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Abstract

adipogenic differentiation.

circCLECT9A and circARMHT.

Background: Tissue-specific fat deposition is regulated by a series of complex regulatory mechanisms. Reports indicate that
epigenetic regulators, such as circular RNAs (circRNAs), are crucial in diseases progression, animal development, metabolism,
and adipogenesis. In this study, to assess the functional roles of circRNAs in adipogenesis and tissue-specific fat deposition,
we comprehensively analyzed the Ribo-Zero RNA-Seq and miRNAs data during chicken intramuscular and abdominal

Results: circRNAs and miRNAs profiles during chicken adipogenic differentiation were found in adipocytes derived from
various adipose tissues. It was also discovered that high levels of downregulated miRNAs potentially promote adipogenesis
by activating their target genes which are associated with fatty acid metabolism and adipogenic differentiation. Through
analysis of the correlation between the expression levels of circRNAs and adipogenic genes, as well as the dynamic
expression patterns of circRNAs during adipogenic differentiation, several candidate circRNAs were identified. Moreover,
competing endogenous RNA (ceRNAs) networks were constructed during chicken intramuscular and abdominal
adipogenesis by combining miRNAs with mRNAs data. Several candidate circRNAs potentially influence adipogenesis by
regulating miRNAs via PPAR and fatty acid metabolism-related pathways were identified, such as circLCLATT, circFNDC3AL,

Conclusion: In conclusion, our findings reveal that circRNAs and the circRNA-mIRNAs-mRNAs-ceRNAs network may play
important roles in chicken adipocytes differentiation and tissue-specific fat deposition.
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Background

Different resources and organizational microenviron-
ment dictate various physiological and biochemical char-
acteristics of adipose tissues [1-3]. Since preadipocytes
derived from various tissues exhibit distinct proliferation
speed and adipogenic potential, it is believed that
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transcriptional and post-transcriptional regulation mech-
anisms cause stage- and tissue-specific fat deposition in
animals [4-6].

An increasing number of studies have shown that non-
coding RNAs regulates various normal and pathological pro-
cesses, such as microRNAs (miRNAs) [7-10] and long non-
coding RNAs (IncRNAs) [11-13]. Although recent studies
on the role of miRNAs and IncRNAs in adipogenesis have
reached a mature stage, information on the functional roles
of other classes of non-coding RNAs, such as circular RNAs
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(circRNAs) remains scanty. circRNAs are a class of non-
coding RNAs generated by alternative splicing exhibiting
weak protein-coding potential [14, 15]. Increasing evidence
indicates that circRNAs promote various biological pro-
cesses, such as tummorigenesis [16—18], animal development
[19, 20] and cell differentiation [21, 22]. circHECTDI1 pro-
motes gastric cancer progression by targeting miR-1256
through activation of the B-catenin/c-Myc pathway [23].
circ-ZNF609, when translated to a functional petide, regu-
lates myogenesis in humans and mice [24]. circArhgap5-2
plays a crucial role in adipogenesis and obesity [25]. How-
ever, circRNAs related to poultry adipogenesis and tissues-
specific fat deposition remain poorly studied.

In this study, comprehensive circRNAs atlas during
chicken adipogenic differentiation across various tissues-
derived preadipocytes were provided. Future, we identi-
fied differentially expressed (DE) circRNAs, miRNAs and
their dynamic expression patterns during adipocytes dif-
ferentiation. Then, circRNAs and RNA-Seq data were
combined to construct circRNAs-miRNAs-mRNAs
ceRNA network involved in chicken adipogenesis. This
study provides an in-depth understanding of epigenetic
underlying regulation mechanisms of adipogenesis and
tissues-specific fat deposition in birds.

Results

Overview of circRNAs data by Ribo-zero RNA-Seq in
chicken preadipocytes and adipocytes

Here, we analyzed 960 million raw paired-end (PE) reads
generated by Ribo-Zero RNA-Seq data. After filtering
with low-quality reads, we retained a total of 910 million
clean reads. Unique clean reads of 88—94% were mapped
to the chicken genome 5 (galGal5) (Table 1). It was
found that circRNAs were distributed in most of the
chicken chromosomes. The expression levels of cir-
cRNAs in different tissue-derived adipocytes from the
adipose tissue were identified then analyzed to find a
better understanding of the cirRNAs in chicken adipo-
cytes. As shown in Fig. 1a, intramuscular preadipocytes
(IM_Pre) and adipocytes (IM_Ad), abdominal preadipo-
cytes (Ab_Pre), and adipocytes (Ab_Ad) were fell into
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two clusters, suggesting that the differences within the
adipose tissues are potentially larger than that of adipo-
cytes. Moreover, the Pearson correlation coefficient of
circRNA expression between the cell samples within
groups waved from 0.86 to 0.93, suggesting a reliable
consistency of cell samples within groups. The bar plot
showed that no apparent difference in global expression
levels of circRNAs across different groups (Fig. 1b). To
classify the length distribution of circRNAs, the resource
of all circRNAs in different gene regions were compared,
including exon, intergenic, and intron regions. Eventu-
ally, 787, 710, 980, 1083, 1406, 1426, 1447 and 1004
circRNAs were identified in eight groups respectively
(Fig. 1c). Results showed that the majority of circRNAs
(65%) were generated from exon regions, followed by
intergenic regions (27%) and intron regions (8%) (Fig.
1d). As shown in Fig. 1d, most of the intersect circRNAs
(60%) shared from different software were 200—1000 nt
in length. Moreover, a considerable number of circRNAs
which longer than 3000 nt were identified in the present
study (Fig. 1d). Besides, most of circRNAs (94%) were
found more than two exons (Fig. le). The circRNAs
were distributed across 31 chromosomes (chromosomes
1-28, 33, Z, and W) of chicken with chromosomes 1, 2,
3 and 21 carrying the largest share (Fig. 1f, Fig. 2).

Identification of differentially expressed (DE) circRNAs
during adipogenic differentiation across various groups
To explore functional roles of circRNAs in tissues-specific
adipogenic differentiation, we analyzed and compared the ex-
pression levels of circRNAs between different groups. Eventu-
ally, we identified 17, 14, 20, and 9 differentially expressed
(DE) circRNAs across different groups (IMPre_vs_IMAJ,
AbPre vs_ AbAd, AbPre vs_IMPre and AbAd vs IMADb)
(Fig. 3, Table 2). Most of DE circRNAs were specificially
found in preadipocytes or adipocytes. In addition, several DE
circRNAs showed different expression patterns during adipo-
genic differentiation between AbF and IMF groups (Table
S1). Among them, 7:22323550|22,327,655 was significantly
downregulated in mature adipocytes when compared with
preadipocytes in both IMF and AbF groups. Z:78636651|78,

Table 1 An overall review of the circRNAs data in the present study

BMK-ID Total Reads Mapped Reads Unig Map Reads Reads Map to '+’ Reads Map to ' GC(%) Q30(%)
AbAd1 75,595,006 75,557,008 (99.95%) 70,918,567 (93.81%) 37,002,982 (48.95%) 37,013,048 (48.96%) 46.67 90.8
AbAd2 126,110,450 125,959,112 (99.88%) 118,894,690 (94.28%) 61,664,929 (48.90%) 61,680,043 (48.91%) 46.03 91.1
AbPrel 114,650,344 114,569,360 (99.93%) 107,125,637 (93.44%) 55,851,419 (48.71%) 55,649,631 (48.54%) 46.85 90.61
AbPre2 119,804,518 119,721,318 (99.93%) 111,531,581 (93.09%) 58,436,387 (48.78%) 58,456,954 (48.79%) 47.1 91.15
IMAd1 100,975,170 100,800,650 (99.83%) 91,276,252 (90.39%) 49,182,680 (48.71%) 48,704,390 (48.23%) 48 91.27
IMAd2 107,859,100 107,660,296 (99.82%) 96,647,366 (89.61%) 52,391,877 (48.57%) 52,116,610 (48.32%) 48.6 90.86
IMPre1 120,678,792 120,540,008 (99.88%) 111,158,225 (92.11%) 58,476,590 (48.46%) 58,500,070 (48.48%) 4838 90.49
IMPre2 96,725,572 96,635,868 (99.91%) 85,825,333 (88.73%) 47,124,244 (48.72%) 47,116,981 (48.71%) 48.85 91.49
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Fig. 1 The characteristics of circRNAs in chicken adipocytes. a The correlations analysis among various samples. b The total expression levels of
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640,537 (circCDKN2A) was considerably downregulated in
AbAd group, while upregulated in the IMAd group. Add-
itionally, 7:22754779|22,756,470 (circTNS1) was only found
in intramuscular fat preadipocytes and adipocytes, 21:
6563897|6,564,555 (circHSPG2), 3:66699169|66,707,019 (cir-
cSLC22A16), and 16:242878|309,387 (circKIFC1L) were spe-
cifically expressed in intramuscular adipocytes. 3:793787
78]79,415,580 (circBCKDHB), 28:1095851|1,096,498 and 1:
83410785|83,437,136 were specifically expressed in abdominal

adipocytes.

Functional characterization of DE circRNAs

To investigate the potential functions of DE circRNAs, GO
terms analysis of host genes of DE circRNAs were per-
formed. We found that the molecular function (MF) of gene
ontology (GO) analysis during adipogenesis were primarily
enriched in lipid binding, phospholipase activity, and lipase
activity, whereas cell component (CC) were mainly enriched
in regulation of autophagy, glycerophospholipid biosynthetic
process, phosphatidylinositol-mediated signaling and inositol
lipid-mediated signaling (Fig. 4).

Validation of circRNAs

To confirm the circRNAs in chicken adipocytes, five DE
circRNAs including circFNDC3AL, circHSPG2, cir-
cCLEC19A, circARMH]1, and circLCLAT1 were randomly
selected for validation using PCR and Sanger sequencing

(Fig. 5a). Divergent and convergent primers were designed
to amplify circRNAs back-spliced junction (BS]) site and
linear mRNAs. As showed in Fig. 5b, BS] sites of circRNAs
were amplified and validated by sanger sequencing. The
amplified PCR products using convergent primers of cir-
cRNAs were distinct both in ¢cDNA and gDNA samples,
whereas the divergent primers only amplified the cDNA
samples. PCR products amplified using the divergent
primers were further identified through Sanger sequen-
cing (Fig. 5b). The sequencing results corresponded to
Ribo-zero RNA-Seq data, which suggested that the cir-
cRNAs data is reliable.

Expression characteristics of miRNAs in chicken
intramuscular and abdominal adipogenesis

To comprehensively analyze the characteristics of miR-
NAs during tissue-specific adipogenesis, miRNAs ex-
pression levels were compared across various groups. A
total of 80 DE miRNAs (58 upregulated and 22 down-
regulated) were identified between AbPre and AbAd
groups, 225 DE miRNAs (85 downregulated and 140 DE
miRNAs upregulated) between AbPre and IMPre
groups, 206 DE miRNAs (98 downregulated and 108 up-
regulated) between AbAd and IMAd groups and 111 DE
miRNAs (89 upregulated and 22 upregulated) between
IMPre and IMAd groups respectively (Fig. 6a) (Table
S2). Among them, 81 (66 up-regulated, 15 down-
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regulated) and 50 (34 up-regulated, 16 down-regulated)
specific-DE miRNAs were identified in IM and Ab
groups during adipogenic differentiation respectively
(Fig. 6b). Moreover, it was observed that most of DE
miRNAs were significantly downregulated in mature adi-
pocytes, including miR-130b-5p, miR-148a-5p, miR-15¢-
5p, miR-16¢-5p, miR-30a-3p (Fold change >2, Q_value
< 0.001). However, miR-146b-5p was significantly upreg-
ulated in mature adipocytes compared to preadipocytes
(Fold change >4, Q_value < 0.001). The heatmaps of DE
miRNAs across various groups are displayed in Fig. 6c.

Construction of circRNAs-miRNAs-mRNAs network

Notably, 31 DE miRNAs were shared between IM and
Ab groups during adipogenesis, including miR-15c-5p,
miR-206, miR-148a-5p, miR-128-1-5p, miR-30a-3p,
miR-27b-5p, miR-92-5p and three novel miRNAs (not
shown) (Fig. 7a). To further investigate the functional
roles of miRNAs in chicken adipogenesis, the target
genes of DE miRNAs were predicted through bioinfor-
matics analyses. KEGG pathway analysis revealed that
their target genes were highly enriched in the PPAR

signaling pathway, metabolic pathways, fatty acid metab-
olism pathway (Fig. 7b). Further, through integrating
analysis of DE cirRNAs, miRNAs and mRNAs data, we
constructed a ceRNAs network during chicken adipo-
genesis (Fig. 7c). It was noted that circFNDC3AL,
circHSPG2, circLCLAT1 and circCLEC1I9A were the
hub cirRNAs of the ceRNAs network (Fig. 7c). Further-
more, KEGG pathway analysis showed that the ceRNAs
network regulates target genes mainly via fatty acid me-
tabolism, focal adhesion and ECM-receptor interaction
pathways (Fig. 7d).

Candidate circRNAs related to adipogenic differentiation

Further, correlation analysis between circRNAs and their
target genes based on the ceRNAs network was per-
formed to investigate the crucial roles of circRNAs in
the adipogenesis of chicken. As shown in Fig. 8a, the ex-
pression levels of circFNDC3AL and circHSPG2 were
significantly and positively related to PPAR signaling
pathway genes in intramuscular adipogenesis (r >0.90,
p<0.01), such as peroxisome proliferator-activated re-
ceptor Y (PPARy), fatty acid binding protein 4 (FABP4),
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Fig. 3 The identification of DE circRNAs across various groups. a Cluster analysis of DE circRNAs in different groups. b Volcano plots of DE circRNAs

perilipin 2 (PLIN2), CD36 molecule (CD36). In contrast,
the expression level of circLCLAT1 was significantly and
negatively related to PPAR signaling pathway genes and
positively related to lysocardiolipin acyltransferase 1
(LCLATI) and fatty acid desaturase 2 (FADS2) (r > 0.95,
p <0.01) (Fig. 8a). Moreover, the expression levels of cir-
cARMHI1 were significantly and negatively related to
those of genes in abdominal adipocytes (r>0.92, p<
0.01), while circCLECI9A was significantly and posi-
tively related to those of genes (r>0.90, p<0.01) (Fig.
8b). To further investigate the potential roles of
circRNAs in the fat tissue-specific deposition, the ex-
pression of cirRNAs was analyzed in different tissues.
Our results demonstrated that the expression of these
four candidate circRNAs was highly expressed in the

Table 2 The statistics of DE circRNAs across various
comparisons

Group ALL_DE circRNAs  Up_regulated ~ down_regulated
AbAd_vs_IMAd 9 8 1
AbPre_vs_AbAd 14 2 12
AbPre_vs_IMPre 20 9 1M
IMPre_vs_IMAd 17 10 7

abdominal fat tissue of chicken (Fig. 8c). In addition, the
dynamistic expression patterns of candidate circRNAs
were detected during tissue-specific adipogenetic differ-
entiation. Our results showed that the expression levels
of circFNDC3AL were decreased after 4 days of induc-
tion, while dramatically upregulated in the late stage of
intramuscular adipogenesis (Fig. 8d). The expression
levels of circCLEC19A were significantly increased dur-
ing the late stage of abdominal adipogenesis (Fig. 8 d).
In contrast, the expression levels of circCLEC19A were
dramatically decreased after 2 days’ of adipogenetic in-
duction, while slightly increased in the late stage of
intramuscular adipogenesis. In addition, the expression
levels of circARMH]1 were decreased during the abdom-
inal adipogenesis (Fig. 8d). Interestingly, we noticed that
chicken circLCLAT1 was highly conservative among
humans, mice and pigs (Fig. S1), implying that cir-
cLCLAT1 potentially regulates animal adipogenesis or
lipid metabolism.

Validation of circRNA-miRNA-mRNAs ceRNA networks

To verify the circRNA-miRNA-mRNAs regulation net-
works during intramuscular adipogenic differentiation,
we analyzed their expression levels in intramuscular
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and miR-34a-5p)-

miR-30e-5p,

that the target genes of circFNDC3AL were mainly asso-
miR-147,

ciated with lipid metabolism and adipogenesis, such as

PPARG, PLIN2, CPT1A, INSIGI. In addition, bioinfor-
146b-5p and miR-147 potentially regulate RUNXT1 and

FADS?2, while miR-34a-5p and miR-30e-5p might regu-
The findings suggested that circLCLAT1-miRNAs (miR-

sponging these miRNAs, thus regulating target genes.
146b-5p,

matic analysis and qRT-PCR results found that miR-
late PDGFRA, IGF2BP3, FNDC3B, MYH9 (Fig. S2). cir-
cLCLAT1 potentially influence chicken adipogenesis by

130a-5p (Fig. 9b, e). Additionally, it was worth noting

Fig. 4 GO analysis of host genes of DE circRNAs across various groups. a IMAd vs IMPre. b AbAd vs AbPre. ¢ AbAd vs IMAd. d IMPre vs AbPre

(miRNAs response elements), such as miR-130a-5p,
miR-15¢-5p, miR-18a/b-3p (Fig. 9a). Results from RNA-

analysis revealed that cirENDC3AL exhibit many MREs
Seq and RT-qPCR showed that cirFNDC3AL and its
downstream genes were significantly upregulated in

differentiated-mature intramuscular adipocytes, com-
pared to intramuscular preadipocytes (Fig. 9¢c, d, f). On
the other hand, several adipogenic differentiation-related

miRNAs were significantly downregulated in adipocytes,
compared to intramuscular preadipocytes, including

preadipocytes and mature adipocytes. Bioinformatics
miR-222, miR-456-3p, miR-15C-5p, miR-130b-5p, miR-
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mRNAs pathway showed opposite expression patterns
during intramuscular adipogenic differentiation (Fig. 10).
CircLCLAT1 and its downstream genes were signifi-
cantly downregulated in differentiated-mature intramus-
cular adipocytes (Fig. 10c, d and f), while miR-146b-5p
and miR-147 were significantly upregulated in mature
adipocytes compared to preadipocytes (Fig. 10b, e).

Discussion

Preadipocytes-derived from abdominal fat (AbF) have
previously been reported to exhibit higher adipogenic
differentiation potential than the ones derived from
intramuscular fat (IMF) in chickens [26]. Adipogenesis is
controlled by a series of complex regulatory mecha-
nisms, including transcription level, post-transcription
level, among others [27-29]. Noncoding RNAs have not-
able effects on adipogenesis and lipid metabolism [30,
31]. Several studies about noncoding RNAs on adipo-
genesis were geared towards mammals [11, 12, 30, 31].
However, information on circular RNAs (circRNAs) in
poultry adipogenesis is limited.

In this work, we analyzed Ribo-zero RNA-Seq and cor-
responding miRNAs data during chicken tissue-specific
adipogenic differentiation. Three software (CIRI2, CIR-
Cexplore2 and find_circ) were used to identify cir-
cRNAs. Although fewer circRNAs were obtained with
this way, it improved the accuracy rate of our findings.
A total of 8843 circRNAs were identified in

preadipocytes and adipocytes. This suggested that sev-
eral circRNAs are expressed in chicken preadipocytes
and adipocytes. Of note, the characteristics of circRNAs
based on length, exon number, and genomic distribution
in chicken were in line with previous reports [19, 32].
Previous studies revealed that the expression level of cir-
cRNAs was tissues- and stage-specific [33, 34]. Abdom-
inal and intramuscular fat deposition resulted from a
variety of complex molecular mechanisms. Notably,
tissue-specific adipogenesis is potentially regulated by
circRNAs [25]. In the present study, we identified DE
circRNAs across various tissue and cell types. Also, pre-
vious reports identified several DE circRNAs in chicken,
such as circCELC19A which was suggested to play func-
tional roles in follicle development [32]. In addition, cir-
¢FNDC3AL and circTNS1 were identified in embryonic
muscle tissues of chicken [19].

Previously, we reported that miRNAs could be crucial
regulators in chicken adipogenesis [8, 35]. Here, we
systematically analyzed and compared the expression
patterns of miRNAs during intramuscular and abdom-
inal adipogenesis. It was revealed that several miRNAs
were significantly downregulated in mature adipocytes.
On the other hand, many genes associated with lipid
metabolism and adipogenesis were upregulated during
the adipogenic differentiation across various tissues, im-
plying that the downregulated miRNAs potentially pro-
mote adipogenesis through their target genes in chicken.
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Generally, it is believed that circRNAs could function as a
molecular sponge of miRNAs thereby regulating their target
genes [36]. By integrating the analysis of circRNAs, miRNAs,
and mRNAs data, hub ceRNAs networks were constructed
during chicken adipogenic differentiation. Notably, the hub
genes in the ceRNAs network were enriched in fatty acid
metabolism, PPAR signaling pathway, and p53 signaling
pathway. Furthermore, the downstream genes in the ceRNA
pathways were strongly related to candidate circRNAs in the
present study (Fig. 7c and Fig. 8a), suggesting that these

circRNAs might play functional roles during adipogenesis.
RT-qPCR results of the circFNDC3AL-miRNAs-mRNAs
pathway corroborated the results of bioinformatics analysis.
Interestingly, fibronectin type III domain-containing protein
3B (FNDC3B) and 5 (FNDCS5) regulate white fat browning
and adipogenesis [37-40]. Besides, perlecan (HSPG2, Hepa-
ran Sulfate Proteoglycan 2) was found to regulate obesity
and lipid deposition [41]. Thus, we speculated that cir-
¢FNDC3AL and circHSPG2 potentially regulate chicken adi-
pogenesis. However, in-depth studies on the functions of
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chicken circENDC3AL and circHSPG2 on adipogenic differ-
entiation are essential. Previous research reported that runt-
related transcription factor 1 (RUNXITI) [42, 43], myosin,
heavy chain 9, non-muscle (MYH9), fatty acid desaturase 2
(FADS2), insulin-like growth factor 2 mRNA-binding protein
1 (IGF2BPI) were associated with adipogenesis and fat de-
position [44—47]. We found that circLCLAT1 might influ-
ence adipogenic differentiation by regulating downstream
genes (RUNXIT1, FADS2, MYH9, IGF2BP3, and PDGFRA)
through four miRNAs (miR-34a-5p, miR-30e-5p, miR-146b-
5p, and miR-147). Nonetheless, future in-depth studies
should be undertaken to explore the molecular regulation

mechanism of circFNDC3AL and circLCLAT1/miRNAs/
mRNAs pathway in chicken adipogenesis.

Conclusions

In summary, we comprehensively identified expression
profiles of circRNAs in adipocytes derived from various
adipose tissues in chicken. By integrating circRNAs, miR-
NAs, and mRNAs data, we constructed ceRNAs networks
that regulated chicken adipogenesis. Over all, this study
offers insights into poultry tissue-specific adipogenesis in
poultry and reveals novel clues to studying circRNAs on
adipogenic differentiation and fat deposition in poultry.
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Methods

Tissues and cell samples collection

The experimental birds were obtained from the Avian
Farm of Henan Agriculture University (Zhengzhou,
Henan, China). Here, five types of tissues (heart, liver,
breast muscle, abdominal, and kidney tissues) were col-
lected and stored at —80°C until use. Under deep

anesthesia, the birds were euthanized by intramuscular
injection of pentobarbital (Sigma, St. Louis, MO, USA)
(40 mg/kg). Intramuscular and abdominal preadipocytes
were isolated from the breast muscle and abdominal adi-
pose tissue of 2 weeks old-chicken following the method
described by Zhang et al [8, 26]. Pollution-free treatment
of animal carcasses was performed after the experiment.
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caIdNI

In vitro adipogenic differentiation model of chicken pre-
adipocytes constructed according to the method by
Zhang et al [26]. After 80—90% confluence, cells were
exposed to the MDIO differentiation medium. Cell sam-
ples were harvested at 0, 2, 4, 6, 8, and 10 days after adi-
pogenic induction.

Data resources, annotation and quantification of circRNA

Ribo-Zero RNA-Seq and miRNAs data were downloaded
from the NCBI database (No. PRJNA429489 and
PRJNA453673). Four groups were included in the
PRJNA429489 and PRJNA453673 program, including prea-
dipocytes derived from chicken intramuscular fat (IM_Pre),
abdominal fat (Ab_Pre) and differentiated-mature adipocytes
(IM_Ad, Ab_Ad). Each group included two biological repli-
cates. The paired-end (PE) reads were mapped to the Gallus-
gallus 5 genome (https://www.ncbinlm.nih.gov/genome/
?term=chicken) using Bowtie2 (v2.2.9) with default parame-
ters [48]. The output of Bowtie2 was scanned and analyzed
by CIRI2 (v2.0.6) [49], find_circ (v1.0) [50] and CIRCexplore2

(v2.3.3) [51] with default parameters. The identification of
circRNA was based on the intersection of the three software.
TPM was applied to calculate the relative expression abun-
dance of circRNA.

Identification of differentially expressed (DE) circRNAs

and host genes functional annotation

DE circRNAs were analyzed using the edgeR package
[52], with the threshold of p-value <0.05 and |[fold
change| > 2. Host genes of circRNAs were used for pre-
dicting the potential functions of circRNAs. KOBAS 3.0
(http://kobas.cbi.pku.edu.cn/kobas3/?t=1) online soft-
ware was used for Gene Ontology (GO) enrichment and
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analyses.

The conservative analysis of circRNAs

CircRNAs sequences of humans and mice were down-
loaded from the circBase database (http://www.circbase.
org), porcine circRNAs sequences were download from
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pigcircNet database (http://Inc.rnanet.org/circ/). The se-
quences were compared using Clustal Omega (https://
www.ebi.ac.uk/Tools/msa/clustalo/) for multiple se-
quence alignment.

Genomic DNA (gDNA) and total RNA extraction, cDNA
synthesis and quantitative real-time PCR (qRT-PCR)
Genomic DNA (gDNA) and total RNA were extracted
from tissues/cell samples using animal genomic DNA kit
(Tiangen, China) and RNAiso plus (Takara, Dalian,
China) following to the manufacturers’ instructions re-
spectively. cDNA was synthesized with a PrimeScriptTM
RT reagent Kit with gDNA Eraser (Takara, Dalian,
China). Primers used for qRT-PCR were designed by pri-
mer3plus (Supplementary Table S3). qRT-PCR was per-
formed with the SYBR® Premix Ex TaqTM II kit
(Takara) on a LightCycler® 96 Real-Time PCR system.
GAPDH and U6 were used as the reference genes of cir-
cRNAs, mRNAs, and miRNAs, respectively. The 2744
method was used to calculate gene expression levels.

Validation of circRNAs

To validate the circRNAs related to chicken adipogene-
sis, PCR and Sanger sequencing assays were performed.
Divergent primer was designed to amplify the junction
sites of circRNA, whereas a convergent primer was de-
signed to amplify the linear mRNA (Supplementary
Table S3). Random primers were used for cDNA synthe-
sis. Then, the cDNA of intramuscular and abdominal
preadipocytes and adipocytes were mixed to a cDNA
pool. The PCR products were sequenced by Sangon Bio-
tech Co. Ltd. (Shanghai, China).

The integrative analysis of circRNAs, miRNAs, and mRNAs
Since circRNAs can act as sponges of miRNA, the poten-
tial miRNAs binding sites in chicken adipogenesis were
analyzed. The four groups of circRNA data including
IMPre, IMAd, AbPre, and AbAd were analyzed during
chicken adipogenesis were analyzed, and the correspond-
ing four groups of miRNA data during adipogenesis were
descripted and analyzed in our previous studies [35, 53].
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miRNAs with |fold change| >2 and FDR <0.05 were
regarded as differentially expressed miRNAs. TargetScan
(http://www.targetscan.org/vert_72/), miRanda (http://
www.microrna.org/microrna/home.do), and RNAhybrid
software  (https://bibiserv.cebitec.uni-bielefeld.de/rnahy-
brid) were used to predict the miRNA sites in mRNAs
and circRNAs with default parameters, and investigate pu-
tative interactions between miRNAs and mRNAs or cir-
cRNAs. Furthermore, the target genes with opposite
expression trends to miRNAs were regarded as candidate
target genes. Based on the co-expression of DE circRNAs
and miRNAs (|Pearson’s correlation coefficient| > 0.8 and
p<0.05), the circRNAs-miRNAs-mRNAs ceRNA net-
works were constructed and visualized using Cytoscape
(version 3.5.0) (http://www.cytoscape.org/) [54].

Statistical analysis

All statistical data were analyzed using SPSS 22.0 (SPSS
Inc., Chicago, IL, USA). All results were presented as
mean + S.E.M, a two-tailed t-test to analyzed the data.
p<0.05 and ** p<0.01 were considered significant and
extremely significant respectively.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512864-020-07000-3.

Additional file 1: Table S1. The list of differentially expressed (DE)
circRNAs across various groups. Table S2. The list of differentially
expressed (DE) miRNAs across various groups. Table S3. The primers
used for gRT-PCR in the present study.

Additional file 2 Figure S1. circLCLAT1 is a sequence-conservative cir-
cRNA. (A) Genome locate of chicken circLCLATT. (B) Multiple sequence
alignment analysis of circLCLAT1T among species. (C) The evolutionary
tree of circLCLAT1 among species.

Additional file 3 Figure S2. The binding sites of some upregulated
mIRNAs (eg. miR-146b-5p, miR-147, miR-34a-5p, miR-30e-5p) in the 3'UTRs
of potential target genes.
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