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Abstract

Background: Improving sow fertility is extremely important as it can lead to increased reproductive efficiency and
thus profitability for swine producers. There are considerable differences in fertility rates among individual animals,
but the underlying molecular mechanisms remain unclear. In this study, by using different types of RNA libraries,
we investigated the complete transcriptome of ovarian tissue during the luteal (L) and follicular (F) phases of the
estrous cycle in Large White pigs with high (H) and low (L) fecundity, and performed a comprehensive analysis of
long noncoding RNAs (IncRNAs), mRNAs and micro RNAs (miRNAs) from 16 samples by combining RNA
sequencing (RNA-seq) with bioinformatics.

Results: In total, 24,447 IncRNAs, 27,370 mRNAs, and 216 known miRNAs were identified in ovarian tissues. The
genomic features of INcRNAs, such as length distribution and number of exons, were further analyzed. We selected
a threshold of P <0.05 and |log; (fold change)| = 1 to obtain the differentially expressed IncRNAs, miRNAs and
mMRNAs by pairwise comparison (LH vs. LL, FH vs. FL). Bioinformatics analysis of these differentially expressed RNAs
revealed multiple significantly enriched pathways (P < 0.05) that were closely involved in the reproductive process,
such as ovarian steroidogenesis, lysosome, steroid biosynthesis, and the estrogen and GnRH signaling pathways.
Moreover, bioinformatics screening of differentially expressed miRNAs that share common miRNA response
elements (MREs) with IncRNAs and their downstream mRNA targets were performed. Finally, we constructed
INcRNA-miRNA-mMRNA regulation networks. The key genes in these networks were verified by Reverse Transcription
Real-time Quantitative PCR (RT-qRCR), which were consistent with the results from RNA-Seq data.

Conclusions: These results provide further insights into the fertility of pigs andcan contribute to further
experimental investigation of the functions of these genes.
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Background

Sow fertility is one of the most important economic pa-
rameters in the swine industry, and therefore improving
reproduction rate can significantly increase the profit-
ability for swine producers. Candidate genes and quanti-
tative trait loci (QTL) associated with reproductive
traits, such as total number (of piglets) born (TNB), have
been identified in genome-wide association studies
(GWAS) in the past [1-6]. Thus far, 377 quantitative
trait loci (QTL) for reproductive traits were detected, of
which 159 and 129 QTLs for TNB and number born
alive (NBA) have already been identified, respectively
[7]. Although GWAS results provide important informa-
tion regarding specific reproductive traits, revealing the
complex regulatory mechanism of reproductive perform-
ance is still a challenging task. Therefore, the underlying
mechanisms of fertility differences in sows are the sub-
ject of constant research.

The mammalian genome encodes a high percentage of
noncoding transcripts [8]. Two major subsets of noncod-
ing RNAs (ncRNAs) have been identified by high-
throughput sequencing: long noncoding RNAs
(IncRNAs) and microRNAs (miRNAs) [9]. IncRNAs are
a group of regulatory RNAs that are longer than 200 nu-
cleotides and were recently identified in various tissues
of human and pigs [10-13]. On the other hand, miRNAs
are an abundant class of short (18—24 nucleotides) and
highly conserved sequences of endogenous RNAs, which
have been extensively studied in many species [14]. Pre-
vious studies have prospectively confirmed that ncRNAs
(miRNAs and IncRNAs) were considered as crucial
players in both humans and animals, and affect various
biological functions [12, 15-17]. Moreover, there is sub-
stantial evidence supporting that IncRNAs, acting as
competing endogenous RNAs (ceRNAs), contribute to
the regulation of cardiac fibrosis [18], muscle differenti-
ation [19] and tumorigenesis [20, 21]. According to the
hypothesis ofceRNAs [22], Miao et al. (2016) con-
structed a miRNA-IncRNA-mRNA,which provided a
new insight into understanding sheep fertility [23].

The ovary is the most important reproductive organ of
sows and is responsible for synthesizing and secreting
hormones, which are essential for the maintenance of
the normal reproductive cycles and hormone levels.
Ovarian folliculogenesis, ovulation and formation and
regression of the corpus luteum occur in the ovary,
which repeatedly take place over the reproductive life
[24] and regulate reproduction in mammals [25]. Previ-
ous reports have shown that miRNAs are involved in
ovarian processes [24] and regulate fertility [25, 26]. In
addition, IncRNAs represent another category of func-
tional RNA molecules. A recent study demonstrated that
IncRNAs also play a significant role in the regulation of
sheep fertility [23]. While several articles have focused
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on the IncRNAs expression profile of pig ovarian tissues
[27, 28], none of these studies have interpreted regula-
tory networks for fertility.

In order to improve our understanding of differences
in reproductive performance, we constructed and se-
quenced two different types of cDNA sequence libraries
(16 RNA libraries and 16 small RNA c¢DNA libraries)
from ovarian tissue during the follicular and luteal
phases of the estrous cycle in Large White pigs with ex-
treme phenotypes (high and low fertility). We aimed to
identify potential regulators (IncRNAs and miRNAs) of
fecundity in pigs. Importantly, data in this study were in-
tegrated in order to reveal novel insights into molecular
mechanisms between the high and low fertility in pigs.

Results

Characterization of the ovary transcriptome and
identification of mMRNA and IncRNAs

To identify key differences associated with reproductive
efficiency in sows with extreme phenotypes, we con-
structed 16 cDNA libraries from ovarian tissues during
the follicular and luteal phases of the estrous cycle. A
total of 1,509,728,794 raw reads were generated from 16
porcine ovary samples. After removing adapter se-
quences and low-quality sequences, 1,500,044,340 clean
reads were retained and used for further analysis. In
each sample, the percentage of clean reads ranged from
99.20 to 99.52% (Additional file 1: Table S1-1). In
addition, most clean reads were aligned to the reference
genome (Sscrofal0.2), accounting for 81.49 to 84.48%
(Table S1-2). A total of 1,122,470 transcripts were as-
sembled by Cuffmerge and Scripture [29]. According to
the characteristics of IncRNAs, we used four tools (CPC,
CNCI, CPAT and PFAM) to discard potential coding
transcripts. In the end, 24,447 IncRNA transcripts were
identified (Additional file 2: Table S2). These included
6392 anti-sense IncRNAs (26.15%) and 18,055 intergenic
IncRNAs (73.85%) (TableS2). In addition, 27,370 mRNAs
were identified by mapping Illumina RNA-seqreads
(Additional file 3: Table S3).

microRNA sequencing and identification

Small RNA sequencing data from ovarian tissue from 16
sows was generated on Illumina HiSeq and provided a
total of 433,792,963 raw reads. After filtering out the
low-quality sequences, including adaptor dimmers and
less than 18 nt, 363,273,750 clean reads were ultimately
achieved. The percentage of clean reads ranged from
74.75 to 88.31% in each small RNA library (Add-
itional file 4: Table S4-1). The length distribution of
clean reads showed that most of the reads were 20-24
nt, and 22 nt was the most abundant length identified.
Such reads accounted for 36.30% of the total sequences
(Additional file 4: Table S4-2). In total, 216 known
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miRNAs (Additional file 5: Table S5—1) and 1724 novel
miRNAs (Additional file 5: Table S5-2) were identified,
while 198 known miRNAs were expressed in all four
groups (Fig. 1).

Genomic features and expression patterns of IncRNAs
Overall, 24,447 IncRNAs and 27,370 mRNAs were de-
tected in the ovaries of all 16 individual sows. In order
to examine the differences in features between IncRNAs
and mRNAs in ovarian tissues, their lengths were com-
pared. The average length of IncRNAs was 2955 bp,
which was longer than that of the mRNAs (Fig. 2a). We
also observed that the number of exons of IncRNAs was
lower than that of the mRNAs, which tend to contain
2.3 exons (Fig. 2b). The ORFs of the IncRNAs were
shorter than those of the mRNAs (Fig. 2c). Lastly, their
expression levels were also compared (Fig. 3); In general,
IncRNAs had lower expression levels.

IncRNAs can act in cis or trans to positively or nega-
tively regulate gene expression; however, cis-acting
IncRNAs are restricted to the chromosome from which
they are transcribed [30]. Several studies also demon-
strated that some IncRNAs have a high correlation with
expression of neighboring gene [30, 31]. To further ex-
plore the relationship between IncRNAs and their neigh-
boring coding genes in ovarian tissues, we searched for
neighboring protein-coding genes (<10k) of all the
identified IncRNAs and analyzed gene pairs formed by
IncRNAs and their neighboring genes. We identified
4044 protein-coding genes: coding gene pairs (873 in di-
vergent) and 1664 IncRNA: coding gene pairs (195 in di-
vergent) (Fig. 4). We observed that the expression
pattern of IncRNAs with their neighboring gene pairs

Fig. 1 Venn diagrams of miRNAs. A total of 198 known miRNAs
were shared in four groups (LH, LL, FH and FL)
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(average Pearson correlation: 0.20) was similar to the
coding gene pairs (average Pearson correlation: 0.28)
and exhibited a significantly higher correlation than ran-
dom coding gene pairs (average Pearson correlation:
0.041, P<0.01) (Fig. 5a). We observed that there was a
relatively low correlation between divergent IncRNAs:
coding gene pairs (average correlation: 0.19) than diver-
gent coding gene pairs (average Pearson correlation:
0.30, P<0.05), and a higher correlation compared with
random coding gene pairs (average Pearson correlation:
0.013, P<0.01) (Fig. 5b). This result indicated that the
correlation between IncRNAs and their neighboring
gene was higher than random coding gene pairs.

Identification of differentially expressed mRNAs, IncRNAs
and miRNAs between the high and low fertility groups
From the expression profiles, differentially expressed
mRNAs, IncRNAs and miRNAs in the ovaries of Large
White pigs were obtained by comparing LH vs. LL and
FH vs. FL (Table 1). A total of 956 (345 up-regulated
and 611 down-regulated) IncRNA transcripts were dif-
ferentially expressed in LH vs. LL (P <0.05), while 415
(247 up-regulated and 168 down-regulated) were differ-
entially expressed in FH vs. FL (P<0.05) (Add-
itional file 6: Table S6—1 and 2). We also identified 457
mRNA transcripts that were differentially expressed be-
tween the LH and LL groups (Table 1) (Additional file 6:
Table S6-3). Among these transcripts, 334 were anno-
tated as known genes. In the FH vs. FL. comparison, we
found that 475 mRNAs were differentially expressed,
while 316 mRNAs were annotated (Additional file 6:
Table S6-4). Analyses of the small RNA sequencing data
showed that 29 and 11 known miRNAs were differen-
tially expressed when comparing LH vs. LL and FH vs.
FL, respectively (Additional file 6: Table S6-5 and 6).

Function enrichment analysis of the IncRNAs

To investigate the function of the differentially expressed
IncRNAs in each comparison, the potential targets of
IncRNAs were predicted in this study. GO analysis re-
vealed that there were 18 and 15 significant GO terms
(corrected P <0.05) in LH vs. LL and FH vs. FL, respect-
ively (Additional file 7: Table S7-1 and 2). We noticed
that three significant GO terms were common in all four
groups: catalytic activity, single-organism metabolic
process and vitamin D metabolic process. The KEGG
analysis indicated that a total of 23 and 14 significant
pathways were found in LH vs. LL and FH vs. FL, re-
spectively (Additional file 7: Table S7-3 and 4). Import-
antly, it was observed that “ovarian steroidogenesis” and
“lysosome” were the specific enrichment pathways in LH
vs. LL, while steroid biosynthesis was the common path-
way in the four comparison groups.
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Fig. 3 Expression levels of INcRNAs and mRNAs in four groups (LH, LL, FH and FL)

Target prediction of miRNAs and construction of miRNA-
mRNA networks

To understand the biological functions of differentially
expressed miRNAs on fertility, we predicted the poten-
tial target genes of these miRNAs in two comparisons.
We found that there were 13,458 putative target sites for
122 miRNAs in LH vs. LL and 4466 target sites for 46
miRNAs in FH vs. FL (Additional file 8: Table S8—1 and
2). Furthermore, GO and pathway enrichment analyses
were performed. GO analysis of the target genes revealed
that there were 410 and 236 significant GO terms (cor-
rected P <0.05) in LH vs. LL and FH vs. FL comparisons
(Additional file 9: Table S9-1 and 2). KEGG pathway
analysis revealed that a total of 97 and 31 significant
pathways (Hypergeometric Distribution Hypothesis Test,
P <0.05) were identified in LH vs. LL and FH vs. FL
comparisons, respectively (Additional file 9: Table S9-3
and 4). Among these KEGG pathways, multiple path-
ways were closely involved in the reproductive process,
such as the Insulin signaling pathway, MAPK signaling
pathway, Estrogen signaling pathway, GnRH signaling
pathway, PI3K-Akt signaling pathway, Ras signaling

pathway, Cytokine-cytokine receptor interaction, Jak-
STAT signaling pathway and Lysosome pathway in LH
vs. LL, and the Notch signaling pathway, TGF-beta sig-
naling pathway and Steroid biosynthesis in FH vs. FL. It
is worth noting that the Wnt signaling pathway, Insulin
secretion and Adherens junction were common in LH
vs. LL and FH vs. FL.

Additionally, we aimed to illustrate negative interac-
tions between differentially expressed miRNAs and
mRNAs in the porcine ovary that might lead to dif-
ferences in fertility; thus, regulatory networks of
miRNA-mRNA pairs were constructed (Fig. 6). Of
these negative interactions, three miRNAs (ssc-miR-
1307, ssc-miR-1343 and ssc-miR-671-5p) targeted
multiple mRNAs, but several miRNAs targeted only
one mRNA. For example, up-regulated ssc-miR-1307
targets 12 genes, but down-regulated ssc-miR-361-3p
targets only one gene (Fig. 6a). Moreover, down-
regulated progestin and adipoQ receptor 7 (PAQR7)
(FH wvs. FL) was regulated by two differentially
expressed miRNAs including ssc-miR-885-5p and ssc-
miR-671-5p (Fig. 6b).
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Table 1 Number of differentially expressed genes in LH vs. LL and FH vs. FL

Genes LH vs. LL Total FH vs. FL Total
Up- regulated Down-regulated Up-regulated Down-regulated

MRNAs 161 296 457 253 222 475

INncRNAs 345 611 956 247 168 415

miRNAs 68 54 122 32 14 46

Construction of IncRNA-miRNA-mRNA networks
To explore the role and relation of IncRNAs and
miRNAs mediation in pig fertility, differentially
expressed IncRNAs were selected by miRanda analysis
[32]. The IncRNA-miRNA negative pairs between dif-
ferently expressed IncRNAs and miRNAs were se-
lected to construct the co-expression network. In the
LH vs. LL comparison, we found that the key miR-
NAs interacted with 19 IncRNAs (Fig. 7a). In FH vs.
FL group, the key miRNAs interacted with 7 IncRNAs
(Fig. 7b). A total of 19 and 7 IncRNA-miRNA pairs
were identified in LH vs. LL and FH vs. FL, respect-
ively. It is worth noting that most IncRNAs were tar-
geted by the same miRNA. Among these key
miRNAs, ssc-miR-1343 and ssc-miR-671-5p had more
interactions than others. Ssc-miR-1343 is the key miRNAs
targeted with nine key IncRNAs (TCONS_00009287,
TCONS_00196796, TCONS_00309415, TCONS_00309419,
TCONS_00372560, TCONS_00521720, TCONS_00521721,
TCONS_00703255, and TCONS_00814106) through MREs,
and ssc-miR-671-5p targeted with six key IncRNAs
(TCONS_00019076, TCONS_00229497, TCONS_00429823,
TCONS_00651713, TCONS_00702922, and TCONS_
00817482), which may be key regulators related to fertility.
Based on the above data, we integrated the IncRNA-
miRNA interactions and miRNA-mRNA interactions to
establish IncRNA-miRNA-mRNA networks and then
visualized using the Cytoscape software (Fig. 8). The net-
work of LH vs. LL was composed of 44 nodes and 40
edges, and the nodes included 4 miRNAs, 14 IncRNAs
and 27 mRNAs, which could be the important nodes in-
volved in the ceRNA network during the luteal phase of

the estrous cycle (Fig. 8a). In this network, some of them
have been reported to be reproduction-associated mole-
cules such as NUMBL, ILF3, GRIK4, SLC9AI,
TGFBRIand LOXL4. We noticed that nine IncRNAs
were interrelated with ssc-miR-1343 and may act as
ceRNA to inhibit target miRNAs and mediated, related
hub genes translation such as NUMBL, ILF3, TGFBRI,
TMEMS8B, PRR14, TSHZ2, and CAMKYV. In addition, we
found that TCONS_00309450 and TCONS_00429684
may serve as ceRNA to mediate GRIK4 by sponging ssc-
miR-1249. In the FH vs. FL group, there were 23 nodes
and 22 edges, consisting of 1 miRNA, 6 IncRNAs and 16
mRNAs (Fig. 8b). These six IncRNAs may serve as
ceRNA to mediate the corresponding gene transcripts by
sponging ssc-miR-671-5p. We also found that several
genes, such as GRIN2D and FZDS5, were mainly involved
in the “cAMP signaling pathway”, “Calcium signaling
pathway”, “Wnt signaling pathway” and “mTOR signal-
ing pathway”, implying that they might be acting as
reproduction related genes. Thus, we hypothesize that
these IncRNAs, miRNAs and mRNAs play critical roles
in fertility regulation.

RT-gqPCR verification

In the IncRNA-miRNA-mRNAs interaction networks,
we selected 14 and 5 key nodes to validate expression
levels in LH vs. LL and FH vs. FL, respectively, using
RT-qPCR (Fig. 9). The expression of each miRNA was
significantly higher in the LL groups compared to the
LH groups. In contrast, the expression of each IncRNA
or mRNA was significantly lower in the LL groups than
in the LH groups (Fig. 9a-d). We also found that the
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Fig. 6 miRNA-mRNAs interaction network constructed and visualized. VEE and circular nodes represent miRNAs and mRNAs, respectively. Red
nodes represent up-regulation, while green nodes represent down-regulation. a Interaction networks for comparison of LH vs. LL; b Interaction
networks for comparison of FH vs. FL
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expression of ssc-miR-671-5p was higher in the FL
groups compared to the FH groups (Fig. 9¢). These re-
sults suggested that the post-transcriptional regulatory
functions of miRNAs negatively correlated with their
targets and that these differentially expressed miRNAs
and IncRNAs may contribute to the fertility differences
in sows with extreme phenotypes during the F and L
phases of the estrous cycle. In brief, the results demon-
strated that the expression patterns of 19 differentially
expressed genes were consistent between the RT-qPCR
data and the RNA-Seq data, implying that the accuracy
of RNA-Seq data was reliable (Fig. 9).

Discussion

Fecundity is of primary interest in pigs as it plays a crit-
ical role in efficiency of production. Litter size, such as
TNB, is one of the most important reproductive traits
that are difficult to improve by selection because of its
low heritability [1]. Meanwhile, it is a highly complex
trait, which is controlled by multiple genes and is af-
fected by parity, environmental factors and sire [3—6].
More importantly, ovulation rate is also a major factor
that affects the litter size of sows [33]. Several studies in
the pig and goat have reported some fecundity-related

candidate genes based on RNA-seq data from the ovar-
ian tissues with high or low littler size [23, 34]. Although
a previous report described miRNA expression profiles
in pig ovarian tissues correlating with fecundity [25],
much less is known about the regulatory molecular
mechanisms of fertility in sows. In addition to miRNAs,
IncRNAs have been found to play critical roles in tran-
scriptional and post-transcriptional regulation [19].
However, no reports to-date have focused on IncRNA
functions in pig fertility. In this study, a total of 16 sows
were selected according to the methods in previous
studies [25, 34]. Eight sows from H fertility groups with
high TNB per birth; similarly, eight sows from L fertility
groups with low TNB per birth. Meanwhile, in order to
minimize the effects of parity on TNB, eight sows with
similarly high or low parity from each group were
chosen for the study. Due to the dynamic nature of the
mammalian ovary, we selected ovarian tissues at the fol-
licular and luteal phase to study the differences between
the high and low fertility in Large White sows using
highthroughput sequencing technology. We systematic-
ally analyzed the expression of IncRNAs in porcine ovar-
ies, and comprehensively integrated mRNA and miRNA
data to identify the IncRNA-miRNA-mRNA interactions
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mediated in the competing endogenous RNA (ceRNA) As an important post-transcriptional regulatory factor,
network to further elucidate the regulatory mechanisms miRNAs play an essential role in diverse biological pro-
of IncRNAs in sow fertility. cesses. In the present study, ssc-miRNA-26a and ssc-

IncRNAs expression profiles in ovarian tissues at dif- miRNA-99a were differentially expressed between the
ferent stages of follicle development in pigs were first in-  high and low fertility groups in LH vs. LL (Additional
vestigated using RNA sequencing analysis by Liu et al. file 6: Table S6), which is in accordance with the find-
(2018) [28]. In the present study, we used the pig gen- ings of Huang et al. (2016) [25]. A previous study re-
ome assembly (Sscrofa 10.2) to analyze the expression ported that miR-26a was significantly up-regulated in
profiles of each sample, which is consistent with other chicken ovarian follicles and is likely to be associated
published studies [28-30, 35, 36]. Based on comparative  with the mechanism of recruitment of dominant follicles
analysis, we found that the number of IncRNAs (n =24, [38]. We therefore hypothesize that the two miRNAs
447) detected in this study was much higher than that may have important roles in reproductive physiology.
reported in the study by Liu et al. (n =2076) [28]; how- Accumulating evidence has demonstrated that miR-
ever, the number was much lower compared to that of NAs are important endogenous regulators of gene ex-
human InRNAs reported in LNCipedia 4.1 [37]. We also  pression, which have been investigated in various
observed that the IncRNAs identified in ovarian tissues  biological mechanisms [24, 39-41]. However, with the
have fewer exons, lower expression levels, and shorter increasing amounts of discovered IncRNAs, the function
OREFs than those of the protein-coding genes (Fig. 2b-c  of very few IncRNAs has been characterized. Recent
and Fig. 3). Our results are consistent with previous studies have demonstrated that IncRNAs can act as en-
studies of thyroid glands and endometriums of pigs [30, dogenous miRNA sponges, thereby reducing the nega-
35]. However, our results also showed that the average tive regulatory effect of miRNAs on mRNAs [42].
length of IncRNAs in ovarian tissues were longer than  Although the ceRNA networks are receiving research at-
that in the thyroid gland (2337 bp on average) [35], fetal tention, most of the relevant studies have focused on
skeletal muscle (1043 bp on average) [36] and endo- their effects related to human diseases.
metrium of pigs (1454 bp on average) [30]. Although Apart from miRNAs, IncRNAs in the developing ovary
there are some improvements in current pig genome have also been implicated in improving fecundity [23].
assembly (Sscrofall.l) compared to the Sscrofal0.2, However, the potential roles of IncRNAs in regulation of
a recent study based on Isoform Sequencing (Iso- porcine fertility are far from understood. Miao et al
Seq) data sourced from nine porcine tissues have re- (2016) constructed a miRNA-IncRNA-mRNA inter-
vealed that the current pig genome annotations are action network based on the competing endogenous
still incomplete [13]. However, in this study, using RNA (ceRNA) hypothesis, which provided a new insight
RNA-seq data from 16 porcine ovary samples, we into understanding sheep fertility. In the present study,
could discovered 24,447 IncRNAs that is similar to  we identified differentially expressed IncRNAs, miRNAs
Beiki et al. (2019) predicted IncRNA transcripts (# = and mRNAs between the high and low fecundity groups
24,527) [13]. in ovarian tissues. Then, we systematically analyzed the
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complex effects of the interactions between miRNAs and
their target genes in LH vs. LL and FH vs. FL groups.
Lastly, we constructed new ceRNA networks to compre-
hensively investigate the potential relationships between
IncRNAs and miRNAs in sow fertility.

By constructing IncRNA-miRNA-mRNA regulatory
networks using bioinformatics, we identified three miR-
NAs, ssc-miR-1249, ssc-miR-1307 and ssc-miR-1343,
which exhibited significant up-regulation in the LL
group compared to the LH group (Fig. 8a). The reliabil-
ity of their expression patterns was confirmed by RT-
qPCR (Fig. 9a, b and d). Among these miRNAs, miR-
1249 has been reported to promote the proliferation of
glioma cells [43]. Previous work in bull spermatozoa has
shown that miR-1249 correlates with fertility rates [44].
The expression of miR-1249 was found to be signifi-
cantly higher in bulls with moderate fertility compared
with the high-fertility group, indicating that miR-1249
negatively regulates the expression of protein-coding
genes, which leads to problems during reproduction
[44]. Remarkably, miR-1249 was located on BTAS, which
has been a candidate gene associated with reproduction
efficiency in cattle [45]. These results further suggested
that miR-1249 might plays important roles infertility
regulation. In this network, we determined that the
TCONS_00429684/TCONS_00309450—ssc-miR-1249—
GRIK4 interaction axis was involved in the regulatory
network. Concerning mRNAs, function enrichment ana-
lyses showed that GRIK4 has been involved in a
reproduction-relevant pathway, such as neuroactive
ligand-receptor interactions, which play important roles
in reproduction processes [46]. In the present study,
high levels of GRIK4 expression was noticed in the LH
group compared with the LL group. Meanwhile, the RT-
qPCR results also revealed that the expression pattern of
GRIK4 was consistent with TCONS_0042968. However,
the expression of ssc-miR-1249 was significantly in-
creased in the LL group, which means that it might in-
hibit the transcription of GRIK4 and exert a negative
impact on the fertility of pigs. Thus, we speculate that
the high expression of IncRNAs (TCONS_00429684 and
TCONS_00309450) in the LH group may be through
the absorption of ssc-miR-1249 to promote GRIK4 tran-
scription. Despite our observations, the underlying
mechanisms need further investigation.

We also found that ssc-miR-1343 and ssc-miR-1307
played central roles in the regulation network (Fig. 8a).
No previous study has reported the expression of ssc-
miR-1307 and ssc-miR-1343 in ovarian tissue. According
to our results, ssc-miR-1307 and ssc-miR-1343 showed
significant up-regulation in the LL group. The RT-qPCR
results revealed that the expression patterns of Interleu-
kin Enhancer Binding Factor 3 (ILF3), Numblike
(NUMBL) and Transforming Growth Factor-p Receptor
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Type I (TGFBR1) were consistent with several IncRNAs
(Fig. 8a). Some studies showed that ILF3 is strongly
expressed in the mouse ovary and that the ILF3 protein
predominantly functions in germ cells [47]. The ILF3
protein was frequently detected in adult zebra fish go-
nads by global proteomics [48], and may be involved in
gonad differentiation [49]. In addition, the Notch signal-
ing pathway could be involved in the development of or-
gans and tissues by regulating cellular developmental
processes, such as cell proliferation, differentiation and
apoptosis [50]. A recent publication by Jing et al. (2017)
reported that the Notch signaling pathway could pro-
mote ovarian follicular development by regulating the
growth and estradiol production of granulosa cells [51].
NUMBL, a known antagonist of Notch signaling, has
been implicated in gonadal development. Research has
confirmed that deletion of NUMBL disrupted coelomic
epithelium cell polarity in both XX and XY gonads, and
germ cell numbers were also reduced at early stages of
gonadogenesis, suggesting a major role in gonad devel-
opment [52]. Another key gene, TGFBRI, is known to
be a type I receptor of the canonical TGF-f signaling
pathway. Increasing evidence has shown that TGFBRI is
closely related to ovulation rate and litter size [53, 54].
In this study, ssc-miR-1343 had the most interactions in
the network, which is a bridge of ILF3, NUMBL,
TGFBRI and several IncRNAs. Based on the combined
detection of their expression, we speculate that these
IncRNAs might be associated with reproductive effi-
ciency in sows.

In addition to FH vs. FL, we analyzed the relationship
among IncRNAs, miRNAs, and mRNAs in ovarian tis-
sues, as shown in Fig. 8b. We found that miR-671-5p
had the most interactions, indicating that it is the hub
gene in the regulation network. We further observed
that miR-671-5p potential target gene FZD5 was largely
involved in the Wnt and mTOR signaling pathways,
which plays a critical role during the estrous cycle [55,
56]. Specifically, the TCONS_00019076—miR-671-5p—
FZD5 interaction is involved in the regulatory network.
The RT-qPCR results revealed that the expression of
FZD5 was significantly up-regulated in the FH groups,
which was consistent with the results from the RNA-seq
data. Furthermore, we showed that the level of TCONS _
00019076 was up-regulated in the LH groups, which was
consistent with the expression pattern of FZD5. Given
the potential binding sites between TCONS_00019076—
miR-671-5p and miR-671-5p—FZD5, we propose that
TCONS_00019076 may promote the expression of
FZD5 through the absorption of miR-671-5p. In
addition, two of the 16 mRNAs, PAQR7 and IGF2BP2,
have been reported to be related to oocyte maturation
and cell proliferation [57, 58]. Thus, we suggest that
these key IncRNAs may play an important role in the
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regulation of pig fertility. In future research, we plan to
explore the function of these IncRNAs using overexpres-
sion and knockdown experiments.

Conclusions

In this study, ovarian IncRNAs and miRNAs associated
with prolificacy of Large White sows were identified dur-
ing the follicular and luteal phases of the estrous cycle,
and their potential biological functions were predicted
through bioinformatics. In addition, we constructed
interaction networks among a series of differentially
expressed IncRNAs, miRNAs, and mRNAs in ovarian
tissues using an integrative biology approach. Our data
will be helpful for identifying a novel regulatory mechan-
ism for investigating prolificacy in pigs in future studies.

Methods

Swine population pool, experimental design and tissue
collection

All of the experiments involving animals were carried
out in accordance with the guidelines for the care and
use of experimental animals established by the Ministry
of Science and Technology of the People’s Republic of
China (Approval Number 2006—398), and the work was
approved by the Animal Ethics Committee at Hebei
Agricultural University, China.

The animals (sows, # = 590; boars, n = 42) used in this
study, a Canadian Large White population, were from
the Hebei Shunde-Tianzhao Livestock Technology Co.,
Ltd. (Wanquan, Hebei, China). Detailed documents of
590 multiparous sows were collected, and the total num-
ber of piglets born (TNB) was regarded as an important
parameter to evaluate the fertility of the animals as pre-
viously described [25, 34, 59, 60]. For this study, the data
of TNB obey the normal distribution. Which was calcu-
lated using the SPSS19.0 software package (IBM Corp,
Armonk, NY, USA). The high (H; TNB > 15.73) and low
(L; TNB<11.11) fertility groups of sows were deter-
mined according to our previous study [59]. Eight sows
with similarly high or low parity from each group were
chosen for the study (n =8 for the H group and n =8
for the L group). The sows were reared under the same
environmental conditions and allowed ad libitum access
to feed and water, and they were individuals without
kinship according to the traceability system. All pheno-
typic records are displayed in Additional file 10: Table
S$10. Sows with H and L fertility were sacrificed at each
of the two stages: on day 14 (day 1 = first day of estrus)
after estrus in the luteal (L) phase (LH: n =4; LL: n =4)
and on day 20 after estrus in the follicular (F) phase (FH:
n =4; FL: n =4) [61]. At the above time points, animals
were humanely slaughtered by electronic stunning
followed by exsanguinations, and the ovarian tissues
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were rapidly removed and snap-frozen in liquid nitrogen
until subsequent processing.

Library preparation and solexa sequencing

Total RNA was extracted from each ovarian sample, and
then purified with RNeasy Mini Kit (Qiagen, Valencia,
CA, USA). Total RNA from each sample was quantified
and qualified as previously described [59]. The same
sample was used for both sequencing and RT-qRCR
analysis.

Approximately 3 pg of RNA of each RNA sample was
used for library preparations. To remove ribosomal RNA
(rRNA), the Epicentre Ribo-Zero™ rRNA removal Kit
(Epicentre, Madison, WI, USA) was used. Then, the
rRNA-depleted RNA was used to generate cDNA librar-
ies using the NEB Next® Ultra™ The Directional RNA Li-
brary Prep Kit for Illumina® (New England Biolabs; NEB,
Ipswich, MA, USA) according to the manufacturer’s
protocol. Sequencing was carried out using a 2 x 150
paired-end (PE) configuration on Illumina HiSeq X10
(lllumina, San Diego, CA, USA).

For small RNA sequencing, the same samples were
used to construct Ilumina small RNA-Seq (RNA se-
quencing) libraries using the NEBNext® Multiplex Small
RNA library Prep Set for Illumina® (NEB) following the
manufacturer’s recommendations. In brief, 3° SR
Adaptor for Illumina was ligated to the small RNA using
3’ Ligation Enzyme. The 5" SR Adaptor for Illumina was
ligated to the small RNA using 5" Ligation Enzyme and
first strand cDNA was synthesized using ProtoScript II
Reverse Transcriptase (NEB). Each sample was then
amplified by PCR for 12 cycles using P5 and P7 primers,
with both primers carrying sequences which can anneal
with flow cell to perform bridge PCR and P7 primers
carrying a six-base index, thus allowing multiplexing.
The PCR products of ~140bp were recovered and
cleaned up using PAGE. Purified small RNA sequencing
libraries were validated using an Agilent 2100 Bioanaly-
zer (Agilent Technologies), and quantified by a Qubit
2.0 Fluorometer (Invitrogen). Finally, the 16 small RNA
libraries were sequenced using a 1 x50 single-end (SE)
sequencing strategy by Illumina HiSeq X10 (Illumina).

Analysis of RNA-Seq data

Raw RNA-seq reads from each sample were first proc-
essed by removing adapters and low-quality reads. Clean
data from each library were obtained and then mapped
to the Sscrofal(0.2 reference genome that was down-
loaded from the Ensembl Genomes (ftp://ftp.ensembl.
org/pub/release-86/fasta/sus_scrofa/dna/Sus_scrofa.
Sscrofal0.2.dna.toplevel.fa.gz). The mapped reads from
each individual animal were assembled as previously de-
scribed [59]. Rsem (V1.2.6) [62] was used to calculate
gene expression levels using the FPKM (Fragments per
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Kilo bases per Million reads) method for both the
IncRNAs and coding genes in each sample. Additionally,
the method of differential gene expression analysis was
described in detail in ref. [59]. Transcripts of genes
showing P values < 0.05 and with a |log, (fold change)| >
1 were identified as differentially expressed. The RNA-
Seq data is publicly available in the NCBI GEO database
with the accession number GSE134001.

Analysis of microRNA-Seq data (miRNA)

Raw reads from the 16 small RNA libraries were gener-
ated. Clean reads were obtained by masking adapters,
poly-A tails and low-quality reads from the raw data
with Trimmomaticl0 (v0.30) [63]. The clean reads were
then mapped to the Sscrofal0.2 reference genome (ftp://
ftp.ensembl.org/pub/release-86/fasta/sus_scrofa/dna/
Sus_scrofa.Sscrofal0.2.dna.toplevel.fa.gz) by Bowtie 2
(v2.1.0) [64]. Subsequently, unmapped reads were used
to predict the novel miRNAs with miRDeep (v2.0.0.7)
[65]. Differential expression analysis was performed
using a procedure described previously [60]. P values of
miRNAs were settled at < 0.05 and |log, (fold change)| =
1 were described to detect differentially expressed miR-
NAs. The microRNA-Seq data is publicly available in
the NCBI GEO database with the accession number
GSE132307.

Target prediction of miRNAs and construction of miRNA-

mRNA networks

To explore the function of the miRNA, potential target
genes of miRNAs with differential abundances were pre-
dicted by miRanda [32]. Subsequently we utilized GO-
TermFinder (v0.86) (https://metacpan.org/release/GO-
TermFinder) to identify Gene Ontology (GO) terms that
annotated a list of enriched genes with a significant P
value less than 0.05. The enrichment of KEGG pathways
was tested using in-house scripts. In order to explore the
potential interactions of miRNA and mRNA, miRNA-
mRNA negative interactions were predicted, and Cytos-
cape_v3.5.1 [66] was used to construct the important
networks of differentially expressed mRNAs and
miRNAs.

IncRNAs identification

According to the characteristics of the IncRNA, all the
assembled transcripts were merged and then filtered by
known non-lincRNA annotation, non-lincRNA charac-
ters, open reading frames (ORFs) and protein-coding po-
tential methods. Known non-lincRNA include known
protein-coding RNA, miRNA, tRNA, snoRNA, rRNA
and pseudogenes. The characters of non-lincRNA in-
clude transcripts with more than one exon and with a
length > 200 bp. For protein-coding potential prediction,
we used CPC (Coding Potential Calculator) [67], CNCI
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(coding-noncoding-index) [68], CPAT (coding potential
assessment tool) [69] and Pfam-scan [70] to distinguish
mRNAs from IncRNAs. To understand the differences
between IncRNAs and mRNAs, the genomic features of
the predicted IncRNAs were analyzed [71].

LncRNAs target gene prediction and GO and KEGG
enrichment analyses
Transcriptional regulation by IncRNAs can work either
in cis or in trans and may negatively or positively control
gene expression [72]. As a result, the prediction of
IncRNA target genes in cis and trans forms were per-
formed. We searched coding genes 10k upstream and
downstream regions of IncRNAs as the cis target gene.
Regulation in trans was analyzed by expression levels,
according to Pearson’s correlation coefficient (|r| > 0.95).
To investigate the function of differentially expressed
IncRNAs, GO enrichment analysis was implemented
using GO-TermFinder (v0.86), and corrected P values <
0.05 were treated as significantly enriched. KEGG path-
way analysis was performed using in-house scripts.

Construction of INcRNA-miRNA-mRNA networks

To infer the function of IncRNAs, differently expressed
IncRNAs were selected, and then IncRNA-miRNA nega-
tive interactions were predicted using miRanda [32].
Subsequently, based on complementary pairs between
miRNA and mRNAs and between miRNAs and
IncRNAs, the IncRNA-miRNA-mRNA interaction net-
works were constructed and visualized by Cytoscape
v3.5.1 [66].

Reverse transcription real-time quantitative PCR (RT-
gPCR)

Based on the IncRNA-miRNA-mRNA correlation net-
works, specifically, several interaction nodes were vali-
dated by RT-qPCR. For mRNA and IncRNA, reverse
transcription of total RNA was performed using a cDNA
Synthesis Kit (Sinogene, Beijing, China). For miRNA,
total RNA was reverse-transcribed into cDNA using a
One-Step miRNA RT Kit (Sinogene) following the man-
ufacturer’s instructions. RT-qPCR was carried out using
StepOne real-time PCR systems (Applied Biosystems,
Foster City, CA, USA) and SYBR Green qPCR Mix
(Sinogene). All amplifications were followed by dissoci-
ation curve analysis of the amplified products. All primer
sequences, including selected genes, miRNAs and in-
ternal control genes (ACTB and U6 snRNA), are dis-
played in Additional file 11: Table S11. Relative
expression levels of genes and miRNAs were calculated
by the2 A" method [73].


ftp://ftp.ensembl.org/pub/release-86/fasta/sus_scrofa/dna/Sus_scrofa.Sscrofa10.2.dna.toplevel.fa.gz
ftp://ftp.ensembl.org/pub/release-86/fasta/sus_scrofa/dna/Sus_scrofa.Sscrofa10.2.dna.toplevel.fa.gz
ftp://ftp.ensembl.org/pub/release-86/fasta/sus_scrofa/dna/Sus_scrofa.Sscrofa10.2.dna.toplevel.fa.gz
https://metacpan.org/release/GO-TermFinder
https://metacpan.org/release/GO-TermFinder

Hu et al. BMC Genomics (2020) 21:636

Statistical analysis

Statistical analyses were performed using SPSS 19.0 stat-
istical software (IBM Corp). The data are expressed as
the mean * standard deviation (SD) of three independent
experiments. When comparisons were made, Student’s
t-tests were performed, and P < 0.05 was considered as
statistically significant.
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