notably,

previous studies have shown that these cell activities can
be affected by maternal nutrient restrictions. For in-
stance, Peñagaricano et al. [26] reported that maternal
diets significantly impact functional terms closely related
to ribosome in fetal muscle. Moreover, Mayeur et al.
[27] found that maternal undernutrition induces placen-
tal mitochondrial abnormalities and reduced ATP level
in mice offspring. Similarly, Zhu et al. [14] found that
maternal nutrient restriction can induce downregulation
of key enzymes involved in mitochondrial function in
offspring’s muscle.
The exact mechanisms by which maternal diet can

affect gene coexpression patterns in the offspring are not
yet known. Here, we examined the hypothesis that
changes in DNA methylation cause changes in the top-
ology of gene networks. Nearly 2% of all the evaluated
cytosines in a CpG context were found to be differen-
tially methylated between maternal diets. Notably, we
found significant differences in the level of gene body
methylation between genes in preserved modules versus
genes in unpreserved modules. The same trend was ob-
served when only transcription factors were considered.
Despite the function of DNA methylation in regulatory
regions is well-known, the role of DNA methylation

Fig. 6 Relationship between methylation level and intramodular connectivity. Methylation level was calculated as differentially methylated
cytosines divided by all the cytosines evaluated. For each gene, methylation level was evaluated in the regulatory region (transcription start site,
promoter and upstream region) and also inside the gene body (exons and introns). Regressions in preserved modules (red) were significant (P-
value ≤ 0.05)
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within the gene is not yet well understood. Some studies
have suggested that DNA methylation in gene body
might be involved in the regulation of alternative spli-
cing [28, 29]. Of special interest, Saha et al. [30] reported
that the regulation of alternative splicing is coordinated
across functionally related genes. Therefore, changes in
DNA methylation might cause changes in isoform ex-
pression, which in turn can alter gene coexpression pat-
terns. Moreover, changes in DNA methylation also
altered subnetwork properties. Indeed, in preserved
modules, there was a clear negative relationship between
methylation level and intramodular connectivity, i.e.,
more methylation, less connectivity, that is, less gene ac-
tivity. Notably, this functional relationship completely
disappeared in unpreserved modules. Overall, our find-
ings suggest that maternal methionine supplementation
may induce changes in the offspring epigenome, such as
changes in DNA methylation, which in turn alter coex-
pression patterns and gene network properties.

Conclusions
Our study has shown that maternal nutrition levels dur-
ing preconception and early pregnancy can significantly
impact gene coexpression patterns in the offspring.
Some of the perturbed gene functions are directly impli-
cated in the development of skeletal muscle, such as
myogenesis, adipogenesis, and Wnt/β-catenin pathway.
Notably, some of the changes in gene coexpression pat-
terns are associated with changes in DNA methylation.
To the best of our knowledge, this is the first study that
investigates the link between maternal nutrition, DNA
methylation and gene coexpression networks. Our find-
ings suggest that maternal nutrition perturbs gene coex-
pression patterns, and these alterations are in part
mediated by changes in the epigenome.

Methods
Ethics statement
All the animal procedures used in this study were ap-
proved by the Institutional Animal Care and Use Com-
mittee (IACUC #2014408583) of the University of
Florida. All experiments were performed in accordance
with relevant guidelines and regulations.

Animals and experimental design
Brangus-Angus crossbred beef cows from the University
of Florida Range Cattle Research and Education Center
(Ona, Florida, US) were assigned to one of two nutri-
tional treatments from days − 30 to + 90 relative to the
beginning of the breeding season. These treatments con-
sisted of a control diet based on limpograss hay (Hemar-
thria altissima) supplemented with molasses and urea
(22% crude protein, 1.7 kg per head per day) and a
methionine-rich diet equal to the control diet but

supplemented with 10 g per head per day of MetaSmart
Liquid (Adisseo, Alpharetta, GA) providing 3.7 g per
head per day of rumen-protected methionine. Longissi-
mus dorsi muscle samples were collected from 20 bull
calves, 10 per maternal diet, at 1 month of age. After
sampling, the bull calves were released. Maternal diets
did not affect birth or weaning weight, but altered post
weaning calf growth performance, calves derived from
the methionine-rich diet had greater average daily gain
(0.985 kg vs 0.810, P-value = 0.043) and also greater
gain-to-feed ratio (0.191 vs 0.159, P-value = 0.025) post
weaning.

RNA extraction, library preparation and sequencing
Total RNA was extracted using Qiagen RNeasy Mini kit.
RNA yield and quality were evaluated using the Agilent
2100 Bioanalyzer (Agilent Technologies, Inc.). RNA-
sequencing libraries were prepared from 50 ng RNA
samples using a poly(A) capture method and then se-
quenced using Illumina’s HiSeq 3000 at the University
of Florida. A total of 19 muscle samples from 19 bull
calves derived from 9 control and 10 methionine-rich
maternal diets were successfully processed and se-
quenced, and hence used for subsequent RNA-
sequencing analyses. RNA-sequencing data can be
accessed by NCBI GEO with the accession number
GSE116974.

RNA-seq quality control and mapping
The quality of the sequencing reads was evaluated using
the software FastQC (v0.11.7, Babraham Bioinformatics,
UK). Adaptor removal and trimming were conducted
with Trim Galore (version 0.4.4, Babraham Bioinformat-
ics, UK) using the following parameters: --paired, −-clip_
R1 10, −-clip_R2 10, −-three_prime_clip_R1 10, −-three_
prime_clip_R2 10, and --length 20. The resulting paired-
end sequencing reads were mapped to the latest bovine
reference genome (ARS-UCD1.2) using the software
Hisat2 (v2.1.0) [31].

Read counting, processing and normalization
Number of reads that mapped to each annotated gene
in the bovine GTF file was obtained using the python
script htseq-count (v0.6.1p1) using the option intersec-
tion-nonempty [32]. Both highly abundant genes (n =
25 genes, such as myosins, tropomyosins, and tropo-
nins) and lowly expressed genes (read counts ≤ 5 in
at least 9 biological replicates) were removed from
the raw expression data and not included in subse-
quent analyses. After data processing, read counts
were normalized using the trimmed mean of M-
values (TMM) normalization method available in the
R package edgeR (v3.14) [33].
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Gene coexpression network construction
Genes with high expression variance across samples (top
50%) were used for network modeling. The R package
WGCNA (v1.69) was used for network construction [34,
35]. First, an unsigned adjacency matrix was constructed
based on pairwise Pearson correlation coefficients using
the function adjacency. This adjacency matrix was then
remodeled as Topological Overlap Matrix (TOM) using
the function TOMsimilarity. The TOM-based dissimilar-
ity matrix, simply defined as dissTOM = (1 – TOM), was
used as pairwise distance matrix for hierarchical cluster-
ing. Note that genes in the same cluster share strong in-
terconnections, and they might define modules or
subnetworks. Module detection was performed by
cutting the branches of the clustering dendrogram
using the function cutreeDynamic. Genes that could
not be assigned to any module were considered as
background genes (grey module) and were not in-
cluded in subsequent module preservation analyses.
For each module, the variable module eigengene (ME)
was calculated as the first principal component of the
module expression data. Modules detected in the dy-
namic cutting process were merged if their eigengene
values were highly correlated (Pearson correlation ≥
0.8). The module membership was calculated using
the function signedKME, where the expression profile
of each gene was correlated with the module eigen-
gene in order to quantify how connected a gene was
to a given module.

Module preservation
The function modulePreservation implemented in the
R package WGCNA was used to evaluate the preser-
vation of each module (subnetwork) across conditions,
i.e. between maternal control and maternal
methionine-rich diets. A total of 12 different module
preservation statistics were investigated using a per-
mutation test with 2000 resamples. These 12 different
preservation statistics were combined in two compos-
ite preservation significance scores, namely Zdensity

and Zconnectivity. Finally, Zsummary was computed as the
mean of Zdensity and Zconnectivity, representing the gen-
eral preservation status of a given module across the
two experimental conditions [5]. In addition, an alter-
native module-size-independent statistic medianRank
was also calculated to assess module preservation.
This rank-based statistic is defined as the mean of
observed median ranks for individual connectivity and
density preservation statistics in each module, and
thus modules with low median rank values are con-
sidered as preserved between conditions/treatments.
Finally, following Langfelder and colleagues, an unpre-
served module was defined as a module with

Zsummary≤ 2 and medianRank greater than half of the
total number of the modules detected [5].

Module characterization
The functional characterization of the unpreserved
modules was performed using a Fisher’s exact test, a
test of proportions based on the cumulative hypergeo-
metric distribution. Genes within each unpreserved
module were scrutinized using six different databases,
including Gene Ontology (GO) [36], KEGG [37], Inter-
pro [38], Reactome [39], Medical Subject Headings
(MeSH) [40] and Molecular Signatures Database
(MSigDB) [41]. This over-representation analysis, i.e.,
evaluate whether a given biological pathway, molecu-
lar function or functional term is enriched or over-
represented with genes in the unpreserved module,
was performed using the R package EnrichKit
(https://github.com/liulihe954/EnrichKit).

DNA extraction, library preparation and sequencing
Total DNA was extracted from muscle samples for
whole-genome bisulfite sequencing analysis. Extraction,
library construction, bisulfite treatment and sequencing
were performed by Novogene Bioinformatics Technol-
ogy Co., Ltd. (Beijing, China). Libraries were sequenced
with Illumina’s HiSeq 3000 using 150-bp paired-end
reads. A total of 16 muscle samples from 16 bull calves
derived from 7 control and 9 methionine-rich maternal
diets were successfully processed and sequenced, and
hence used for subsequent bisulfite-sequencing analyses.
Whole-genome bisulfite sequencing data can be accessed
by NCBI GEO with the accession number GSE117194.

Bisulfite-seq quality control and mapping
The quality of the sequencing reads was evaluated using
the software FastQC (v0.11.7, Babraham Bioinformatics,
UK). Adaptor removal and trimming was performed
when needed using the software Trim Galore (v0.4.4,
Babraham Bioinformatics, UK). After quality control and
processing, the resulting paired-end sequencing reads
were aligned to ARS-UCD1.2 bovine reference genome
using the software Bismark (v0.17.0, Babraham Bioinfor-
matics, UK) [42]. The tool deduplicate_bismark was
used to remove duplicate read alignments. Methylation
calls were performed using Bismark methylation ex-
tractor (v0.17.0, Babraham Bioinformatics) using the fol-
lowing parameters: --paired-end, −-comprehensive,
−-bedGraph, and --cytosine_report [42].

Differentially methylated cytosines and genes
Differential methylation between maternal diets was ana-
lyzed using a logistic regression implemented in the R
package Methylkit (v1.0.0) [43]. Only cytosines with read
coverage equal or greater than 8 in a CpG context were

Liu et al. BMC Genomics          (2020) 21:684 Page 10 of 12

https://github.com/liulihe954/EnrichKit


evaluated. Differentially methylated cytosines were de-
fined as those having methylation percentage changes
between treatments greater than 20% and q-values
≤0.10. The software Rgmatch was used to match the cy-
tosines to different gene features, such as transcription
start site, exons, introns, and upstream regions [44]. In
addition, we defined methylation level as the ratio of dif-
ferentially methylated cytosines to all the cytosines eval-
uated in a given region. For each gene, we calculated the
methylation level for the regulatory region (transcription
start site, promoter and upstream region) and also inside
the gene body (exons and introns).
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