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Abstract

Background: Genomic selection has been successfully implemented in many livestock and crop species. The
genomic best linear unbiased predictor (GBLUP) approach, assigning equal variance to all SNP effects, is one of the
reference methods. When large-effect variants contribute to complex traits, it has been shown that genomic
prediction methods that assign a higher variance to subsets of SNP effects can achieve higher prediction accuracy.
We herein compared the efficiency of several such approaches, including the Adaptive MultiBLUP (AM-BLUP) that
uses local genomic relationship matrices (GRM) to automatically identify and weight genomic regions with large
effects, to predict genetic merit in Belgian Blue beef cattle.

Results: We used a population of approximately 10,000 genotyped cows and their phenotypes for 14 traits, mostly
related to muscular development and body dimensions. According to the trait, we found that 4 to 25% of the
genetic variance could be associated with 2 to 12 genomic regions harbouring large-effect variants. Noteworthy,
three previously identified recessive deleterious variants presented heterozygote advantage and were among the
most significant SNPs for several traits. The AM-BLUP resulted in increased reliability of genomic predictions
compared to GBLUP (+ 2%), but Bayesian methods proved more efficient (+ 3%). Overall, the reliability gains
remained thus limited although higher gains were observed for skin thickness, a trait affected by two genomic
regions having particularly large effects. Higher accuracies than those from the original AM-BLUP were achieved
when applying the Bayesian Sparse Linear Mixed Model to pre-select groups of SNPs with large effects and
subsequently use their estimated variance to build a weighted GRM. Finally, the single-step GBLUP performed best
and could be further improved (+ 3% prediction accuracy) by using these weighted GRM.
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Conclusions: The AM-BLUP is an attractive method to automatically identify and weight genomic regions with
large effects on complex traits. However, the method was less accurate than Bayesian methods. Overall, weighted
methods achieved modest accuracy gains compared to GBLUP. Nevertheless, the computational efficiency of the
AM-BLUP might be valuable at higher marker density, including with whole-genome sequencing data. Furthermore,
weighted GRM are particularly useful to account for large variance loci in the single-step GBLUP.
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Background

Genomic selection [1] has been widely adopted in cattle
and in other livestock species. The genomic best linear
unbiased prediction or GBLUP [1, 2] and the single-step
GBLUP [3, 4] are popular methods to estimate genomic
breeding values (GEBV). They both rely on the construc-
tion of a genomic relationship matrix (GRM) using ge-
notypes at a set of interrogated SNPs [2, 5] or even
using whole-genome sequence data. These methods as-
sume a polygenic model in which all the marker effects
have equal variance and a small contribution to the total
additive genetic variance. It has been previously shown
that when large-effect variants contribute to complex
traits, Bayesian methods that assign a higher variance to
a subset of SNP effects can achieve higher prediction ac-
curacy than GBLUP (e.g., [6]). For instance, models such
as Bayes B [1], Bayes R [7] or the Bayesian sparse linear
mixed model (BSLMM) proposed by Zhou et al. [8] as-
sign SNPs to different classes based on the variance of
their effect. These models have been shown to be effect-
ive in livestock species but also to predict complex traits
in human data (e.g., [8, 9]). Alternatively, a number of
studies proposed to weight the SNPs according to their
effect or their variance to build the GRM in order to in-
crease GBLUP prediction accuracy [10-12]. Different
strategies have been proposed, relying on iterative
schemes using SNP effects estimated from the GBLUP
model [13-16] or on the posterior effects or variances
obtained from some Bayesian methods [11, 12, 17]. It is
also possible to directly estimate the variance associated
with a single SNP or a subset of SNPs by fitting a spe-
cific GRM in a REML analysis (e.g., [18, 19]). Local
GRM can for instance be used to identify genomic re-
gions with significant contribution to genetic variation
with the so-called Regional Heritability Mapping [20,
21]. In 2014, Speed and Balding [22] proposed and im-
plemented the Adaptive MultiBLUP (AM-BLUP) ap-
proach for genomic prediction. This approach consists
in using local GRMs, estimated with subsets of SNP, to
identify regions of the genome significantly associated
with the trait of interest. After this first association step,
a REML approach is used to estimate the fraction of her-
itability explained by the significant regions. Doing so,

they give more weights to regions including variants
with larger effects and account for the genetic architec-
ture of the trait. The method is computationally effective
compared to some of the Bayesian models previously
mentioned [22]. In addition, they showed that their ap-
proach achieved higher prediction accuracy than other
methods, including BSLMM [22]. However, this ap-
proach was mostly tested for the prediction of human
complex traits and the properties of the model remain
unknown in livestock species.

The benefit of such approaches might increase in the
near future as causative variants, or variants in high LD
with those, are now frequently added to genotyping ar-
rays to improve accuracy of genomic predictions (e.g.,
[23]). In addition, research projects are implemented to
annotate genetic polymorphisms in livestock species [24]
and that information might also be used to improve ac-
curacy of genomic predictions [25].

A genomic selection program has been recently imple-
mented in the Walloon region (Southern Belgium) for
the Belgian Blue beef (BBB) cattle breed known for its
extreme muscular development. As for other breeds and
traits in cattle, several variants with large effects have
been identified and characterized in that breed. The 11
bp deletion in the myostatin gene [26] is fixed and does
not contribute any longer to genetic variation but other
variants are still segregating in BBB (e.g., [27]). In par-
ticular, several variants causing genetic defects at homo-
zygous state might have favourable effects in
heterozygotes and be under balancing selection [28, 29].
The objective of the present study was to apply the AM-
BLUP method for genomic predictions of complex traits
in BBB cattle in order to study its properties in a live-
stock population. To do so, we compared the approach
to state-of-the-art methods as GBLUP or BSLMM. In
addition, we investigated a few strategies to improve the
approach. We then evaluated whether the obtained
weighted GRM could improve accuracy of single-step
GBLUP (ssGBLUP) approaches. Because these methods
also identify genomic regions or variants with larger ef-
fects, this study further provides insights into the genetic
architecture of complex traits such as muscular develop-
ment or height in that unique breed.
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Results

Regions and SNPs significantly associated with traits
Application of the AM-BLUP results in the identification
of regions significantly associated with each trait and
consequently provides information on their genetic
architecture. Similarly, the BSLMM identifies SNPs with
a high probability to have a large effect on the traits (i.e.,
with a large posterior inclusion probability - PIP). We
start thus by describing the regions identified by AM-
BLUP (using 1 Mb chunks) and compare them to results
from BSLMM or from more traditional GWAS ap-
proaches relying on LMM. Note that in a few cases, the
AM-BLUP identified several regions close to each other
that should possibly be merged as one larger region cap-
turing more genetic variance. However, we preferred to
keep the boundaries as defined by the default settings of
the software (see Methods). The number of regions sig-
nificantly associated ranged from 2 to 12 per trait
(Table 1). These regions represented an average total
length of 47.7 Mb (742.1 SNPs) per trait (Supp. File 1),
and jointly captured from 4.3% (rib-shape) to 24.6%
(height) of the additive genetic variance, with an average
of 13.4% per trait and 2.6% per region. Identified regions
accounted for 5% or more of the additive genetic vari-
ance of a trait in six instances. First, a region spanning
from 36 to 47 Mb on BTA6 accounted for 6.8, 7.6 and
7.1% of the genetic variance of length, pelvis length and
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height, respectively, and encompassed the NCAPG-
LCORL genes (non-SMC condensin I complex subunit
G / ligand dependent nuclear receptor corepressor like)
previously associated with height in cattle (e.g., [30, 31])
and in other species [32—34]. Although only two regions
were associated with skin thickness, each one accounted
for more than 5% of the genetic variance. Finally, a large
region on BTA19 (from 38 to 56 Mb) explained 5.3% of
the genetic variance of rump linear scoring. That region
encompasses the loss-of-function mutation in the MRC2
gene (mannose receptor C type 2) responsible for the
crooked-tail syndrome [28] and previously associated
with different muscular development traits [27]. This re-
gion overlapped with regions identified for nine other
traits suggesting a highly pleiotropic region (affecting all
traits but skin thickness, tail set and pelvis- and chest-
width). Overall, the 72 associations could be condensed
in 22 regions (regions were merged if they overlapped)
affecting one to ten traits, confirming that some regions
are pleiotropic and that multiple-trait approaches might
be beneficial to increase power and mapping resolution.
As a matter of comparison, the number of SNPs with
a PIP (obtained with BSLMM) higher than 0.5 ranged
from O to 9 (Table 1) per trait, for a total of 38 hits
across all traits (2.7 per trait on average). This corre-
sponded to 16 unique SNPs and the number of traits as-
sociated with each of these SNPs ranged from 1 to 9

Table 1 Summary of significant associations identified with the AM-BLUP approach, with the Bayesian Sparse Linear Mixed Model
(BSLMM) and by genome-wide association study (GWAS). The table reports also the percentage of additive genetic variance (oé)

captured by the identified regions

Trait Regions identified with AM-BLUP BSLMM GWAS
Number of Proportion OS Total length of Number of ~ Number of SNPs with  Number of Number of
regions (in %) regions (Mb) SNPs PIP>0.5 regions significant SNPs

Shoulder 6 10.8 532 814 1 3 5

muscling

Top muscling 9 184 62.5 948 3 3 8

Skin thickness 2 129 194 234 1 2 15

Height 9 246 84.3 1301 9 10 42

Muscular 12 194 104.7 1593 2 8 13

development

Rump 3 132 37.8 595 2 5 14

Length 9 222 594 883 6 5 12

Chest width 2 6.1 14.2 230 3 2 2

Pelvis width 2 6.0 180 300 2 3 5

Rib shape 2 43 19.8 291 1 3 3

Pelvis length 4 182 358 595 4 3 5

Tail set 2 5.7 20.7 316 0 3 3

Buttock muscling 5 11.0 64.1 950 1 6 20

(side)

Buttock muscling 5 15.1 73.8 1048 3 4 5

(rear)
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(Suppl. File 1). Among these SNPs, five known variants
with coding effects (missense, splice-site and loss-of-
function variants) accounted for more than 50% of the
hits (Supp. File 1). More precisely, the loss-of-function
mutation in MRC2 [28] segregating at 4% in our sample
was associated with 7 traits, the splice-site variant in
RNFI1 (ring finger protein 11) causing dwarfism [29]
and segregating at 6% had PIP>0.5 for 2 traits and a
missense variant in WWPI (WW domain containing E3
ubiquitin protein ligase 1) [35] segregating at 14% was
found for 9 traits whereas another less frequent (1%)
missense variant in ATP2A1 (ATPase sarcoplasmic/
endoplasmic reticulum Ca2+ transporting 1) [36] caus-
ing congenital muscular dystonia 1 (CMD1) had a large
effect on linear score for rump. These four variants are
known to have deleterious effects at homozygous states
and at least two of them have been shown to be under
balancing selection [28, 29]. These variants affect mostly
size (e.g., shorter animals) and muscular development
traits (higher muscularity). Finally, the roan coat color
[37], a missense variant in KITLG (KIT ligand) on
BTAS5, was found associated with skin thickness. When
the PIP were cumulated over windows of 25 SNPs
(Supp. File 1), 1 to 12 windows were identified per trait
(on average 11.1 SNPs per trait). This represents only 8
new regions (+21%) compared to selection based on in-
dividual SNPs PIP. With the LMM-based GWAS, 11.3
significant SNPs were detected on average per trait, cor-
responding to 2 to 10 regions per trait (Table 1; Supp.
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File 1). As expected, the 5 variants previously mentioned
were found significantly associated with several traits
(Table 2). Overall, the overlap among the AM-BLUP,
the BSLMM and the LMM-based GWAS was relatively
high as illustrated for length and muscular development
in Figs. 1 and 2 respectively, and for other traits in Supp.
File 2. The majority of SNPs with a PIP > 0.5 (35 out of
38), or the window of 25 SNPs with cumulative PIP > 0.5
(37 out of 46), were inside the regions identified by the
AM-BLUP (for 12 traits, this last proportion was 100% -
Supp. File 1). Similarly, the significantly associated SNPs
identified with the LMM approach were also in majority
located within large-variance regions found by the AM-
BLUP (86%). This proportion increased to 97 and 100%
for SNP with p-values below 1e-8 and 1le-10.

We then used permutations techniques to define sig-
nificance thresholds and obtained higher values (less
conservative) compared to the default threshold (they
ranged from 1.19x107° to 3.26x 10" °). As a result,
more significant regions were detected although several
neighboring regions were sometimes merged into a sin-
gle one (Table 3 and Supp. File 1). In addition, we used
bootstrapping techniques to optimize the definition of
confidence intervals (CI). This allowed to obtain smaller
regions than the use of default thresholds (on average
6.6 MDb vs. 9.3 Mb or 104.7 SNPs vs. 140.3 SNPs). Never-
theless, the total genetic variance captured by these
smaller regions was on average as high as with the de-
fault option (the proportion increased from 13.4 to

Table 2 Association between five coding variants and different traits. The five variants have been previously associated with specific
phenotypes (coat colour or recessive genetic defects) and the corresponding gene names are indicated in the table. The
associations are reported in terms of p-values and posterior inclusion probability (PIP) estimated with the Bayesian Sparse Linear

Mixed Model

Gene RNF11 [29] KITLG [37] WWP1 [35] MRC2 [28] ATAP2AT [36]
Phenotype Dwarfism Roan coat colour Fitness Crooked-tail syndrome Congenital Muscular dystonia 1
Trait PIP p-value  PIP p-value PIP p-value  PIP p-value PIP p-value
Shoulder muscling 001 96e-5 0 0.78 1 14e-11 002 1.0e-4 0 039
Top muscling 092  38e-11 0 0.25 1 12e-12 091 24e-6 0 0.34
Skin thickness 0 0.16 1 54e-12 0 2.7e-1 0 0.57 0 0.09
Height 028  42e-8 0 0.74 1 1.6e-11 0.68 1.2e-12 0.01 042
Muscular development 037  4.1e-9 0 0.34 1 23e-12 081 5.0e-8 0 0.13
Rump 0 1.7e-2 0 0.50 0 6.7e-2 0.97 1.6e-13 1 2.0e-8
Length 062  35e-7 0 0.59 1 7.2e-11 0.75 1.5e-8 0 0.76
Chest width 001  65e3 0 045 076 74e-6 0.03 3.8e-5 0 039
Pelvis width 0 5.7e-2 0 0.56 091 53e5 0.03 32e-5 0 046
Rib shape 0 4.0e-4 0 0.31 0 34e-2 1 2.0e-10 0 0.94
Pelvis length 003  25e3 0 0.24 099 58e8 042 2.6e-9 0 023
Tail set 0 1.0e-2 0 0.15 001  48e-2 0 0.98 0 0.01
Buttock muscling (side) 002  6.7e-6 0 0.60 023  29e-3 0.01 3.1e-3 0.29 7.6e-5
Buttock muscling (rear) 001  43e-4 0 0.10 1 28e-11 054 8.0e-8 0 034
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Position along the genome
Fig. 1 Genome-wide association study for length. The Manhattan plot represents the significance of SNP associations estimated with linear-mixed
models. The significant SNP are represented in green. Significant regions identified with the Adaptive MultiBLUP approach are represented with a
blue box. SNP with a posterior inclusion probability (PIP) larger than 0.5 are identified with triangles. The PIP were estimated with BSLMM. The
five known coding variants previously identified for their association with specific phenotypes (see Table 2) are in red. The horizontal dashed line
indicates the significance threshold

15.5%) and the average genetic variance captured per
SNP from selected regions increased (from 0.019 to
0.026% per SNPs). Interestingly, the five coding variants
previously identified were always included in the boot-
strap confidence interval (for the 18 cases for which the
coding variant and the surrounding region were

simultaneously identified with BSLMM and the AM-
BLUP). In most cases, they were even located in the
SNP window identified most frequently as best across
bootstraps (16 out of 18). To illustrate this, for a QTL
on chromosome 3 that affects top muscling and is asso-
ciated to the variant in RNFII, we plotted the

10
|

11 12 13 14 15 16 17 18 19 20 21 22 23 25 27 29

Position along the genome

Fig. 2 Genome-wide association study for muscular development. The Manhattan plot represents the significance of SNP associations estimated
with linear-mixed models. The significant SNP are represented in green. Significant regions identified with the Adaptive MultiBLUP approach are
represented with a blue box. SNP with a posterior inclusion probability (PIP) larger than 0.5 are identified with triangles. The PIP were estimated
with BSLMM. The five known coding variants previously identified for their association with specific phenotypes (see Table 2) are in red. The
horizontal dashed line indicates the significance threshold
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Table 3 Summary of regions identified with alternative strategies: 1) the AM-BLUP approach when significance thresholds are
defined by permutations and the confidence interval with a bootstrapping approach (BAM-BLUP) and 2) windows of 25 SNPs
having a cumulative posterior inclusion probability (PIP) larger than 0.50 (WPIP-GBLUP). The table reports also the percentage of
additive genetic variance (oé) captured by the identified regions

Trait BAM-BLUP WPIP-GBLUP
Number of  Total length of Proportion oé Number of  Number of  Total length of Proportion 05 Number of
regions regions (Mb) (in %) SNPs regions regions (Mb) (in %) SNPs
Shoulder 6 40.5 10.7 636 1 0.0 3.3 1
muscling
Top muscling 9 455 194 714 3 04 6.5 4
Skin thickness 2 155 145 225 1 0.0 6.8 1
Height 14 95.0 328 1546 12 1.7 187 46
Muscular 7 570 17.0 909 2 06 4.7 3
development
Rump 4 26.0 14.0 419 2 0.0 4.0 2
Length 8 385 253 599 6 4.1 128 15
Chest width 5 325 1.9 488 1 1.1 1.9 3
Pelvis width 4 26.0 9.0 414 6 7.1 11.0 41
Rib shape 3 220 7.2 357 1 0.0 3.1 1
Pelvis length 4 250 18.0 405 5 24 100 17
Tail-set 3 155 85 252 1 05 52 10
Buttock 7 47.5 14.2 740 2 19 26 9
muscling (side)
Buttock 4 435 14.1 668 3 0.0 6.2 3

muscling (rear)

significance of 1 Mb chunks, the boundaries of the re-
gion selected with AM-BLUP approach, the frequency a
chunk was identified as best in the bootstrap samples
(and the resulting confidence intervals), and the PIP of
individual SNPs or the cumulative PIP from 25 SNPs
windows (Fig. 3). A similar picture is available for the
QTL affecting skin thickness on chromosome 5 and as-
sociated with the variant in KITLG (Fig. 4). In both
cases, we observed a good overlap between SNPs / re-
gions identified by different methods. Similar figures are
available for all QTLs in Supp. File 3. Such fine-scale in-
spection of BSLMM results also suggests that the region
on BTAG6 affecting height and length might harbor two
QTLs since we observed two distinct windows with PIP
close to 1 (Fig. 5, Supp. File 3). This might also be the
case for the association between height and the region
on BTA19 encompassing MRC2, although with less evi-
dence because both windows do not reach values of 1
(Supp. File 3).

Finally, we also selected large-variance regions accord-
ing to the cumulative PIP of 25 SNPs windows. With
this alternative strategy, fewer regions were selected
(Table 3). These regions contained also fewer SNPs
(11.1 per trait and 3.4 per window) because we selected
only SNPs with significant contribution to the window
PIP with that approach (see methods), whereas low PIP

SNPs within the window were filtered out. Overall, with
this strategy, the total amount of genetic variance (esti-
mated with the GREML approach implemented in
LDAK) captured by large-variance regions decreased, on
average, to 6.9%. Interestingly, the variance captured per
SNP was much larger, increasing from 0.019% to 0.618%
of the genetic variance.

Reliability of genomic predictions

Reliability of different genomic prediction methods are
reported in Table 4 (see also Fig. 6 for results for a sub-
set of traits). The AM-BLUP approach slightly improved
reliabilities compared to the standardized GBLUP ap-
proach (average values increased from 0.46 to 0.48), ex-
cept for rib shape. Application of BSLMM resulted in
better results (0.49 on average), with increased accuracy
for all traits (except for rib shape again). Nevertheless,
the overall increase in reliability was modest, although a
few traits, e.g., skin thickness, had a larger benefit.
BayesR showed results (0.49) that were similar to those
from BSLMM, albeit slightly lower. We also tested two
alternative weighted GBLUP strategies that did not per-
form better than the two Bayesian approaches. First, the
iterative procedure using SNP solutions as described in
Wang et al. [13] promoted a slight increase in reliabil-
ities (0.47) compared to the standardized GBLUP. When
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Fig. 3 Association curves for top muscling on chromosome 3. a) Association with the Adaptive MultiBLUP approach. The line indicates the
lower horizontal line is the lower limit to include chunks in a significant region whereas the green box represent the boundaries of the region

triangle represents the position of the variant in RNF11 associated with dwarfism. b) Association with BSLMM. The red curve represents the
cumulated posterior inclusion probability (PIP) of 25 SNP windows whereas the grey points indicate individual SNP PIP

T T
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line indicates the significance threshold obtained by permutations, the

time the segment was best in a bootstrapping sample. The blue

posterior variances obtained from BayesR were used as
weights in GBLUP, the performance was on average bet-
ter than the standardized GBLUP (0.47 average reliabil-
ity), but not consistently across traits. Standardized
genotypes were used in all these methods, and therefore,
we compared accuracy with a standardized GBLUP that
gives more weight to SNP with low MAF (see Methods).
The reliability with a GBLUP assuming equal variance of
SNP effects was slightly better, with an average of 0.47
across 14 traits (Table 4).

When parameters of the AM-BLUP were optimized
with permutation and bootstrapping strategies, resulting
reliabilities remained close to those obtained with de-
fault parameters (0.48). However, this result was realized
with fewer SNPs in the large variance regions. When re-
gions were selected based on cumulative PIP in 25 SNPs
windows, higher reliabilities (0.49) were achieved with
even fewer SNPs, close to obtained with the Bayesian
methods.

Methods were also compared in terms of mean-square
error (MSE) and bias (see Supp. File 1). These metrics
resulted in even lower differences among methods. The
methods with highest reliability had lowest MSE, and

vice versa. The bias in the scale of genomic prediction
was measured as the deviation from 1 of the regression
coefficients of TD on genomic predictions. In general,
this regression coefficient was lower than 1 indicating
inflation, and values were similar across all methods,
with the exception of BRPV-GBLUP that presented lar-
ger deviations from 1 (and IW-GBLUP to a lesser
extent).

Reliability of genomic predictions with single-step GBLUP
Application of the ssGBLUP model resulted in higher re-
liabilities (0.52 on average for the tested traits with the
standardized ssGBLUP), providing clearer benefits com-
pared to other tested methods (Table 5). Differences
between ssGBLUP and standardized GBLUP were twice
as large as those between Bayesian methods and stan-
dardized GBLUP, indicating that the main gain in the
present situation might come from adding ungenotyped
individuals and not from optimally weighting SNPs (with
our genotyped sample and marker panel).

Nevertheless, ssGBLUP can also incorporate weighted
GRM constructed with all the methods previously tested
(e.g, [13, 16, 38]). For instance, we implemented
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Fig. 4 Association curves for skin thickness on chromosome 5. a) Association with the Adaptive MultiBLUP approach. The line indicates the
significance of association with 1 Mb chunks. The upper horizontal dashed line indicates the significance threshold obtained by permutations, the
lower horizontal line is the lower limit to include chunks in a significant region whereas the green box represent the boundaries of the region
used in the bootstrapping. The height of barplots indicates the number of time the segment was best in a bootstrapping sample. The blue
triangle represents the position of the variant in KITLG associated with roan coat colour. b) Association with BSLMM. The red curve represents the
cumulated posterior inclusion probability (PIP) of 25 SNP windows whereas the grey points indicate individual SNP PIP

ssGBLUP using the GRM weighted with the AM-BLUP
model, with the iterative procedure implemented in
postGSfI0 [39], and with the strategy relying on the se-
lection of windows with large cumulative PIP (combined
with a subsequent estimation of their specific variance
by REML). In all cases, the reliability of predictions
(averaged across the 14 traits) from ssGBLUP increased,
to 0.53 with the iterative procedure and to 0.55 with
both the AM-BLUP GRM and the PIP-based approach
(Table 5).

In terms of MSE, ssGBLUP approaches had slightly
lower MSE than previous approaches, and ssGBLUP
with weighted GRM had lower MSE than unweighted
standardized ssGBLUP, confirming observations based
on reliability of genomic predictions. Regarding bias in
scaling, ssGBLUP approaches had also on average re-
gression coefficients closer to 1, although the differences
were limited.

Discussion

We herein compared several genomic prediction
methods that differ in their SNP weighting strategy (e.g.,
uniform weighting, window weighting, and individual

SNP weights). Some of these methods also provided in-
formation on genomic regions significantly associated
with traits of interest. In the vast majority of cases,
LMM-based association studies, Bayesian approaches
such as BSLMM or methods based on association be-
tween chunks of SNPs (similar to regional heritability
mapping approaches) captured the same variants / re-
gions and provided similar description of the genetic
architecture of the traits. We analyzed here mostly traits
related to muscular development scoring or to animal
dimensions. Overall, all traits appeared polygenic as 75
to 95% of the genetic variance was captured by the back-
ground random polygenic effect (composed of many
polymorphisms of small effect), whereas each QTL re-
gion captured approximately 2 to 4% of the genetic vari-
ance. Traits such as length or height presented the
highest number of significant associations (around 10)
whereas for individual muscular scoring measures, the
number varied from around five for buttock muscularity
(profile and rear views) or shoulder muscling to nine for
top muscling. Note that the perception of certain mus-
cular development scores might be influenced by ani-
mal’s height (i.e., these traits are correlated). Height is a
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trait selected in several cattle breeds and domestic spe-
cies, and this for many generations (see for instance dis-
cussion in Bouwman et al. [31]). Among the variants
associated with height or length, we found several re-
gions also associated with height in other breeds [31]
and hence potentially associated with old variants
(although different mutations might also segregate in
different breeds). The NCAPG-LCORL region (on
chromosome 6), associated with the largest fraction of
genetic variance, has been associated with height in
several cattle breeds (see review by Takasuga [30]) and
also in other species including human, dogs and horses
[32-34]. It has also been associated with large selective
sweeps in cattle (e.g., [31, 40]). The QTL region on
BTA5 matches the highly significant association in
Bouwman et al. [31] linked to CCND2 (cyclin D2)
whereas the BTA26 QTL corresponds to a hit in the
vicinity of PLEKHA1 (pleckstrin homology domain con-
taining Al) [31]. For these three cases, the SNP with
high PIP was less than 250kb from the top SNP in
Bouwman et al. [31] despite that we used a medium
density array. Other QTL regions (merged chunks at the
end of BTA2 and BTA4 or the Hapmap38123-BTA-

72477 and rs109090354 markers on BTA2 and BTA7)
might be related to other hits from the meta-analysis
from Bouwman et al. [31] but with less evidence. Beside
these variants that may be from pre-breed formation,
three other highly significant variants in RNFI11, WWPI
and MRC2 [28, 29, 35] are recent variants specific to the
BBB breed. These variants have also an effect on muscu-
lar development traits and have recessive deleterious ef-
fects while presenting selective advantages at
heterozygous state (e.g., [28]). According to the trait,
they account from 1.0 to 5.4% of the genetic variance.
High contribution of the MRC2 variant to genetic vari-
ance of muscular development traits has been previously
reported [27] but its allele frequency has been since de-
creasing as a result of selection implemented against car-
rier bulls as for the variants in RNF11 and ATP2A1. The
WWPI1 variant presents now higher significance levels
and is more frequent in the population (14%). Compared
to QTLs observed in other breeds, these variants would
correspond to a more recent and extreme selection for
increased muscularity and shorter animals. Finally, skin
thickness presented an interesting architecture with only
two significant regions but each one capturing more
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Table 4 Reliabilities of predicted genomic EBVs for conformation and muscular traits in Belgian Blue beef cattle using different
methods and SNP weighting strategies

Trait GBLUP  Standardized GBLUP ~ AM-BLUP®  BAM-BLUP® BSLMMS BayesR WPIP-GBLUP®  IW-GBLUP®  BRPV-GBLUP
Shoulder muscling 0.57 0.56 0.58 0.58 0.59 0.57 0.58 0.56 0.55
Top muscling 0.56 0.54 0.55 0.55 0.56 0.53 0.54 0.54 0.51
Skin thickness 039 039 044 044 049 048 048 039 043
Height 049 0.50 052 052 053 0.54 0.53 051 0.54
Muscular development 062 0.60 063 063 063 0.62 061 0.60 061
Rump 044 044 047 048 047 046 047 044 045
Length 037 037 038 038 040 040 041 037 039
Chest width 041 040 041 039 044 043 040 041 044
Pelvis width 032 031 033 034 035 034 035 031 033
Rib shape 049 0.51 0.51 0.51 0.50 0.50 0.51 0.51 049
Pelvis length 030 030 032 032 032 032 0.34 030 031
Tail set 049 048 0.46 045 049 047 048 048 0.46
Buttock muscling (side)  0.54 0.53 0.54 053 0.55 0.54 0.53 053 0.54
Buttock muscling (rear)  0.58 057 0.60 0.60 0.61 0.61 0.59 057 0.60
Average 0.47 0.46 0.48 0.48 0.49 0.49 0.49 0.47 0.47

?Adaptive MultiBLUP

bBootstrap Adaptive MultiBLUP

“Bayesian sparse linear mixed model (BSLMM)
dWindow Posterior Inclusion Probability GBLUP
Siterative weighted GBLUP (IW-GBLUP)

fBayesR Posterior Variance GBLUP (BRPV-GBLUP)

<
Q _
T © BSLMM
o BayesR
8 WPIP-BLUP
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Fig. 6 Individual and average reliabilities of predicted genomic EBVs in Belgian Blue Beef cattle using different methods and SNP weighting
strategies. The reliabilities are reported for 4 individual traits (top muscling, skin thickness, height and muscular development) and for the average
of 14 traits related to muscular development and conformation. The genomic prediction methods are standardized GBLUP, iterative weighted
GBLUP (IW-GBLUP), Adaptive MultiBLUP (AM-BLUP), Bootstrap Adaptive MultiBLUP (BAM-BLUP), BayesR Posterior Variance GBLUP (BRPV-GBLUP),
Window Posterior Inclusion Probability GBLUP (WPIP-GBLUP), BayesR and Bayesian Sparse Linear Mixed Model (BSLMM)
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Table 5 Reliabilities of predicted genomic EBVs for conformation and muscular traits in Belgian Blue beef cattle using single-step

GBLUP with different weighting strategies

Trait Weighting strategy
Unweighted Unweighted standardized? AM-BLUPP IW-GBLUP® WPIP-GBLUP?

Shoulder muscling 0.65 0.64 0.66 0.64 0.66
Top muscling 0.60 0.58 0.59 0.58 0.58
Skin thickness 045 044 0.51 045 0.52
Height 057 0.58 0.59 058 061
Muscular development 0.64 0.63 0.66 063 0.64
Rump 0.58 0.58 061 0.59 0.60
Length 041 042 044 042 046
Chest width 048 047 048 047 047
Pelvis width 041 039 041 039 043
Rib shape 0.56 0.56 0.57 0.56 0.57
Pelvis length 0.36 0.36 0.38 0.36 040
Tail set 0.55 0.53 0.53 0.53 0.54
Buttock muscling (side) 0.59 0.58 0.59 0.58 0.58
Buttock muscling (rear) 0.60 0.59 0.62 0.59 0.61
Average 0.53 0.52 0.55 0.53 0.55

2Unweighted ssGBLUP using standardized genotypes
PAdaptive MultiBLUP

Siterative weighted GBLUP (IW-GBLUP)

4Window Posterior Inclusion Probability GBLUP

than 5% of the genetic variance. Despite these different
architectures, we did not observe a clear relationship be-
tween the total percentage of genetic variance explained
by the QTL or the number of QTL and the benefits of
weighting these regions (measured as increased reliabil-
ity). It is noteworthy to mention that prediction of skin
thickness, a trait for which the variance captured by each
of the 2 significant QTL was maximal, responded best to
weighting strategies.

Although the regions identified by the tested methods
were highly similar, the underlying variants were
exploited differently, resulting in variable gains in accur-
acy. When considering only genotyped individuals,
Bayesian approaches relying on mixture of distributions
(including distributions for large SNP effects) achieved
the highest accuracies, consistently better than the
GBLUP approach. This agrees with previous reports
showing higher accuracies with similar Bayesian ap-
proaches when large effect variants are segregating in
the population (e.g., [6, 11]). On average, none of the
weighted GBLUP achieved better results than BSLMM.
Calus et al. [12] and Su et al. [11] obtained nevertheless
similar accuracies between Bayesian variable selection
models and weighted GBLUP for dairy traits. The AM-
BLUP resulted in higher reliability than standardized
GBLUP but it was most often less accurate than
BSLMM, contrary to comparisons performed with

human complex traits by Speed and Balding [22]. The
data structures were however different since LD extends
at shorter range in human populations and higher dens-
ity maps are used, allowing to work with smaller chunks
of markers. The number and size of independent
chromosome segments in both genomes are also ex-
pected to be very different [41]. For instance, a cattle
population would typically contain 10,000 to 15,000 seg-
ments that are 200 kb long, whereas in humans, a gen-
ome of similar physical size, segments would be only 2
kb long [41]. The lower accuracy of the AM-BLUP ap-
proach compared to BSLMM in the present study might
be due to the fact that the AM-BLUP selected large re-
gions (several Mb, containing multiple segments). A
large variance is then assigned to many SNPs, or seg-
ments, although only a few of them (eventually one)
have truly larger effects. Conversely, Bayesian methods
relying on Gibbs sampling usually estimate SNP effects
sequentially, and when a specific SNP is assigned a large
effect, adjacent effects may automatically be assigned a
small variance (BSLMM) or no effect (BayesR). There-
fore, these methods work well for traits where causative
SNP with large effects are identified and present in the
data. We tried to address that issue associated with the
AM-BLUP by optimizing significance thresholds and by
defining CI through bootstrapping. This allowed to
achieve the same accuracy with less SNPs, but with
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reliability levels still below BSLMM. That refined strat-
egy still assigned the same variance to all SNPs within a
chunk, including SNPs without effect. We then used the
PIP values estimated by BSLMM to identify SNPs (or
group of SNPs) with higher probability to have a large
effect and subsequently estimated their variance with a
REML procedure. That strategy improved prediction ac-
curacy (still slightly below BSLMM) and strongly re-
duced the number of large effect SNPs. Overall, these
results suggest that it is essential to identify unambigu-
ously large-effect variants and to exclude neighboring
SNPs with small effects. Inclusion of functional annota-
tion might help to identify such SNPs [25, 42] and ef-
forts to put putative causal variants on custom
genotyping arrays would also be beneficial in that sense
[23]. Here, we observed that such known causal variants
present on the array were clearly identified by the
BSLMM approach and that their weighting resulted in
increased prediction accuracy. When the custom SNPs
were not included in the analysis, the average reliabilities
across 14 traits were 1% lower with the standardized
GBLUP and 2% lower with the BSLMM. This illustrates
that both approaches benefited from the inclusion of the
custom SNPs, but that the BSLMM exploited them bet-
ter. Note also that these custom SNPs were not selected
for their strong association with phenotypes, but con-
tained variants predicted to have potential deleterious ef-
fects such as loss-of-function variants [35].

Although individual SNP weighting methods avoid
some of the caveats associated with chunk-based strat-
egies, the iterative procedure based on the SNP effect so-
lutions or based on posterior SNP variance did not
perform as well as BSLMM. The first strategy estimates
all SNP effects simultaneously and does not eliminate or
reduce variance of SNP adjacent to potential causative
SNP automatically. It proved, however, efficient in simu-
lations studies (e.g., [16]), but was not compared to
Bayesian approaches. In Calus et al. [12] and Su et al.
[11], using posterior SNP variance to weight SNP in a
GRM resulted in predictions that were almost as accur-
ate as the ones form a Bayesian mixture model. In gen-
eral, efficiency of these approaches is dependent on the
number of large-effect variants (e.g., [10]). Conversely,
methods relying on window of SNPs [21, 22] are compu-
tationally effective and could better capture multi-allelic
variants or multiple co-localized SNP effects (including
rare alleles not captured as single SNPs). Therefore,
methods that operate on segments may be more efficient
for traits with few causative SNP in the data or with
multiple QTL per segment. They might also be more
recommended at higher marker density since windows
would be physically shorter (more precise mapping) but
would contain equivalent number of markers. In
addition, their computational efficiency would be a

Page 12 of 18

stronger asset. Similarly, methods partitioning the gen-
etic variance in different groups of markers would be ef-
ficient with large number of variants (e.g., sequence
information) and when functional information is avail-
able to classify these variants (e.g., [25]).

Compared to other studies (e.g., [6, 11, 23]), the appli-
cation of Bayesian methods (or other SNP weighting
strategies) resulted in relatively modest gains. One pos-
sible reason would be that the traits were highly poly-
genic (very few variants explaining more than 5% of the
genetic variance and none capturing 10%). In addition,
some large-effect variants might be poorly captured with
our medium density marker panel and more records
would be required to increase the power to identify
them (or more accurate phenotypes such as daughter
yield deviations from proven bulls). However, it has been
previously observed that SNP selection increases reliabil-
ity with small data sets but less so with large ones [43].
When the amount of information is small, only a frac-
tion of all chromosome segments can be well estimated,
and indirect selection of segments with larger effects by
SNP selection is useful [44]. When all chromosome seg-
ments can be estimated well, preselection of segments is
less useful. The data size in this study was relatively
large whereas the number of independent chromosome
segments was probably limited (the data came from a
single breed with a low effective population size). Conse-
quently, the impact of SNP selection was small. The im-
pact will be even smaller in the future, when the amount
of information in Belgian Blue cattle increases. In that
situation, SNP effects would be estimated more accur-
ately and large SNP effects would be less regressed to-
wards the mean in GBLUP, making weighting less
necessary. Conversely, the ssGBLUP approach resulted
in higher gains in reliabilities indicating that optimal in-
clusion of ungenotyped animals was more important
than optimal SNP weighting in our current setting.
Nevertheless, individual SNP weighting strategies can
also be incorporated in the ssGBLUP [13, 15, 16, 38].
Here, we observed that such a strategy could further im-
prove reliability of ssGBLUP. An alternative strategy
could be to apply the model presented by Fernando
et al. [45] that combines genotyped and ungenotyped in-
dividuals in a Bayesian setting.

Although weighting strategies might increase predic-
tion accuracies, their impact on long term evolution of
genetic progress, maintenance of genetic variance and
genetic diversity should also be considered. Some studies
suggested that higher weights to frequent or large effects
SNPs might lead to their rapid fixation and reduce long
term genetic gain (e.g., [46]). In particular, in the case of
the Belgian Blue cattle breed, we should be careful in
selecting variants with deleterious effects at homozygous
state.
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Conclusions

The AM-BLUP is an attractive method to automatic-
ally identify regions in the genome with large effects
on complex traits and to estimate the proportion of
genetic variance they capture. As a result, an opti-
mally weighted GRM is automatically created and can
be used in weighted GBLUP or ssGBLUP settings to
improve genomic prediction accuracy. Although the
approach proved very efficient on human data, it was
less adapted to medium density genotyping arrays and
high LD levels as typically observed in cattle. An al-
ternative strategy, using Bayesian methods to identify
group of SNPs with large effects and estimating their
variance with a REML approach resulted in higher ac-
curacies. Nevertheless, the computational efficiency of
the AM-BLUP might be valuable at higher marker
density, including with whole-genome sequencing
data, or to estimate variance associated with different
functional categories of SNPs.

Materials and methods

Data

A set of 10,192 cows genotyped with four different ver-
sions of the Illumina Bovine Low Density genotyping
array [47] was used in the present study. We selected
8002 markers shared by the four low density arrays and
also present on the first two versions of the Illumina Bo-
vine 50K array (vl and v2). Only individuals with call
rate above 90% were included in the analysis. Markers
with a low call rate (<0.95), deviating from Hardy-
Weinberg proportions (p <0.001) or with more than 10
incompatible parent/offspring pairs (e.g., opposite homo-
zygous genotypes) were discarded. Imputation to a
higher density using a reference panel of 1839 individ-
uals genotyped for 35,207 SNPs common to the Illumina
Bovine50K and Illumina BovineHD genotyping arrays
was done using Beagle 3.3.2 [48]. The target and ref-
erence panels were phased with Beagle 3.3.2 prior to
imputation with default settings. In addition to these
35,207 markers, we also included a set of 984
customer-specific probes passing the same filtering
rules and present on the low density marker panels.
These markers were selected for research projects
(e.g., [35]), for genetic testing for recessive diseases
and by the Walloon breeder organisation. These spe-
cific probes contained variants predicted to have po-
tential deleterious effects such as loss-of-function
variants. As a result, a total of 36,191 SNPs was avail-
able per individual.

The 10,192 selected cows were scored from 1993
to 2017 for 22 linear classification traits. From these,
we selected 14 traits related to muscular develop-
ment and conformation including length, chest-

width, rib-shape, rump, tail-set, pelvis-length,
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buttock-muscling (side view), buttock-muscling (rear
view), pelvis-width, shoulder-muscling, top-muscling
and muscular development (available for 9830 to
9888 individuals) and also height and skin thickness
(available for 8863 and 8823 cows, respectively).
Trait deviations (TD) were obtained by correcting
these records for fixed effects estimated in the offi-
cial genetic evaluations.

Methods

Reference genomic prediction methods

We start by describing three reference methods for
whole genome prediction, the genomic BLUP
(GBLUP) that assumes that all SNP effects have the
same variance, BayesR [7] and the Bayesian Sparse
Linear Mixed Model (BSLMM) from Zhou and Ste-
phens [8] that both allow some SNP to have large
effects.

Genomic BLUP prediction model
The GBLUP model can be described as follows:

y=lutgte

where y is a vector of the trait deviations (TD) for
the cows, p is the general mean effect, g is the vector
of additive genetic random effects normally distrib-
uted, ie., g~N(0,G aﬁ), e is a vector of residual ef-

fects normally distributed, i.e., e ~N(0,I o?), o*é
o? are respectively the additive genetic and residual
variances, I is an identity matrix and G is the GRM

built as in VanRaden et al. [2].

and

B ),0.¢
S2f,(1- 1)
Here, X is a matrix of dimension (# x m) of centered

SNP genotypes, where 7 is number of animals and m is
the number of SNPs, with values x;; equal to:

G

x,'j :Sl']'—Zf]-

where s; is the number of copies of the reference al-
lele carried by individual i at marker j. The reference
allele frequencies f; are used to centre these allele
dosages. Under this model, SNP effects have equal
variance.

Standardized GBLUP prediction model

Alternatively, a standardized GRM, G°, can be built
with rules proposed by Amin et al. [5] or Astle and
Balding [49].
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Where W is a matrix of dimension (7 x #) of normal-
ized SNP genotypes with values w;; equal to:

(o)
2,(1-1))

Wl‘]‘ =

The division by ,/2f (1~ f)) is performed to obtain

unit variance. In this formulation, all SNPs have equal
expected contribution to the genetic variance and SNPs
with low MAF have larger effects; SNPs are thus
weighted according the inverse of their expected vari-
ance [2] (higher weights for low MAF). Bouwman et al.
[50] showed that this weighting affected solutions of
SNP effects, in particular those with a low MAF (0 < . <
0.01). Note, that in the present study, we conserved only
SNP with a MAF > 0.01 (and most SNP had a MAF >
0.05). The matrix D, a diagonal matrix with diagonal ele-
ments dj; equal to 1 when all SNP have equal contribu-
tion to the genetic variance, allows the introduction of
different weights (see below).

We will refer to the standardized GBLUP when using
G°. It allows better comparisons with the other tested
genomic prediction methods, and with the adaptive
MultiBLUP approach in particular, because these rely
also on standardized genotypes. In the present study, we
used BLUPF90 [51] to apply both GBLUP approaches.

Bayesian sparse linear mixed model

The BSLMM assumes that all SNPs have at least a rela-
tively small effects but also that a few SNP can have a
large effect [8]. The model can be presented as follows:

y=1lu+Xp+e

Where B is the vector of SNP effects. The individual
SNP effects f; are sampled from a mixture of two nor-
mal distributions, 8, ~ nN(0, 0% + ¢7) + (1 - m)N(0, 03)
where o7 is the variance of small effects, o2 is the add-
itional variance associated to large effects and m is the
proportion of SNPs with large effects. The model is im-
plemented in a Bayesian framework and MCMC simula-
tions are realized to obtain approximate samples from
the posterior distribution. In particular, we obtain a pos-
terior inclusion probability (PIP) for each SNP that indi-
cates the proportion of samples in which that SNP has a
large effect. That proportion can be used for fine-
mapping approaches but also for SNP prioritization.
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Here, we used the standardized SNP genotypes matrix
(i.e., W) when applying BSLMM.

BayesR

In this model, SNP effects are sampled from a mixture
of four normal distributions with mean zero and vari-
ances equal to 0, 0.0001 aé, 0.001 of, and 0.01 (75:

B, ~ n1N<O7 Oqg) + 1N (0, 0.000103)
+ 7N (0, 0.00105) N (0, o.ow;)

SNP effects were estimated using MCMC simulations
and the software implemented in Moser et al. [9].

Adaptive MultiBLUP model (AM-BLUP)

Description of the original approach

The adaptive MultiBLUP approach is described in Speed
and Balding [22] and implemented in the LDAK soft-
ware. It starts with a genome-scan where associations
are tested for windows of SNPs called chunks. These
chunks have a constant physical size (e.g., 500 kb, 1 Mb)
and the overlap between successive chunks is 50%. For
each window, a GRM is estimated using the SNPs in the
window and the rules described above. A likelihood ratio
test (LRT) is then performed to test whether the vari-
ance associated with the region is significantly different
from O (the default threshold thrl for genome-wide sig-
nificance is set to 10~ 5). In the second step, regions are
formed around significant chunks by merging them with
all adjacent chunks with a p-value < thr2 (where thr2 is
a second threshold set by default to 0.01). A GRM is es-
timated for each of these K merged regions and the
background kinship matrix is estimated with SNPs out-
side the selected regions. Variances associated to each of
the K+ 1 GRMs, 0%, are then estimated simultaneously
with LDAK by a REML procedure (where k is the index
for the region (or its GRM) and 0 is used for the back-
ground kinship). Finally, genomic predictions are ob-
tained by using the K+1 GRMs and the estimated
variance components. This is equivalent to apply a
GBLUP model with a single GRM where each SNP is
weighted by its own variance (e.g., the variance associ-
ated to its GRM divided by the number of SNPs in the
corresponding region):

G = wpMw’
Where G*™™ is the Adaptive MultiBLUP GRM and

D™ is a diagonal matrix with the corresponding
weights, d+", equal to:
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Where my is the number of SNPs in region k encom-
passing SNP i and 0% is the total genetic variance. Div-
ision by the mean SNP variance ensures that the trace of
DM is maintained constant as for instance in Wang
et al. [13]:

Using permutations and bootstrapping techniques to define
significance thresholds and confidence intervals

Thresholds thrl and thr2 are used to declare regions sig-
nificant and define their confidence interval (CI). To
optimize these thresholds, we generated the empirical
distribution of the test statistics under HO through 1000
random permutations of the phenotypes [52], without
changing individual genotypes. For each permutation, a
genome scan was performed as described above and the
window with the lowest p-value was selected. The em-
pirical threshold at a = 0.05 was set at the 5% quantile of
this distribution of 1000 best p-values. The CI was
subsequently determined with a bootstrapping strategy
[53]. For this, we started by selecting all windows with a
p-value below 0.01 surrounding the most significant pos-
ition (as in the original procedure described above). In
addition, all significant regions less than 10 Mb apart
were merged. For each significant region, 1000 bootstrap
samples were obtained by randomly selecting individuals
with replacement. For each sample, the most significant
window was flagged. The 95% CI was then defined as
the smallest set of windows being flagged 950 times or
more (95%). These windows were then selected to build
the GRM. Hereafter, we used BAM-BLUP as abbrevi-
ation (for Bootstrap-Adaptive-MultiBLUP) to refer to
this method.

Alternative strategy for region selection

We also tested whether the BSLMM could be used to
identify regions of interest. To that end, we used the
posterior inclusion probabilities (PIP) to perform SNP
selection. Since several SNPs in high LD might capture
the effect of the same variant, we decided to work with
25 SNPs windows. For each window, we computed the
region PIP as the sum of 25 individual PIP (one per
SNP). Following Barbieri and Berger [54], regions with a
PIP above 0.5 were selected (since SNPs from these re-
gions are included in the model in the majority of itera-
tions). Subsequently, we conserved only the SNPs that
most contributed to the window PIP (excluding SNP
with low PIP). To do that we ranked the SNPs from the
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window according to their PIP, and conserved the smal-
lest set of SNPs that contributed to 95% of the total PIP.
Then, we used LDAK to estimate the variance associated
with each selected window and these variances were
then used to build a weighted GRM as described above.
This method will be referred to as WPIP-GBLUP (Win-
dow Posterior Inclusion Probability GBLUP).

Other strategies to weight SNPs in the GBLUP approach

Other strategies to compute a GRM using weights for
SNPs have been previously proposed. Wang et al. [13]
developed an iterative scheme based on estimated SNP
effects obtained by linear transformation of genomic
breeding values (e.g., [55]) and implemented in the
postGSfI0 tool from the blupfo90 package [39]. We per-
formed 10 iterations of SNP weighting using non-linear
methods [2] and limited the increase in variance to a
factor of 2.6 as recommended by Fragomeni et al. [56].
We will use IW-GBLUP (iterative weighted GBLUP) as
abbreviation for this method. Legarra et al. [17] or Su
et al. [11] used rather the posterior variance obtained
from Bayesian methods modelling SNP effects as a mix-
ture of different distributions. Here we estimated indi-
vidual SNP effect variances from the BayesR MCMC
simulations (BRPV-GBLUP for BayesR Posterior Vari-
ance GBLUP). Individual SNP variances were stored at
each iteration. These were obtained as a function of the

sampled values for a§ and the sampled distribution for

the SNP effect at that iteration (e.g., a SNP in the second
distribution had a variance equal to 0.0001 a;). The pos-

terior SNP variance was then computed as the average
variance across all iterations. Finally, the weights were
re-scaled so that the trace of D was equal to m.

Extension to single step GBLUP approaches

Accuracy of GBLUP approaches using the different
weighted GRM were compared. All the weighted GRM
approaches were also applied in the single step GBLUP
(ssGBLUP) method, which combines information from
genotyped and non-genotyped individuals [3, 4]. The
ssGBLUP relied on the official evaluation model, with
raw instead of pre-corrected phenotypes. Pedigree files
contained from 618,962 to 653,008 individuals and the
total number of available records ranged from 456,746
to 494,541 according to the trait. The BLUPF90 package
was used to run the ssGBLUP models.

Association study

Regions or SNPs identified by the adaptative MultiBLUP
and BSLMM approaches were compared to results from
a genome-wide association study (GWAS) performed
using GLASCOW [57] that uses a score test for each
SNP in a linear mixed model (LMM) framework. We set



Gualdrén Duarte et al. BMC Genomics (2020) 21:545

the significant threshold at 1.39e-6 after application of a
Bonferroni correction for 36,191 independent tests.
Peaks were declared independent when two significant
SNPs were more than 10 Mb apart.

Evaluation of different genomic prediction models

To compare the prediction accuracy from different
models, the data was divided in training and validation
sets. To that end, we removed all performances recorded
after August 23th of 2018 which corresponded to indi-
viduals born more recently. As a result, the training set
was composed of 7316 to 8532 individuals (according to
the trait), whereas the validation group contained from
1356 to 1507 individuals (14 to 17% of the total individ-
uals with both phenotypes and genotypes). The predic-
tion accuracy was estimated as the correlation between
the trait deviation and the genomic estimated breeding
values (predictive abilities). The reliability was obtained
as the square of the accuracy divided by the heritability:

cor(y, )’
REL = T

Methods were also compared in terms of mean-square
errors (MSE) between predicted and observed TD, even-
tually standardized by the variance of the TD. Bias of
genomic predictions (i.e., “scale” bias or inflation) were
measured using the coefficients of the regression of the
TD on the genomic predictions.
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