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Abstract

Background: Appropriate social interactions influence animal fitness by impacting several processes, such as
mating, territory defense, and offspring care. Many studies shedding light on the neurobiological underpinnings of
social behavior have focused on nonapeptides (vasopressin, oxytocin, and homologues) and on sexual or parent-
offspring interactions. Furthermore, animals have been studied under artificial laboratory conditions, where the
consequences of behavioral responses may not be as critical as when expressed under natural environments,
therefore obscuring certain physiological responses. We used automated recording of social interactions of wild
house mice outside of the breeding season to detect individuals at both tails of a distribution of egocentric
network sizes (characterized by number of different partners encountered per day). We then used RNA-seq to
perform an unbiased assessment of neural differences in gene expression in the prefrontal cortex, the hippocampus
and the hypothalamus between these mice with naturally occurring extreme differences in social network size.

Results: We found that the neurogenomic pathways associated with having extreme social network sizes differed
between the sexes. In females, hundreds of genes were differentially expressed between animals with small and
large social network sizes, whereas in males very few were. In males, X-chromosome inactivation pathways in the
prefrontal cortex were the ones that better differentiated animals with small from those with large social network
sizes animals. In females, animals with small network size showed up-regulation of dopaminergic production and
transport pathways in the hypothalamus. Additionally, in females, extracellular matrix deposition on hippocampal
neurons was higher in individuals with small relative to large social network size.

Conclusions: Studying neural substrates of natural variation in social behavior in traditional model organisms in
their habitat can open new targets of research for understanding variation in social behavior in other taxa.

Keywords: Neurogenomics, Transcriptomics, Dopamine, X-chromosome inactivation, Extracellular matrix, Sex
differences, Social interactions, Hippocampus, Hypothalamus, Prefrontal cortex

Background

Maintenance of social ties involves trade-offs. While
group living may facilitate finding sexual partners and
promote cooperation in acquiring food, in offspring care
and in protection against predators, it imposes conflicts
in the form of competition for sexual partners and for
resources [1]. Nonetheless, in several species of group-
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living mammals, maintenance of affiliative social ties is
positively correlated with fitness outcomes in ways that
are not yet fully understood [2]. Also, in humans, social
interactions impact health outcomes [3-7]. Even if social
interactions may be positive, intra-specific variation in
social interaction traits is widespread in vertebrates [8,
9]. Taken to an extreme, impaired social behavior in
humans is considered a disorder, and characterizes
disabilities with very high incidence such as autism
spectrum disorder and schizophrenia [10]. Understand-
ing what neural mechanisms are associated with intra-
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specific variation in social behavior is therefore critically
important from both a fundamental and applied
perspective.

The last twenty years have seen a lot of progress in the
understanding of the neural circuits, neuropeptides and
neuromodulators involved in vertebrate social behavior
[11-15]. Even in the light of all of this progress, it is im-
portant to note, however, that the social environment is
one of the most unpredictable environments animals
face, given that it is composed of several interactive
agents [16, 17]. Paradoxically, we usually study the
neurobiology of mammalian social behavior in somewhat
simplified settings, using inbred animals, housed in con-
ditions that are likely to prevent them from displaying
their natural repertoire of behavioral and physiological
responses [18]. In laboratory studies, animals are pre-
sented with an environment where the consequences of
behavioral and physiological responses for survival may
not be as severe as in a natural environment; moreover,
the level of sterility and standardization may obscure
certain responses (e.g., [19, 20]) or not apply to even
slight deviations of the environmental conditions tested
[21, 22]. This has important implications for the transla-
tional value that animal models have for neuropsychi-
atric disorders [23]. Recently, there have been a number
of calls for studies that can integrate the proximate
mechanisms underlying social behavior with their adap-
tive function [16, 17, 24]. In part, this integration can
come from studying traditional model organisms in their
natural environment. The challenge here is that many
animals are difficult to observe in the wild, making de-
tailed behavioral quantifications impractical.

There are many reasons that could lead to differences
in social interaction patterns in adult animals, including
developmental or early-life experiences (e.g., [25-27]),
genetically determined social behavior differences (e.g.,
[28]), or current experiences (e.g., social defeat, [29])
(see [30] for an in-depth discussion of possible mecha-
nisms leading to social plasticity). Regardless of the
underlying cause of variation in frequency of social in-
teractions, studies using complex group settings still find
biological correlates of social behavior. In one study in
fruit flies (Drosophila melanogaster), behavioral differ-
ences between individuals obtained through automated
tracking of groups of flies were found to be consistent
and able to accurately predict sex and genotype [31]. A
study in wild house finches (Haemorhous mexicanus)
found that exploratory and social behaviors were linked
to stress physiology [32]. When large groups of male la-
boratory mice (Mus musculus) where studied in large
structured lab enclosures, the number of ties those mice
directed at other mice was negatively associated with
hippocampal gene expression levels of a neural plasticity
gene (DNMT1) [33]. A study in captive prairie voles
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(Microtus ochrogaster) maintained in semi-natural enclo-
sures indicated that variation in vasopressin receptor 1A
(V1aR) in particular brain regions may be linked to dif-
ferences in sexual fidelity in males [34]. While much of
the focus of nonapeptide (oxytocin, vasopressin, their
homologues, and receptors) research has been on male-
female sexual bonds and parent-offspring bonds [35, 36],
adult individuals of many species form bonds that are
unrelated to sexual or parental interactions, for instance,
during the non-reproductive season, and these bonds
impact fitness outcomes.

These studies indicate that, even with the noise that
underlies studying complex social behaviors of animals
in complex social and environmental settings, patterns
of social interactions can be linked to genotypic and/or
physiological differences. Recently, Konig and others
have optimized an automated system that remotely col-
lects continuous information on the social interactions
of >90% of a population of wild house mice in
Switzerland [37]. We leveraged this novel setup to detect
mice that consistently had social network sizes at oppos-
ite ends of the social network size distribution in a free-
ranging population living in a barn with unlimited access
to food. We then used RNA-seq to determine what
neural differences in gene expression could be associated
with these extreme differences. Different from experi-
mental setups where researchers exposed animals to dif-
ferent aggregation treatments (group versus single
housing [38];) in our study animals were free to deter-
mine their preferred association patterns, including be-
ing able to leave the population altogether. By following
animals in a complex, natural setting, this study pushes
the boundaries of how the neurogenetic underpinnings
of social behavior are studied, with far-reaching implica-
tions for the understanding of human disorders that
involve impairments of social interactions.

Results

To obtain animals with contrasting social network sizes,
we sampled individuals at both tails of a distribution of
egocentric social network size for the population (num-
ber of different partners encountered in nest boxes per
day) during the non-breeding season. In our population,
social network size cannot be explained solely by time
spent in nest boxes (Fjz93=1.224, p=0.2692, =
0.0031; Figure S1A) or activity related to going in and
out of nest boxes (Fjs393=0.3459, p=0.5568; P =
0.00088; Figure S1B). Repeatability (R) of social network
size for mice in our population during the non-breeding
season is high, R [95% confidence interval] =0.9 [0.874,
0.914], p<0.01. The mean social network size for ani-
mals in the population was (mean + STD) 26 + 8.6 part-
ners/day. Sampled animals with large social network size
had mean social network size values of 38.1 +2.5 and
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32.5 + 1.3 for females and males, respectively, while ani-
mals with small social network size had mean values of
9.5+ 1.3 and 8.7 £ 2 for females and males, respectively.
Males with large social network sizes therefore
approached +1STD of the population mean (34.6 part-
ners/day) but were not above it. Body mass of samplesd
animals (Figure S2) was not different due to the social net-
work size (F=0.787, d.f. =1, p =0.38), nor due to a social
network size by sex interaction (F=0.6, d.f.=1, p=0.44),
but differed between the sexes (F=6.66, df.=1, p=
0.016), with males (29.23 g+ 1.02) being heavier than fe-
males (25.68 g+ 0.91). RNA extracted from specific brain
regions from these animals was then used for RNA-seq.

An average of 94.5% clean reads were mapped to the
reference genome for the mouse (Table S1). A principal
component analysis of normalized read counts for all
mapped genes shows that each of the brain regions (pre-
frontal cortex, hypothalamus and hippocampus) ex-
tracted from different animals cluster together (Fig. 1).

Females had much larger numbers of differentially
expressed genes between the social network size ex-
tremes than males (Table S2). Taking the subset of
genes that were differentially expressed between females
with small and large social network sizes in each of the
brain regions and plotting male expression levels for
those genes, it is possible to visualize the strong differ-
ences between females for each brain region (Fig. 2).

In females, 59 genes were differentially expressed in
the prefrontal cortex, 37 in the hypothalamus and 84 in
the hippocampus (Fig. 3). In males, no differentially
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expressed genes were detected in the hippocampus, only
2 in the prefrontal cortex (Gm13453 and Xist) and 1 in
the hypothalamus (Gm13453).

All of the results from the enrichment analysis of
genes differentially expressed in animals with small
relative to large social network sizes can be found in
Table S3. In males, the enriched Gene Ontology (GO)
terms were all related to dosage compensation by inacti-
vation of the X chromosome in the prefrontal cortex
and included only one upregulated transcript, Xist. In
females, differentially expressed genes (DEGs) in the
prefrontal cortex were not enriched for any GO terms.
In the hypothalamus, DEGs upregulated in females with
small network sizes were enriched most significantly for
GO terms related to dopamine/catecholamine biosyn-
thesis and metabolism (upregulated DEGs: Th, Ddc,
Cyp2d22), followed by amine transport (upregulated
DEGs: Th, Ddc, Sic18a2, Chrna6). In this same brain
region, downregulated DEGs were most significantly
enriched for terms related to the regulation of the in-
flammatory response and included genes such as Snx4
and Cd47. In the hippocampus, upregulated DEGs were
enriched for only one GO term for ‘proteinaceous extra-
cellular matrix’ (DEGs: Wnt3, Itgh4, Dmpl, Gpc2, Prelp
and Emilin3). The most significant enrichment terms as-
sociated with downregulated genes in the hippocampus
involved mostly ion channel activity (DEGs: ltgav, Slc26a8,
Cacna2dl and Gabrg3). The expression level of the top
differentially expressed genes within the most significant
pathways in each brain area is represented in Fig. 4.
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Fig. 1 Principal Component Analysis of all mapped genes in three brain regions of free-ranging house mice of different sex and social network
size. In the legend, F stands for female and M for male, and large or small for large or small social network size
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Fig. 2 Heatmaps depicting all differentially expressed genes between females with large and small social network sizes in the prefrontal cortex
(a), hypothalamus (b), and hippocampus (c). Male expression levels are also represented for comparison. The y-axis dendrogram represents the
clustering of the rows (mean of normalized read counts for each differentially expressed gene) using Pearson distance. Blue color indicates lower
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Expression levels of Xist were low in males (mean =
66.8 counts; as a reference, this is about 479 times
lower than in females, where mean=31,975 counts).
As such, to understand whether the differences in
Xist expression in males of different social network
sizes reflected differences in X-chromosome inactiva-
tion patterns, we stained brain slices of the prefrontal
cortex for an epigenetic marker of the inactive X-
chromosome. This marker, the Histone H3 trimethyl-

lysine 27 (H3K27me3) modification, has been shown
to co-localize with Xist RNA in mice [39]. We found
that the number of H3K27me3-positive punctate
stains differed significantly between males with large
and small social network sizes (Welch’s t-test, ¢= -
3.2842, p=0.0067, df =11.735; Fig. 5). As a reference,
on average, females had 15x more punctate stains
than males in the same region (mean for females =
45.4 + 3.58; mean for males =2.97 +0.72).
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Fig. 3 Volcano plots representing, for each gene detected, the log, fold change (x-axis) difference of animals with small relative to large social
network sizes and the corresponding -log;, adjusted p-value (y-axis) in the prefrontal cortex (a), hypothalamus (b) and hippocampus (c) for
females. For males, only the prefrontal cortex is shown (d) as males had either very few or no genes that were differentially expressed. Genes that
were differentially expressed and upregulated in animals with small relative to large social network size are represented in red and those that
were differentially expressed and downregulated in this comparison are represented in green. All other genes are represented in blue
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Discussion

In this study, we collected brains from wild house mice
exhibiting extreme patterns of social interactions (i.e., on
the tails of a distribution of social network sizes for the
population) and tested whether these individuals showed
differences in gene expression patterns in brain regions
important for social behaviors. We found that, while fe-
males of contrasting social network sizes differed in the
expression of hundreds of genes, males exhibited very
few gene expression differences. This sex difference in
number of differentially expressed genes may be due to
the fact that, in males, large social networks sizes were
not as extreme as in females. While sampled females

with large network sizes had on average 38.1 interaction
partners per day (which is 12 partners above the popula-
tion mean of 26+ 8.6 partners/day), we did not find
males that were above 1 STD of the mean social net-
work size value for the population (mean partners/day
for sampled males with large social network sizes was
32.5). The large social network sizes observed in males
may therefore not be sufficiently extreme to allow for
the detection of gene expression differences relative to
males of low social network sizes. Alternatively, or in
addition to this reason, the few genes differentially
expressed between males with different social network
sizes could have strong effects, which is discussed later.
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Fig. 4 Expression levels of top differentially expressed genes highlighted during GO term analysis. Expression level is represented using DESeq?2
normalized counts of top differentially expressed genes detected during enrichment analysis in the hypothalamus (a) and hippocampus (b) of
females, and in the prefrontal cortex of males (c), with extreme social network sizes. The middle band within the box and whiskers plots
represents the median, the bottom and top of the box represent the first and third quartiles and the whiskers denote the 95% confidence
interval of the data. Th: Tyrosine hydroxylase; Itgb4: Integrin (34; Xist: Inactive X specific transcript

In the hypothalamus of females with small social net-
work sizes, the most important pathway that contained
upregulated genes relative to females with large social
network sizes was related to dopamine biosynthesis,
which suggests that females with fewer social partners
produce more dopamine in this brain region. Dopamin-
ergic signaling plays important roles in modulating a
variety of functions/behaviors across vertebrates, such as
motivation, reward, associative learning, same-sex and
opposite-sex partner preference, and sexual behaviors
[15, 40]. Even though dopamine levels can also be
associated with maternal responses to pups or pup cues
[41-43], we can exclude this possibility here as no pups
were around during the time when we sampled animals
for this study. Dopamine activity in certain hypothalamic
nuclei has been associated with increases in aggressive
responses in male rodents (e.g., [44—46]; reviewed in
[47-49]). While the neurobiology of aggression has been
less studied in female rodents, hypothalamic nuclei are
also involved in female aggression [47-49]. Increased ag-
gression could be one reason for which certain females
in our study live in smaller social group sizes. Another
possibility would be differences in social status. Naked
mole-rat queens (dominant reproductive females) have
significantly higher tyrosine hydroxylase (7#) and vesicu-
lar monoamine transporter (Slc18a2) gene expression in
the hypothalamus than subordinate non-breeding
animals of either sex [50]. These results parallel our
findings in the hypothalamus of females, which may be

an indication that females with small social network
sizes are dominant to females with large ones, even out-
side of the reproductive season. Some of these effects
could be exerted through the pituitary hormone prolac-
tin, as a critical function of dopamine released from the
hypothalamus is in the suppression of pituitary secretion
of prolactin [51] and because, among its many functions
[52], prolactin is associated with social behaviors in
several taxa, including parental behaviors [53, 54] and
prosocial and affiliative behaviors [55, 56]. In terms of
pathways containing downregulated genes, the ones
highlighted in our GO term enrichment analysis were
mostly related to the regulation of the inflammatory re-
sponse, and the genes repeatedly represented in those
pathways were Snx4 and Cd47. SNX4 is involved in
endocytosis and other aspects of intracellular trafficking
[57, 58] and CD47 is involved in a variety of functions,
including leukocyte signaling pathways, migration and
phagocytosis (reviewed in [59]), as well as axon exten-
sion [60]. It is unclear how SNX4 could relate to social
network size, but the same pattern of expression differ-
ences for this gene were also observed in the prefrontal
cortex of females. One link is that dysfunction in sorting
nexins (the family of proteins to which SNX4 belongs)
has been associated with neurogenerative diseases [61].
For instance, brain tissue from patients with (and mouse
models of) Alzheimer’s disease, a disease characterized
by symptoms that can affect social interactions, such as
impaired cognition and memory loss, showed altered
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Fig. 5 a Representative photograph of female prefrontal cortex showing positive punctate staining for H3K27me3 (arrowhead). Representative
photographs of prefrontal cortex of males with large (b) and small (c) social network sizes stained for H3K27me3. In B, it is possible to see that
the staining is diffuse and not punctate. In C, the arrowhead indicates one example of punctate staining. d Boxplots of average counts of
H3K27me3-positive punctate stains in the prefrontal cortex of males with large and small social network sizes
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expression of SNX4 [62]. On the other hand, more
direct links exist between CD47 and behavior. One study
found that CD47 knockout mice exhibit significant lower
sociability than wild-type littermates [63]. A separate
study uncovered a main effect of acute restraint stress in
puberty in reducing expression of Cd47 in the hippo-
campus and the prefrontal cortex [64]. Combined, the
current results and those from previous studies seem to
highlight CD47 as a molecule deserving more studies in
the context of social behavior.

The hippocampus was the region with the largest
number of differentially expressed genes between fe-
males with opposing social network sizes. A number of
genes related to the proteinaceous extracellular matrix
(ECM) were upregulated in the females with small social
network size. The ECM is a structure that surrounds the
cells. In the central nervous system, the ECM affects
chemical communication between neurons and it has
been proposed that the ECM has an important role in

regulating both synaptic and homeostatic forms of
plasticity not only during development, but also in adult-
hood (reviewed in [65]). Experimental alterations of the
hippocampal ECM, for instance through enzymatic
removal, have been shown to impact memory and learn-
ing [66], which are two faculties that could affect the
ability to establish or maintain social relationships. In
addition to these roles, some of the ECM genes
highlighted in the enrichment analysis, such as Wnt3,
Gpc2 and Itgh4, are also involved in adult hippocampal
neurogenesis [67, 68] and in abnormal behavior (e.g.,
hyperlocomotion in ITGB4 knockout). Winning fights
has been associated with increased hippocampal neuro-
genesis in mice [69], which is consistent with the idea
proposed earlier that females with small social network
sizes in our study may be more aggressive and poten-
tially better at fighting than counterparts with large
social network sizes. It may be possible that females that
are better at fighting are better capable of protecting
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their territories, therefore maintaining smaller social
groups. It has been previously demonstrated in rhesus
macaques (Macaca mulatta) that brain structure and
functional connectivity are affected by social network
size [70]. Structural brain changes involving plasticity
and neurogenesis may therefore be necessary for dealing
with, and/or a consequence of, living in larger social
groups.

While in females no major pathways were found in the
prefrontal cortex, in males this was the only region
where a pathway was detected that differentiated animals
with small and large social network sizes. This pathway
was related to the inactivation of the X chromosome.
This is unusual, because inactivation of the X chromo-
some is a mechanism of dosage compensation mainly
found in female mammals, whereby one X chromosome
is inactivated thereby ensuring the same dosage in males
and females (as males only have one X chromosome and
females have two). X inactivation in males is usually
restricted to spermatogenesis, and Xist transcription
usually only found in the testis [71]. Expression of the
long non-coding RNA Xist by the X chromosome that
will become inactive is thought to initiate the X inactiva-
tion process (reviewed in [72-74]). Recently, however, it
has been suggested that Xist expression itself is insuffi-
cient to inactivate the X chromosome in males but that
it does silence X-linked genes in females [75]. The pres-
ence of Xist RNA coating the future inactive chromo-
some recruits complexes responsible for trimethylation
of lysine 27 on histone H3 (H3K27me3) [76] and this
epigenetic marker can be visualized using specific anti-
bodies, producing a punctate staining in cell nuclei when
present [39]. When we used this approach to understand
whether the changes in Xist expression suggested X in-
activation, we did observe more cells showing punctate
staining in males with small relative to large social net-
work sizes but this in no way approached female levels,
which were 15x higher.

How could Xist expression mediate differences in
social interaction behavior? One way is through its in-
activation of the X chromosome. In humans, X-linked
genes are involved in neurobehavioral disorders (such as
fragile-X and autism spectrum disorder) [77, 78] and
mice with abnormal number of X chromosomes (such
as X0 or XXY) also show altered social behaviors relative
to their counterparts with regular numbers of X chro-
mosomes, regardless of gonadal sex [79]. While we do
find evidence of some level of X inactivation in the
males with small social network size, we think this is
unlikely to be the major cause of behavioral changes, as
we did not find other X-linked genes (besides Xist) to be
greatly different between males with different social
network sizes. Several lines of evidence point towards
Xist having other functional roles. Xist is overexpressed
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in cells of female patients with either bipolar disorder or
major depressive disorder relative to healthy females
[80]. Long noncoding RNAs, such as Xist, have been
found to interact with other types of RNA in ways that,
when dysregulated, may contribute to neurodegenerative
disorders and cancers [81, 82]. In particular, Xist seems
to interact with microRNAs to affect the progression
and development of lung, pancreatic and prostate
cancers [83-85] and also to potentially impact neuro-
generative disorders [86, 87]. For instance, a study using
in vitro and in vivo mouse models of Alzheimer’s disease
showed an increase of Xist RNA expression in the
hippocampus relative to controls [86]. Silencing of Xist
in that study led to an upregulation of a microRNA
signaling pathway (miR-124/BACE1). This ability to
interact with microRNAs could functionally result in a
modified abundance of microRNAs and, consequently,
alter expression of other genes post-transcriptionally. In
other words, changes to Xist expression could have
major effects on the formation of certain peptides,
without alteration to the expression levels of the genes
coding for those peptides.

Conclusions

In conclusion, we detected differences in neural gene
expression between mice with extreme differences in so-
cial network sizes. While our set up does not allow us to
differentiate between whether social interactions led to
the differences in gene expression profiles or are a con-
sequence of these, our data reveals several candidate
genes that may be associated with social network size.
The array of genes detected differed by sex, which
suggests that there may be different reasons underlying
differences in social network size between the sexes,
even during the non-reproductive season. Our study
shows that, even in “noisy” conditions that underly
studying wild animals in their natural environment, we
are still able to detect genes associated with social
behavior. We highlight genes that are potentially under-
studied in the context of social behaviors and hope that
further research will elucidate the precise mechanisms
by which these genes may be linked to social behaviors.

Methods

Wild house mouse population

The population of wild house mouse (Mus musculus
domesticus) used for this research is part of a long-term
study initiated by Barbara Konig and colleagues in 2003
(the history and detailed description can be found in
[88]). The study site consists of a 72 m? barn located in
the vicinity of Zurich, Switzerland. The barn is an open
space, structured into 4 sectors by four 75cm high
dividers. The large dividers and the walls of the barn
contain holes, allowing the mice to access not only the
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entire space inside the building, but also to freely move
in and out of the building. The wall holes are not large
enough for large predators, such as cats, foxes and owls
that regularly occur around the barn. Water and food
are provided ad libitum in water bottles and food trays
distributed in equal numbers throughout the sectors.
Nest building materials, such as straw and hay, are also
made available weekly and dispensed throughout the
barn.

Automated social interaction tracking system

The automated RFID-based recording system used in
this study has been described in detail in [37]. In brief,
the system consists of 40 artificial nest boxes (15 cm in
diameter each; 10 per sector of the barn) with two
RFID-reading antennas fitted around a cylindrical tube
allowing access to the box. The antennas read RFID
tags (Trovan ID-100, Euro ID Identifikationssysteme
GmbH & Co, Germany), that are implanted subcutane-
ously into every individual captured in the population
upon reaching 18 g. Therefore, as tagged mice go in or
out of the nest box, their identities, along with a time-
stamp, are automatically logged into a computer lo-
cated inside the barn. Each day, the information on all
mouse movements through the antennas is transferred
to a central database. Using this data, we can deter-
mine, per logged individual, how many other individ-
uals they overlapped in time with when inside any
given nest box [89].

For the current study, we analyzed brain gene expres-
sion from house mice whose tissues had been previously
used in a study aimed at identifying relationships be-
tween immune system functioning and social behavior
[90]. Those animals were captured during the non-
reproductive season (winter months), which reduces the
presence of untagged individuals (pups or subadults
below 18 g), as well as any confounding effects due to re-
productive activity. Also, during this season, mice in our
population spend a considerable amount of time (up to
19 h per day) inside of the nest boxes [89]; therefore, we
consider the number of partners encountered in nest
boxes during this time as a good proxy of their social
network size. Animals with extreme social network sizes
were selected based on being consistently (over 3 separ-
ate non-consecutive days during the week prior to cap-
ture) approximately either 1 standard deviation (STD)
above (large social network size) or below (small social
network size) the mean egocentric social network size
for the entire population (mean+STD: 26 +8.6 part-
ners/day) [90]. Social network size is defined here as the
total number of different individuals encountered in nest
boxes per day; in social network literature, this value
(number of ties) is referred to as degree or egocentric
network size [91]. Social network size values presented
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in the text for the focal animals represent the average
social network size over the 3-day period mentioned
above. Sample sizes were 7 for females of each type
(large or small) of social network size, and 7 and 8 for
males with large and small social network sizes, respect-
ively. Average social network size was not different be-
tween the sexes for the sampled animals [90]. Estimated
age (in days) of sampled animals did not significantly
differ by sex or social network size type (large or small)
and was 207.2+57.7 and 246.6 + 68.1 for females and
males with large social networks, respectively, and 250 +
63.2 and 125.8 +45.6, for females and males with small
social networks, respectively [90]. Body mass was ob-
tained using a Sartorius scale (BL1500S) and differences
in body mass due to sex, social network size or an
interaction of the two terms, were tested using a two-
way anova in R. As the RFID-logging system also
allowed us to track how much time animals spent in
nest boxes and how often they went in and out of
boxes, we used these metrics to assess whether time
spent in nest boxes or activity (going in and out of nest
boxes) explained variation in the social network size
trait. To do this, we used a linear regression to test
whether social network size varied as a function of ei-
ther time spent in boxes or activity, using data from a
24 h period for the entire population. Finally, we esti-
mated repeatability of the social network size trait for
mice in our population during the non-breeding season
using social network size values obtained in the same
way as detailed above, for 4 separate dates spaced out
by approximately 1 week, collected at a different time
from when this experiment was taking place. Repeat-
ability (R), confidence interval and the significance of
repeatability were estimated using the rptR package
[92] in R, using the Poisson function. The confidence
intervals were obtained by performing 1000 parametric
bootstrap runs and the p-value was obtained by using
1000 permutations. While not explicitly controlling for
the nonindependent nature of social network data, this
method allows for easy comparison with other studies
as it is routinely used to estimate repeatability of differ-
ent traits, including behavioral traits (see [93] for a
meta-analysis).

Brain collection and dissection of brain regions

Target animals, selected based on their social network
size values as described in the previous section, were
captured within 2 h of sunrise by blocking the entrance
to the nest boxes they used with most frequency. The
nest boxes were inspected sequentially by opening the
entrance to the box and allowing animals to exit into a
glass jar. When a target animal was identified in the
glass jar using a handled RFID reader, it was brought to
a processing station at the barn, weighed and euthanized
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via CO, inhalation. The brain was extracted from the
skull and immediately placed on dry ice over a piece of
foil. The brains were later transferred to a — 80 °C freezer
until further processing.

Brains were coronally sectioned at -18°C on a
Leica CM1860UV cryostat. Surgical micropunches
(EMS Rapid Core Instruments) were used to dissect
the brain regions of interest from 100pm slices,
which were spaced out by two 20 um slices that were
collected for histochemistry onto microscope slides
(Fisherbrand, item 12-550-15). We collected punches
for the prefrontal cortex, the hypothalamus and the
entire  hippocampus following the coordinates
described in [90] based on the Allen Mouse Brain
Atlas: P56, Coronal Reference Atlas [94]. We focused
on these brain regions because they include nuclei
important for social decision making and social
memory [14, 95]. Punches from each of these brain
regions were preserved in separate tubes for each
region, each containing 1mL of Trizol reagent
(Ambion, item 149,204) and zirconium 1.5 mm size
beads (Benchmark Scientific, item D1032-15). Tissue
homogenization was performed by agitating the tubes
for 20s at a 4ms~ ' speed (Beadbug 6 homogeneizer,
Benchmark Scientific), followed by a 5min rest
period. The liquid was transferred into a new tube
and preserved at —80°C until the RNA isolation
procedure.

RNA isolation, library preparation and sequencing

Total RNA was isolated from the aqueous layer
obtained post chloroform extraction, using the Direct-
zol RNA Miniprep Plus kit (Zymo, catalogue # R2071)
according to manufacturer’s instructions, with the
additional DNase I in-column treatment step. RNA
samples were sent to Novogene Corporation Inc.
(Chula Vista, CA, USA) where RNA quantity, integrity
and purity were assessed on an Agilent 2100 Bioanali-
zer (Agilent Technologies, Santa Clara, CA) and cDNA
libraries (250 ~ 300 bp inserts; NEBNext® UltraTM RNA
Library Prep Kit; New England BioLabs, Inc., Ipswich,
MA, USA) and paired-end sequencing of libraries
(PE150; Illumina Novaseq 6000) were performed ac-
cording to standard protocols. Only one sample had a
RIN value below 7 (at 6.2; hypothalamus of Mus19, a
female with large social network size) but none of the
post-sequencing quality controls or differential gene ex-
pression results suggested that this sample acted as an
outlier and so this sample was not removed from the
analysis. RNA extraction failed from one sample (hypo-
thalamus of Mus18, a male with small social network
size). Sample sizes for hypothalamic sequencing data
were therefore different than that for other brain re-
gions and included 7 for animals with large and small
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social network sizes for each sex. Establishing the
appropriate sample size to use in any given RNA-seq
experiment is far from straightforward. We used the
guidelines and results provided by [96] to determine
the appropriate sample size for our experiment with
the aim of detecting > 80% of differentially expressed
genes at a wide range of fold change differences. An
average of 120 million paired-end raw reads were
obtained for each sample.

Mapping and differential gene expression analysis

On average, 94.5% of clean (post adapter removal and
quality filtering) reads were mapped to the mouse ref-
erence genome [Mus musculus (GRCm38/mm10)]
using STAR [97], representing an average of 116 mil-
lion mapped reads per sample (full information on
mapping statistics per sample can be found in Table
S1). To count the number of mapped reads to each
gene, HTSeq was used. Differential expression analysis
of pairwise comparisons of the animals with small
relative to animals with large social network size
within each sex was performed using the DESeq2 R
package [98, 99]. To control for the false discovery
rate due to multiple testing, p-values were adjusted
using the Benjamini-Hochberg procedure. Genes were
considered as statistically differentially expressed when
adjusted p-values were <0.05. The function plotPCA
within the DESeq2 package was used on variance sta-
bilized transformed (VST) count data to prepare the
PCA graph. Heatmap visualization of differentially
expressed genes was prepared in Heatmapper [100],
using DESeq2 normalized read counts and complete
linkage as clustering method and Pearson as distance
measurement method. Boxplots for a subset of the
differentially expressed genes were prepared using the
ggplot2 R package [101].

GO enrichment analysis of differentially expressed genes
Enrichment analysis of differentially expressed genes was
performed in clusterProfiler v2.4.3. P-values were
adjusted as above, using the Benjamini-Hochberg
procedure. GO terms with adjusted p-values of <0.05
were considered significant.

Immunofluorescence and microscopy

To understand whether the gene expression differences
found for Xist in the prefrontal cortex of male mice with
small relative to large social network size actually
reflected symptoms of X-chromosome inactivation dif-
ferences, we used immunofluorescence on the adjacent
slices that were obtained during brain dissection, which
had been stored at -80°C. We used an epigenetic
marker of the inactive X-chromosome, the Histone H3
trimethyl-lysine 27 (H3K27me3) modification, which co-
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localizes with Xist RNA [39]. The antibody used was
rabbit anti-tri-methyl-histone H3 K27-3 m (1:1000, Cell
Signaling catalogue #9733S), which has been previously
validated and used in mice under similar immunofluor-
escence conditions [39, 102]. The secondary fluores-
cently labeled antibody was Alexa Fluor 568-conjugated
goat anti-rabbit (1:1000; Life Technologies catalogue
#A11011).

Slides were brought to room temperature and tissue
was outlined with a hydrophobic barrier (ImmEdge
Hydrophobic Barrier PAP Pen, Vector Labs catalogue
#H-4000) before being exposed to cold 4% paraformal-
dehyde (prepared in 1x PBS) for 20 min. Slides were
then rinsed 3 times in 1x PBS and blocked in 1x PBS
containing 2% normal goat serum and 0.2% Triton-X for
1 h. Incubation in primary antibody took place over two
nights at 4°C in a humid chamber. Slides were then
rinsed 3 times in 1x PBS containing 0.2% Triton-X and
exposed to the secondary antibody for 90 min. After
rinsing 3 times in 1x PBS, the slides were allowed to dry
and coverslipped with DAPI Fluoromount-G (Southern-
Biotech, Birmingham, AL).

For each animal, four brain slices containing the
prefrontal cortex region were photographed on a Zeiss
Imager.M2, with an Axiocam 506 mono camera. Per
slice, two photographs were taken with a 40x objective,
one for each hemisphere. The number of H3K27me3-
positive punctate stains (marking the inactive X-
chromosome) in the entire field of each photograph was
counted by hand by an observer blind to the treatments.
The number of DAPI-positive stained nuclei for the
same field was counted automatically, using the ZEN 2.3
(blue edition) software. Numbers of H3K27me3-positive
punctate stains and DAPI-positive nuclei were averaged
per animal. We first tested whether the average number
of DAPI stained nuclei in the prefrontal cortex differed
by sex or social network size trait using a two-way
ANOVA. As no effects of sex, social network size trait
or their interaction were found (Table S4), we used the
average counts of H3K27me3-positive punctate stains
for the subsequent analysis, rather than a ratio of
H3K27me3-positive punctate stains per DAPI-positive
nuclei. We compared H3K27me3-positive punctate
stains in males with large social network size to those
with low social network size using a Welch’s t-test.
Boxplots for these results were prepared using the
ggplot2 R package [101].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512864-020-06911-5.

Additional file 1 Table S1. RNA-Seq mapping statistics. Table S2. Dif-
ferentially expressed genes between animals with large and small social

Page 11 of 14

network size in females and males in the different brain regions. Table
S3. Statistically significant GO (Gene Ontology) terms . Abbeviations for
ontology categories: BP - Biological Processes; CC - Cellular Component;
MF - Molecular Function. Table S4. Two-way ANOVA table for test of dif-
ferences in number of DAPI-positive nuclei in the prefrontal cortex of
mice. Figure S1. Social network size as a function of (A) total length of
stay in nest boxes and (B) number of times entering/exiting nest boxes.
Figure S2. Body mass of sampled animals.

Abbreviations

ANOVA: Analysis of Variance; BACET: Beta-secretase 1 or beta-site amyloid
precursor protein cleaving enzyme 1; Chrna6: Cholinergic receptor, nicotinic,
alpha 6; Cd47: Cluster of differentiation 47; Cyp2d22: Cytochrome P450,
family 2, subfamily d, polypeptide 22; cDNA: Complementary
deoxyribonucleic acid; Cacna2d1: Voltage-dependent calcium channel
subunit alpha-2/delta-1; DAPI: 4'6-diamidino-2-phenylindole;

DEG: Differentially expressed genes; DNMT1: DNA (cytosine-5)-
methyltransferase 1; Ddc: Aromatic-L-amino-acid decarboxylase;

Dmp1: Dentin matrix acidic phosphoprotein 1; ECM: Extracellular matrix;
Emilin3: Elastin microfibril interface-located protein 3; Gabrg3: Gamma-
aminobutyric acid receptor subunit gamma-3; Gpc2: Glypican-2;

H3K27me3: Trimethylation at lysine 27 of histone H3; Iltgav: Integrin alpha-V;
ltgb4: Integrin beta-4; miR-124: MicroRNA 124; PBS: Phosphate based buffer;
Prelp: Prolargin; RFID: Radio-frequency identification; RNA: Ribonucleic acid;
RNA-seq: RNA-sequencing; Slc18a2: Synaptic vesicular amine transporter or
Solute carrier family 18 member 2; Slc26a8: Testis anion transporter 1 or
Solute carrier family 26 member 8; Snx4: Sorting nexin-4; STD: Standard
deviation; Th: Tyrosine hydroxylase; V1aR: Vasopressin V1a receptor;

Wnt3: Proto-oncogene Wnt-3; Xist: X inactive specific transcript

Acknowledgements

We are thankful to Bruce Boatman, Anna Lindholm, Akos Dobay, Jari Garbely
and numerous helpers for their continued work in maintaining the
population and data collection. We are also thankful to current and previous
members of the NEST lab, particularly Morgan Kindel, Faith Holloway, Sachin
Patel and Chandler Siemonsma. Finally, we thank Greg R. Goldsmith for
comments to the manuscript.

Authors’ contributions

PCL designed the experiment, conducted the research, collected and
processed the samples and analyzed the data. BK started and maintains the
study population and contributed to study design. All authors contributed
towards preparing the manuscript and have read and approved the final
manuscript.

Funding

This research was funded by the Swiss National Science Foundation (SNSF)
award number 31003A_176114 (BK) and a Chapman University Faculty
Opportunity Fund (PCL). These funding sources had no role in the design of
the study and collection, analysis, and interpretation of data and in writing
the manuscript.

Availability of data and materials

The datasets generated and/or analyzed during the current study are
available in the NCBI Gene Expression Omnibus (GEO) repository, with
record GSE148075 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi’acc=
GSE148075).

The reference mouse genome used was the GRCm38/mm10 assembly and it
was obtained from the University of California Santa Cruz (UCSC) Genomics
Institute website (https://genome.ucsc.eduy).

The accession numbers/gene IDs in Table S2 are from Ensembl (https://
www.ensembl.org/Mus_musculus/Info/Index).

The Gene Ontology (GO) IDs in Table S3 are from the Gene Ontology
database (http://geneontology.org/).

Ethics approval

Animal use and experimental design were approved by the Veterinary Office
Zurich, Switzerland (Kantonales Veterindramt Zdrich, no. ZH091/16). Animal
sampling was carried out in accordance with the Veterinary Office Zurich
guidelines and is subject to the Swiss animal protection law (TschG). The


https://doi.org/10.1186/s12864-020-06911-5
https://doi.org/10.1186/s12864-020-06911-5
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE148075
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE148075
https://genome.ucsc.edu/
https://www.ensembl.org/Mus_musculus/Info/Index
https://www.ensembl.org/Mus_musculus/Info/Index
http://geneontology.org/

Lopes and Kénig BMC Genomics (2020) 21:506

animals sampled belong to a population established and maintained by
Barbara Konig.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details

'Schmid College of Science and Technology, Chapman University, Orange,
CA, USA. “Department of Evolutionary Biology and Environmental Studies,
University of Zurich, Zurich, Switzerland.

Received: 15 April 2020 Accepted: 13 July 2020
Published online: 22 July 2020

References
1. Taborsky B, Oliveira RF. Social competence: an evolutionary approach.
Trends Ecol Evol. 2012,27:679-88.

2. Thompson NA. Understanding the links between social ties and fitness over

the life cycle in primates. Behaviour. 2019;156:859-908.

3. Seeman TE. Social ties and health: the benefits of social integration. Ann
Epidemiol. 1996,6:442-51.

4. Cohen S, Doyle WJ, Skoner DP, Rabin BS, Gwaltney JM. Social ties and
susceptibility to the common cold. JAMA. 1997,277:1940-4.

5. Cacioppo JT, Hawkley LC. Social isolation and health, with an emphasis on

underlying mechanisms. Perspect Biol Med. 2003;46:539-52.
6.  Caspi A, Harrington H, Moffitt TE, Milne BJ, Poulton R. Socially isolated

children 20 years later: risk of cardiovascular disease. Arch Pediatr Adolesc

Med. 2006;160:805-11.

7. Kroenke CH, Kubzansky LD, Schernhammer ES, Holmes MD, Kawachi I. Social

networks, social support, and survival after breast cancer diagnosis. J Clin
Oncol. 2006;24:1105-11.

8. Lott DF. Intraspecific variation in the social systems of wild vertebrates.
Behaviour. 1984,88:266-325.

9. Schradin C. Intraspecific variation in social organization by genetic variation,
developmental plasticity, social flexibility or entirely extrinsic factors. Philos

Trans R Soc Lond Ser B Biol Sci. 2013;368:20120346.

10.  American Psychiatric Association. Diagnostic and statistical manual of
mental disorders: DSM-5 (5th ed.). Washington, DC: American Psychiatric
Association Publishing; 2013.

11. Newman SW. The medial extended amygdala in male reproductive

behavior a node in the mammalian social behavior network. Ann N'Y Acad

Sci. 1999,877:242-57.

12. Goodson JL. The vertebrate social behavior network: evolutionary themes
and variations. Horm Behav. 2005;48:11-22.

13.  Robinson GE, Fernald RD, Clayton DF. Genes and social behavior. Science.
2008;322:896-900.

14.  O'Connell LA, Hofmann HA. The vertebrate mesolimbic reward system and
social behavior network: a comparative synthesis. J Comp Neurol. 2011;519:

3599-639.

15. O'Connell LA, Hofmann HA. Evolution of a vertebrate social decision-making

network. Science. 2012;336:1154~7.

16. Hofmann HA, Beery AK, Blumstein DT, Couzin ID, Earley RL, Hayes LD, et al.

An evolutionary framework for studying mechanisms of social behavior.
Trends Ecol Evol. 2014;29:581-9.

17.  Taborsky M, Hofmann HA, Beery AK, Blumstein DT, Hayes LD, Lacey EA,
et al. Taxon matters: promoting integrative studies of social behavior:
NESCent working group on integrative models of vertebrate sociality:

evolution, mechanisms, and emergent properties. Trends Neurosci. 2015;38:

189-91.

18.  Keifer J, Summers CH. Putting the "biology” back into “neurobiology”: the
strength of diversity in animal model systems for neuroscience research.
Front Syst Neurosci. 2016;10:69.

19. MacGillivray L, Reynolds KB, Rosebush PI, Mazurek MF. The comparative
effects of environmental enrichment with exercise and serotonin

transporter blockade on serotonergic neurons in the dorsal raphe nucleus.

Synapse. 2012,66:465-70.

20.

22.

23.
24,

25.

26.

27.

28.

29.

30.

32.
33
34,

35.
36.

37.
38,
39,
40,
41,
42,
43,
44,

45.

Page 12 of 14

Beura LK, Hamilton SE, Bi K, Schenkel JM, Odumade OA, Casey KA, et al.
Normalizing the environment recapitulates adult human immune traits in
laboratory mice. Nature. 2016;532:512-6.

Wiirbel H. Behaviour and the standardization fallacy. Nat Genet. 2000,26:263.
Richter SH, Garner JP, Wiirbel H. Environmental standardization: cure or
cause of poor reproducibility in animal experiments? Nat Methods. 2009,6:
257-61.

Peters SM, Pothuizen HHJ, Spruijt BM. Ethological concepts enhance the
translational value of animal models. Eur J Pharmacol. 2015;759:42-50.
Anderson DJ, Perona P. Toward a science of computational ethology.
Neuron. 2014;84:18-31.

Francis D, Diorio J, Liu D, Meaney MJ. Nongenomic transmission across
generations of maternal behavior and stress responses in the rat. Science.
1999;286:1155-8.

Boogert NJ, Farine DR, Spencer KA. Developmental stress predicts social
network position. Biol Lett. 2014;10:20140561.

Brandl HB, Farine DR, Funghi C, Schuett W, Griffith SC. Early-life social
environment predicts social network position in wild zebra finches. Proc R
Soc B Biol Sci. 2019;286:20182579.

Thomas JW, Céceres M, Lowman JJ, Morehouse CB, Short ME, Baldwin
EL, et al. The chromosomal polymorphism linked to variation in social
behavior in the white-throated sparrow (Zonotrichia albicollis) is a
complex rearrangement and suppressor of recombination. Genetics.
2008;179:1455-68.

Keeney A, Hogg S. Behavioural consequences of repeated social defeat in
the mouse: preliminary evaluation of a potential animal model of
depression. Behav Pharmacol. 1999;10:753-64.

Cardoso SD, Teles MC, Oliveira RF. Neurogenomic mechanisms of social
plasticity. J Exp Biol. 2015;218:140-9.

Branson K, Robie AA, Bender J, Perona P, Dickinson MH. High-throughput
ethomics in large groups of Drosophila. Nat Methods. 2009,6:451-7.
Moyers SC, Adelman JS, Farine DR, Moore IT, Hawley DM. Exploratory behavior
is linked to stress physiology and social network centrality in free-living house
finches (Haemorhous mexicanus). Horm Behav. 2018:102:105-13.

Williamson CM, Franks B, Curley JP. Mouse social network dynamics and
community structure are associated with plasticity-related brain gene
expression. Front Behav Neurosci. 2016;10:152.

Ophir AG, Wolff JO, Phelps SM. Variation in neural V1aR predicts sexual
fidelity and space use among male prairie voles in semi-natural settings.
Proc Natl Acad Sci U S A. 2008;105:1249-54.

Caldwell HK, Albers HE. Oxytocin, vasopressin, and the motivational forces
that drive social behaviors. Curr Top Behav Neurosci. 2016;27:51-103.
Ondrasek NR. Emerging frontiers in social neuroendocrinology and the
study of nonapeptides. Ethology. 2016;122:443-55.

Konig B, Lindholm AK, Lopes PC, Dobay A, Steinert S, Buschmann FJ-U. A
system for automatic recording of social behavior in a free-living wild house
mouse population. Anim Biotelem. 2015;3:39.

Greenwood AK, Peichel CL. Social regulation of gene expression in
threespine sticklebacks. PLoS One. 2015;10:e0137726.

Yue M, Charles Richard JL, Yamada N, Ogawa A, Ogawa Y. Quick fluorescent
in situ hybridization protocol for Xist RNA combined with
immunofluorescence of histone modification in X-chromosome inactivation.
J Vis Exp. 2014;93:52053.

Klein MO, Battagello DS, Cardoso AR, Hauser DN, Bittencourt JC, Correa RG.
Dopamine: functions, signaling, and association with neurological diseases.
Cell Mol Neurobiol. 2019;39:31-59.

Afonso VM, Grella SL, Chatterjee D, Fleming AS. Previous maternal
experience affects accumbal dopaminergic responses to pup-stimuli. Brain
Res. 2008;1198:115-23.

Afonso VM, King S, Chatterjee D, Fleming AS. Hormones that increase
maternal responsiveness affect accumbal dopaminergic responses to pup-
and food-stimuli in the female rat. Horm Behav. 2009;56:11-23.

Afonso VM, Shams WM, Jin D, Fleming AS. Distal pup cues evoke dopamine
responses in hormonally primed rats in the absence of pup experience or
ongoing maternal behavior. J Neurosci. 2013;33:2305-12.

Lamprecht F, Eichelman B, Thoa NB, Williams RB, Kopin 1J. Rat fighting
behavior: serum dopamine- -hydroxylase and hypothalamic tyrosine
hydroxylase. Science. 1972;177:1214-5.

Ricci LA, Schwartzer JJ, Melloni RH. Alterations in the anterior hypothalamic
dopamine system in aggressive adolescent AAS-treated hamsters. Horm
Behav. 2009;55:348-55.



Lopes and Kénig BMC Genomics

46.

47.
48.
49.

50.

51.
52.
53.
54.
55.

56.

57.

58.

59.

60.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

(2020) 21:506

Schwartzer JJ, Melloni RH. Dopamine activity in the lateral anterior
hypothalamus modulates AAS-induced aggression through D2 but not D5
receptors. Behav Neurosci. 2010;124:645-55.

Falkner AL, Lin D. Recent advances in understanding the role of the
hypothalamic circuit during aggression. Front Syst Neurosci. 2014;8:168.
Hashikawa Y, Hashikawa K, Falkner AL, Lin D. Ventromedial hypothalamus
and the generation of aggression. Front Syst Neurosci. 2017;11:94.
Yamaguchi T, Lin D. Functions of medial hypothalamic and mesolimbic
dopamine circuitries in aggression. Curr Opin Behav Sci. 2018;24:104-12.
Mulugeta E, Marion-Poll L, Gentien D, Ganswindt SB, Ganswindt A, Bennett
NC, Blackburn EH, Faulkes CG, Heard E. Molecular insights into the pathways
underlying naked mole-rat eusociality. bioRxiv. 2017,209932. https://doi.org/
10.1101/209932.

Ben-Jonathan N, Hnasko R. Dopamine as a prolactin (PRL) inhibitor. Endocr
Rev. 2001,22:724-63.

Grattan DR, Kokay IC. Prolactin: a pleiotropic neuroendocrine hormone. J
Neuroendocrinol. 2008,20:752-63.

Schradin C, Anzenberger G. Prolactin, the hormone of paternity. Physiology.
1999;14:223-31.

Bridges RS. The behavioral neuroendocrinology of maternal behavior: past
accomplishments and future directions. Horm Behav. 2020;120:104662.
Snowdon CT, Ziegler TE. Variation in prolactin is related to variation in
sexual behavior and contact affiliation. PLoS One. 2015;10:¢0120650.
Donhoffner ME, Saleh SA, Schink O, Wood RI. Prosocial effects of prolactin
in male rats: social recognition, social approach and social learning. Horm
Behav. 2017,96:122-9.

Traer CJ, Rutherford AC, Palmer KJ, Wassmer T, Oakley J, Attar N, et al. SNX4
coordinates endosomal sorting of TfnR with dynein-mediated transport into
the endocytic recycling compartment. Nat Cell Biol. 2007;9:1370-80.

van Weering JRT, Verkade P, Cullen PJ. SNX-BAR-mediated endosome
tubulation is co-ordinated with endosome maturation. Traffic. 2012;13:
94-107.

Brown EJ, Frazier WA. Integrin-associated protein (CD47) and its ligands.
Trends Cell Biol. 2001;11:130-5.

Miyashita M, Ohnishi H, Okazawa H, Tomonaga H, Hayashi A, Fujimoto T-T,
et al. Promotion of neurite and filopodium formation by CD47: roles of
integrins, Rac, and Cdc42. Mol Biol Cell. 2004;15:3950-63.

Zhang H, Huang T, Hong Y, Yang W, Zhang X, Luo H, et al. The Retromer
complex and sorting nexins in neurodegenerative diseases. Front Aging
Neurosci. 2018;10:79.

Kim N-Y, Cho M-H, Won S-H, Kang H-J, Yoon S-Y, Kim D-H. Sorting nexin-4
regulates B-amyloid production by modulating B-site-activating cleavage
enzyme-1. Alzheimers Res Ther. 2017,9:4.

Koshimizu H, Takao K, Matozaki T, Ohnishi H, Miyakawa T. Comprehensive
behavioral analysis of cluster of differentiation 47 knockout mice. PLoS One.
2014,9(2):e89584.

Giovanoli S, Engler H, Engler A, Richetto J, Voget M, Willi R, et al. Stress in
puberty unmasks latent Neuropathological consequences of prenatal
immune activation in mice. Science. 2013;339:1095-9.

Dityatev A, Schachner M, Sonderegger P. The dual role of the extracellular matrix
in synaptic plasticity and homeostasis. Nat Rev Neurosci. 2010;11:735-46.
Senkov O, Andjus P, Radenovic L, Soriano E, Dityatev A. Neural ECM
molecules in synaptic plasticity, learning, and memory. Prog Brain Res
Elsevier. 2014;214:53-80.

Lugert S, Kremer T, Jagasia R, Herrmann A, Aigner S, Giachino C, et al.
Glypican-2 levels in cerebrospinal fluid predict the status of adult
hippocampal neurogenesis. Sci Rep. 2017;7:46543.

Toro CT, Deakin JFW. Adult neurogenesis and schizophrenia: a window on
abnormal early brain development? Schizophr Res. 2007,90:1-14.

Smagin DA, Park J-H, Michurina TV, Peunova N, Glass Z, Sayed K, et al.
Altered hippocampal neurogenesis and amygdalar neuronal activity in adult
mice with repeated experience of aggression. Front Neurosci. 2015,9:443.
Sallet J, Mars RB, Noonan MP, Andersson JL, O'Reilly JX, Jbabdi S, et al.
Social network size affects neural circuits in macaques. Science. 2011;334:
697-700.

Salido EC, Yen PH, Mohandas TK, Shapiro LJ. Expression of the X-
inactivation-associated gene XIST during spermatogenesis. Nat Genet. 1992;
2:196-9.

Pontier DB, Gribnau J. Xist regulation and function eXplored. Hum Genet.
2011;130:223-36.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

Page 13 of 14

Mira-Bontenbal H, Gribnau J. New Xist-interacting proteins in X-
chromosome inactivation. Curr Biol. 2016,26:R338-42.

Galupa R, Heard E. X-chromosome inactivation: a crossroads between
chromosome architecture and gene regulation. Annu Rev Genet. 2018;52:
535-66.

Gayen S, Maclary E, Hinten M, Kalantry S. Sex-specific silencing of X-linked
genes by Xist RNA. Proc Natl Acad Sci U S A. 2016;113:E309-18.

Zhao J, Sun BK, Erwin JA, Song J-J, Lee JT. Polycomb proteins targeted by a
Short repeat RNA to the mouse X chromosome. Science. 2008;322:750.
Skuse DH. X-linked genes and mental functioning. Hum Mol Genet. 2005;14:
R27-32.

Raymond FL. X linked mental retardation: a clinical guide. J Med Genet.
2006;43:193-200.

Cox KH, Quinnies KM, Eschendroeder A, Didrick PM, Eugster EA,
Rissman EF. Number of X-chromosome genes influences social behavior
and vasopressin gene expression in mice. Psychoneuroendocrinol. 2015;
51:271-81.

Ji B, Higa KK, Kelsoe JR, Zhou X. Over-expression of XIST, the master gene
for X chromosome inactivation, in females with major affective disorders.
EBioMedicine. 2015;2:909-18.

Taulli R, Loretelli C, Pandolfi PP. From pseudo-ceRNAs to circ-ceRNAs: a tale
of cross-talk and competition. Nat Struct Mol Biol. 2013,20:541-3.

Cai Y, Wan J. Competing endogenous RNA regulations in
neurodegenerative disorders: current challenges and emerging insights.
Front Mol Neurosci. 2018;11:370.

Du Y, Weng X-D, Wang L, Liu X-H, Zhu H-C, Guo J, et al. LncRNA XIST acts
as a tumor suppressor in prostate cancer through sponging miR-23a to
modulate RKIP expression. Oncotarget. 2017;8:94358-70.

Wei W, Liu Y, Lu Y, Yang B, Tang L. LncRNA XIST promotes pancreatic
cancer proliferation through miR-133a/EGFR. J Cell Biochem. 2017;118:
3349-58.

Zhang Y-L, Li X-B, Hou Y-X, Fang N-Z, You J-C, Zhou Q-H. The IncRNA XIST
exhibits oncogenic properties via regulation of miR-449a and Bcl-2 in
human non-small cell lung cancer. Acta Pharmacol Sin. 2017;38:371-81.
Yue D, Guanqun G, Jingxin L, Sen S, Shuang L, Yan S, et al. Silencing of long
noncoding RNA XIST attenuated Alzheimer's disease-related BACE1
alteration through miR-124. Cell Biol Int. 2020;44:630-6.

Wang X, Wang C, Geng C, Zhao K. LncRNA XIST knockdown attenuates
AB25-35-induced toxicity, oxidative stress, and apoptosis in primary cultured
rat hippocampal neurons by targeting miR-132. Int J Clin Exp Pathol. 2018;
11:3915-24.

Konig B, Lindholm AK. The complex social environment of female house
mice (Mus domesticus). In: Pidlek J, Macholdn M, Munclinger P, Baird SJE,
editors. Evolution of the house mouse. Cambridge: Cambridge University
Press; 2012. p. 114-34.

Lopes PC, Block P, Konig B. Infection-induced behavioural changes reduce
connectivity and the potential for disease spread in wild mice contact
networks. Sci Rep. 2016;6:31790.

Lopes PC, Carlitz EHD, Kindel M, Kénig B. Immune-endocrine links to
gregariousness in wild house mice. Front Behav Neurosci. 2020;14:10.
Wasserman S, Faust K. Social network analysis: methods and applications.
Cambridge: Cambridge University Press; 1994.

Stoffel MA, Nakagawa S, Schielzeth H. rptR: repeatability estimation and
variance decomposition by generalized linear mixed-effects models.
Methods Ecol Evol. 2017;8:1639-44.

Bell AM, Hankison SJ, Laskowski KL. The repeatability of behaviour: a meta-
analysis. Anim Behav. 2009;77:771-83.

Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, et al.
Genome-wide atlas of gene expression in the adult mouse brain. Nature.
2007;445:168-76.

Cardinal RN, Parkinson JA, Hall J, Everitt BJ. Emotion and motivation: the
role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci
Biobehav Rev. 2002,26:321-52.

Schurch NJ, Schofield P, Gierliiski M, Cole C, Sherstnev A, Singh V, Wrobel
N, Gharbi K, Simpson GG, Owen-Hughes T, Blaxter M, Barton GJ. How many
biological replicates are needed in an RNA-seq experiment and which
differential expression tool should you use? RNA. 2016;22:839-51.

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR:
ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15-21.

Anders S, Huber W. Differential expression analysis for sequence count data.
Genome Biol. 2010;11:R106.


https://doi.org/10.1101/209932
https://doi.org/10.1101/209932

Lopes and Kénig BMC Genomics

99.

100.

(2020) 21:506

Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
Babicki S, Arndt D, Marcu A, Liang Y, Grant JR, Maciejewski A, et al.
Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res. 2016;44:
W147-53.

. Wickham H. ggplot2: elegant graphics for data analysis. 2nd ed. Cham:

Springer International Publishing; 2016.

. Adrianse RL, Smith K, Gatbonton-Schwager T, Sripathy SP, Lao U, Foss EJ,

et al. Perturbed maintenance of transcriptional repression on the inactive X-
chromosome in the mouse brain after Xist deletion. Epigenetics Chromatin.
2018;11:50.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Page 14 of 14

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions




	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Discussion
	Conclusions
	Methods
	Wild house mouse population
	Automated social interaction tracking system
	Brain collection and dissection of brain regions
	RNA isolation, library preparation and sequencing
	Mapping and differential gene expression analysis
	GO enrichment analysis of differentially expressed genes
	Immunofluorescence and microscopy

	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

