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Abstract

Background: As an important epigenetic mark, 5-methylcytosine (5mC) methylation is involved in many DNA-
dependent biological processes and plays a role during development and differentiation of multicellular organisms.
However, there is still a lack of knowledge about the dynamic aspects and the roles of global 5mC methylation in wood
formation in tree trunks. In this study, we not only scrutinized single-base resolution methylomes of primary stems (PS),
transitional stems (TS), and secondary stems (SS) of Populus trichocarpa using a high-throughput bisulfite sequencing
technique, but also analyzed the effects of 5mC methylation on the expression of genes involved in wood formation.

Results: The overall average percentages of CG, CHG, and CHH methylation in poplar stems were ~ 53.6%, ~ 37.7%, and
~ 8.5%, respectively, and the differences of 5mC in genome-wide CG/CHG/CHH contexts among PS, TS, and SS were
statistically significant (p < 0.05). The evident differences in CG, CHG, and CHH methylation contexts among 2 kb proximal
promoters, gene bodies, and 2 kb downstream regions were observed among PS, TS, and SS. Further analysis revealed a
perceptible global correlation between 5mC methylation levels of gene bodies and transcript levels but failed to reveal a
correlation between 5mC methylation levels of proximal promoter regions and transcript levels. We identified 653 and
858 DMGs and 4978 and 4780 DEGs in PS vs TS and TS vs SS comparisons, respectively. Only 113 genes of 653 DMGs and
4978 DEGs, and 114 genes of 858 DMGs and 4780 DEG were common. Counterparts of some of these common genes in
other species, including Arabidopsis thaliana, are known to be involved in secondary cell wall biosynthesis and hormone
signaling. This indicates that methylation may directly modulate wood formation genes and indirectly attune hormone
signaling genes, which in turn impact wood formation.

Conclusions: DNA methylation only marginally affects pathway genes or regulators involved in wood
formation, suggesting that further studies of wood formation should lean towards the indirect effects of
methylation. The information and data we provide here will be instrumental for understanding the roles of
methylation in wood formation in tree species.
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Background

Wood is the most abundant biomass produced by plants,
especially trees, and can serve as a renewable resource
for energy, pulp, paper products, and building materials
[1]. In most trees, wood originates from vascular cam-
bium, the secondary meristem located between tree
barks and woody trunks; vascular cambium produces
undifferentiated xylem mother cells inwardly and bark
cells outwardly. For this reason, cambium activity is the
most important determining factor for wood accumula-
tion. Present knowledge indicates that the differentiation
of vascular cambium into xylem mother cells is con-
trolled by plant hormones and HD-ZIP III transcription
factors [2]. After that, xylem mother cells undergo a
series of biological processes, including cell division and
expansion, secondary wall formation, lignification, and
finally programmed cell death, to produce secondary
xylem, known as wood [3, 4]. The coordinated activation
of secondary wall biosynthesis in xylem mother cells to
produce wood is mediated by a transcriptional network
composed of secondary wall NAC and MYB master
switches and their downstream transcription factors
[1, 2, 5-8]. However, the contribution of epigenetic
regulation during this process is still unclear.

DNA methylation, a key epigenetic modification, typic-
ally involves the addition of a methyl group to the fifth
carbon of cytosine to produce 5-methylcytosine (5mC)
in eukaryotic genomes [9, 10]. Although the relationship
between DNA methylation and its effect on gene expres-
sion is complex [11, 12], an increasing body of evidence
suggests that DNA methylation plays a role in various
biological processes during plant growth and develop-
ment [12, 13], such as morphogenesis [14], gender deter-
mination [15, 16], vegetative propagation [17], and
response to abiotic stress [18—21]. In plants, cytosine
methylation is primarily found in three sequence con-
texts: CG, CHG, and CHH (where H=A, T or C) [22].
Moreover, DNA methylation exhibits tissue specific pat-
terns in plants. For example, in Arabidopsis thaliana,
about 6% of cytosines are methylated in immature floral
tissues [23], while 24% CG, 6.7% CHG, and 1.7% CHH
are methylated in young plants [24]. In rice, whole gen-
ome methylation patterns are similar among mature
leaves, embryos, and seedling shoots and roots, but
hypomethylation levels are correlated with expression
levels of genes that are preferentially expressed in endo-
sperm [25]. Patterns of 5mC in long terminal repeat
(LTR) transposable elements differ between rice leaves
and roots [26] and affect neighboring gene expression in
A. thaliana [27, 28]. Tissue-specific characteristics of
genome methylation are also evident in natural popula-
tions of Chinese white poplar [29]. Although DNA
methylation is purported to play an important role in
wood formation [30, 31], the mechanisms by which
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DNA methylation alter the expression of xylogenetic
genes have not been elucidated. Moreover, tissue-
specific methylation patterns in the transitional zones
between vascular cambium and secondary wood have
not been characterized.

The transition from primary to secondary growth can
be easily observed in the stems of less than one-year old
poplar trees with multiple developmental stages. For
instance, stems near apical meristems are generally soft
and green due to the presence of a multitude of cells
with primary cell walls; in contrast, stems in basal por-
tions are stiff and woody owing to the presence of a
large fraction of secondary xylem cells that have under-
gone cell wall thickening and lignification. Stems in the
middle are in a transitional stage between primary and
secondary growth. For this reason, vertical segments of
developing stems from less than one-year old trees con-
stitute an ideal experimental system for investigating
epigenetic regulatory mechanisms of wood formation
[32, 33]. To date, no focused study of DNA methylation
and its effects on gene expression in different develop-
mental stages of stems has been conducted in tree
species. In this study, we generated high coverage
genome-wide maps of cytosine methylation at single-
nucleotide resolution and transcriptomic profiles of
Populus trichocarpa stems in various developmental
stages varying from predominantly primary to secondary
growth. This study was designed to collect data and gain
insight into four problems: (i) the genomic landscape of
the different developmental stem methylomes; (ii) the
changes in the methylomes associated with different
stem developmental stages; (iii) an evaluation of relation-
ships between methylome changes and expression of
wood formation genes; (iv) the identification of wood
formation genes that are subjected to epigenetic regula-
tion. The epigenetic and RNA-seq data acquired consti-
tute valuable genetic resources, and the results and
conclusions drawn from the data and analysis will be in-
strumental for further studies of both the epigenetic and
molecular regulatory mechanisms of wood formation.

Results

Morphological and histochemical changes in P.
trichocarpa stems

To verify the rationality of the classification of the main
stems of poplar into different developmental stages using
the plastochron indices method, we determined the de-
velopmental stages of internodes two (IN2), four (IN4),
and eight (IN8) using histochemical staining. Toluidine
blue-O and phloroglucinol-HCI were used to stain lignin
while calcofluor white was used to stain cellulose in
xylem vessel elements. Because the vascular bundles in
IN2 comprised mainly of primary xylem and phloem tis-
sues that were formed from procambial cells, toluidine
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blue-O and phloroglucinol-HCl staining in the cross
sections of IN2 were nearly undetectable (Fig. 1b and c),
and calcofluor white staining in IN2 sections was also
weak (Fig. 1d). In IN4, the secondary vascular cambium
has emerged and produced secondary walls. As a result,
the lignin stained by either toluidine blue-O or
phloroglucinol-HCI was clearly discernible (Fig. le and
f), and the cellulose stained by calcofluor white was also
more obvious (Fig. 1g) than in IN2 (Fig. 1d). In the stem
segments of IN8, the secondary xylem had increasingly
accumulated, phloem fibers had emerged, and both were
lignified. As a result, the intensities of toluidine blue-O,
phloroglucinol-HCI, and calcofluor white staining in the
cross sections of IN8 (Fig. 1h-j) were much more strik-
ing than in IN2 or IN4 (Fig. 1b-g). Therefore, IN2, IN4,
and IN8, representing the stages of primary stems (PS),
transitional stems (TS), and secondary stems (SS) from
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primary growth to secondary growth, respectively, were
used for further analysis. To avoid getting into a state of
uncertainty by virtue of using multiple cross-section tis-
sues, we harvested only the primary xylem upon peeling
tree bark and focused our studies on DNA methylation
and genomic aspects of xylogenesis.

The expression levels of genes involved in DNA
methylation and demethylation in P. trichocarpa stems
To determine whether variations in DNA methylation
exist among PS, TS, and SS, we first used qRT-PCR to glo-
bally scrutinize the expression levels of genes involved in
DNA methylation. We focused on the DNA methylation
genes PtrMET1A/B, PtrDRM1/2-A-C, PtrCMT3-A-C, and
PtrDDM1-A/B and the DNA demethylation genes
PtrDME-A/B, PtrDEMETER-LIKE 2-A/B, and PtrROSI.
As shown in Fig. 2, the expression levels of PtrMETI-B,

Fig. 1 Anatomical and histochemical analyses in Populus trichocarpa stems of different developmental stages. a An illustration of stem segments
in a 90-day-old Populus trichocarpa sample plant used as study material. The number of each internode (IN) is indicated from the apical bud to
the base of the stem. b, e, and h represent toluidine blue O-stained transverse sections from the internodes two (IN2), four (IN4), and eight (IN8),
respectively. ¢, f, and i are phloroglucinol-HCl-stained transverse sections from IN2, IN4, and IN8, respectively. d, g, and j represent calcofluor
white-stained transverse sections from IN2, IN4, and IN8 under UV light, respectively. The arrowheads represent changes in xylem of P. trichocarpa
stems. Scale bars =200 um
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Fig. 2 gRT-PCR analysis of genes encoding DNA methyltransferases and demethylases in stems of Populus trichocarpa. Transcript level of the actin
gene in P. trichocarpa was used as an endogenous control to normalize expression values of other genes in primary stems (PS), transitional stems
(TS), and secondary stems (SS). Bars and standard errors represent the means and standard errors, respectively, of three biological replicates. Each
biological replicate was represented by an independent RNA extraction in two technical replicates. The data were analyzed using one-way
ANOVA using SPSS 21. Significant differences among different comparisons were determined with Duncan'’s multiple range test and significant
and highly significant differences are indicated by *(P < 0.05) and **(P < 0.01), respectively

PS TS SS

PtrCM1T3-A, and PtrCMT3-C were significantly different
among PS, TS, and SS. PtrDRM1I1/2-C had significantly
higher and PtrCMT3-B had significantly lower expression
levels in SS than in both PS and TS. The expression level
of PtrDRM11/2-B in TS was significantly higher than in PS
and SS. However, there were no statistically significant
differences in the expression levels of Pi&METI-A,
PtrDRM1/2-A, PtrDDM1I-A, and PtrDDMI-B among PS,
TS, and SS. Of the expressed genes involved in DNA de-
methylation, only PtrDME-A and PtrDEMETER-LIKE 2-A
exhibited significant differences in expression levels
among PS, TS, and SS. The expression levels of PtrDME-
B and PtrDEMETER-LIKE 2-B in TS and SS exhibited
significant differences compared to PS. However, the
expression levels of these three demethylation genes had
no obvious differences between TS and SS. Moreover,
there were no significant differences in the expression

levels of PtrROSI among PS, TS, and SS. In summary, the
differential expression of these genes across three develop-
mental stages suggests that genomic DNA methylation
patterns may be altered during the wood formation
process.

Whole-Genome Bisulfite Sequencing (WGBS) of the P.
trichocarpa genome

Variations in the expression levels of genes involved
in DNA methylation suggest that genomic DNA
methylation levels might be different across PS, TS,
and SS. To investigate the genomics methylation
levels of poplar in the stems of different developmen-
tal stages, we performed bisulfite sequencing of gen-
omic DNA extracted from PS, TS, and SS using the
[lumina HiSeq 2500 platform. We then decoded and
analyzed the corresponding methylomes. A total of
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99.5-115.6 million raw sequencing paired reads were
obtained for each biological replicate (Table 1), cover-
ing the whole genome of P. trichocarpa with a depth
between 30.35-34.29-fold. Raw reads were then
subjected to a series of filtering criteria to ensure data
quality, and 99.82-99.88% of the reads were retained
for further analysis. The reads from each sample were
mapped to the P. trichocarpa reference genome with
a mapping rate of 75.74-80.27% (Table 1).

DNA methylation landscapes of P. trichocarpa genome
Conversion rates were calculated by aligning reads to the
unmethylated lambda DNA added to the total DNA before
applying bisulfite treatment. Conversion rates of genomic
DNA of PS, TS, and SS were on average 99.51, 99.52, and
99.50%, respectively, these rates were used to conduct bino-
mial tests to exclude those 5mCs that may be the result of
non-conversion of cytosines in our bisulfite treatment or
sequencing errors resulting from the base calling process.
Then, we obtained on average 14,773,999, 16,392,099, and
16,852,157 mCs for the PS, TS, and SS genomes, respect-
ively (Additional file 1). The PS genome harbored ~ 11.96,
47.64, 28.85, and 4.85% methylated C at the total sequenced
C, CG, CHG, and CHH sites, respectively. Likewise, the TS
genome contained ~ 13.33, 49.89, 31.53, and 5.88% methyl-
ated C while the SS genome contained ~ 13.55, 48.80,
30.80, and 6.46% methylated C, respectively, at the total
sequenced C, CG, CHG, and CHH sites (Additional file 1).
We also found that, regardless of developmental stage (PS,
TS, or SS), ~45% of CG and ~65% of CHG sites were
lowly methylated (0—10%) while ~ 40% of CG and ~ 24% of
CHG sites were highly methylated (90-100%) (Fig. 3a and
b); in contrast, ~83% of CHH sites were lowly methylated
(0-10%) (Fig. 3c) and less than 1% of CHH sites were
highly methylated (90-100%). These results suggest that
nearly half of CG methylation sites are either hypomethy-
lated or hypermethylated, nearly two thirds of CHG
methylation sites are hypermethylated, and the majority of
CHH sites are hypomethylated in poplar stems.
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As an important methylation characterisitcs of a genome,
the proportions of mCG, mCHG, and mCHH on total mC
sites have species and tissues specificity. Thus, we not only
identified the distribution patterns of mC sites in mCG,
mCHG, and mCHH contexts among PS, TS, and SS, but
we also compared the mC site distribution patterns of pop-
lar stems with A. thaliana [23, 24, 34], rice [35], and apple
[36]. The overall distribution patterns of mC sites in mCG,
mCHG, and mCHH were illustrated using Chromosome 1
in the PS genome (Fig. 3d). The distribution of mCs in the
other 18 chromosomes were also determined on sense and
antisense strands (Additional files 2, 3, and 4).

We found that PS, TS, and SS exhibited nearly same dis-
tribution patterns of total mC sites in three methylation
contexts as those in apple on the whole. However, the
mCs exhibited different distribution patterns in P. tricho-
carpa compared to A. thaliana and rice, especially in
mCG and mCHH contexts (Fig. 3e). In PS, 5mC was
found more frequently at CHH sites (43.87%) than at CG
(28.42%) or CHG (27.71%) sites. In TS and SS, CHH
methylation rates increased to 48.47 and 51.93%, respect-
ively, indicating that the CHH methylation rate increases
in accordance with the progression of secondary growth
and development. Accordingly, the CG methylation rates
in TS and SS decreased to 25.95 and 24.22%, respectively,
while the CHG methylation rates decreased to 25.61 and
23.87%, respectively (Additional file 5), suggesting that the
levels of these two methylation contexts negatively correl-
ate with the progression of secondary growth. The com-
parisons of PS, TS, and SS among CG, CHG, and CHH
methylation rates revealed that there were significant dif-
ferences in mCG, mCHG, and mCHH contexts among
PS, TS, and SS (Additional file 6).

Regardless of PS, TS, and SS, the poplar genome
showed a relatively lower methylation level within gene-
rich regions compared to a relatively high degree of
methylation within transposable element (TE)-rich re-
gions (Fig. 4). Moreover, the gene-rich regions with few
or no TEs exhibited a relatively less methylation levels

Table 1 Description of the bisulfite sequencing (BS-Seq) data of early developing stems (3-month-old) in Populus trichocarpa

Sample Raw reads Clean reads Sequence Depth Mapped Reads Mapped Rate (%)
PS Rep1 105,344,898 105,190,862 (99.85%) 30.79 80,968,657 76.97
Rep2 99,553,450 99,425,308 (99.87%) 30.35 79,809,380 80.27
Rep3 107,558,146 107,425,046 (99.88%) 32.16 84,583,644 78.74
TS Rep1 107,666,760 10,749,4930 (99.84%) 31.51 82,870,707 77.09
Rep2 109,561,376 109,409,538 (99.86%) 31.51 82,864,569 75.74
Rep3 115,622,622 115,474,758 (99.87%) 34.14 89,790,043 77.76
SS Rep1 113,318,946 113,174,330 (99.87%) 34.29 90,186,749 79.69
Rep2 107,441,448 107,246,874 (99.82%) 32.09 84,393,945 78.69
Rep3 115,564,860 115,357,460 (99.82%) 33.95 89,294,118 7741

Note: primary stems (PS), transitional stems (TS), and secondary stems (SS)
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(Fig. 4) as compared to the gene-rich regions with more
TEs. We did not find large-scale differences in the
genomes of P. trichocarpa stems from different stages.

Genomic methylation patterns in P. trichocarpa stems

Given the existence of tissue level variation in DNA
methylation in the P. trichocarpa genome [30], we
further explored the methylation profiles of PS, TS, and
SS within different genomic regions; this included differ-
ent genic and intergenic regions, especially repetitive
regions containing various transposable elements (TEs)
such as long terminal repeats (LTR), long interspersed
nuclear elements (LINE), short interspersed nuclear ele-
ments (SINE), and DNA transposons (DNA). In PS, TS,
and SS, CG and CHG methylation levels were higher
than CHH methylation levels in each of the genomic
regions mentioned above (Fig. 5a and b). There were
significant differences in methylation in the CG and
CHG contexts when various specific genomic regions
were compared. For example, PS/TS/SS_Gene body of
CG verse PS/TS/SS_Gene body of CHG methylation
(Fig. 5b). In addition, methylation levels in CG, CHG,
and CHH contexts were slightly higher in TS and SS
than in PS (Fig. 5a and b). LTRs had the highest methy-
lation levels in all three methylation contexts (CG, CHG,
and CHH) in PS, TS, and SS (Fig. 5a). In contrast, SINEs
had the lowest methylation levels in all three contexts
and stages of stem development. LINEs had modest
methylation in all three contexts of methylation and also

three developmental stages. Further research found that
LTR Gypsy, LTR Caulimovirus, LINE L1, and DNA
CMC-EnSpm, the predominant type of transposable
element sequence in P. trichocarpa genomes [37], had
higher methylation levels than others in the stems of P.
trichocarpa (Additional file 7). In addition, the LTR
Copia and LTR Gypsy super families had no distinct
differences in their methylation levels across PS, SS, and
TS, which resembles their relatively invariant methyla-
tion levels across seven tissues (vegetative bud, male in-
florescence, female catkin, leaf, root, xylem, and phloem)
of P. trichocarpa as observed earlier [30]. Among differ-
ent genic regions, the 5’UTR and 3'UTR had much lower
methylation levels than other regions; promoters and 2
kb downstream regions had higher methylation levels
than other regions in all three methylation contexts in
PS, TS, and SS (Fig. 5b).

We also found that methylation levels changed during
stem development in P. trichocarpa. In TEs and genic
regions, methylation levels of CG, CHG, and CHH
contexts were increased in TS and SS compared to PS
(Fig. 5¢ and d), and methylation levels in CG and CHG
contexts were highest in TS. However, the methylation
levels in CHH contexts were highest in SS. As for TE re-
gions, the CG context had the highest methylation level,
and CHH had the lowest level of the three methylation
contexts in PS, TS, and SS (Fig. 5c). In both CG and
CHG contexts, TEs had higher methylation levels than
2 kb upstream and 2 kb downstream regions. However,
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there were no conspicuous differences in CHH methyla-
tion levels among TEs, 2 kb upstream, and 2kb down-
stream regions in all three tissues. Additional studies
showed that several TE super families, including LINE
L1, DNA CMC-EnSpm, DNA hAT-Tagl, and DNA
hAT-TIp100, had higher CG and CHG methylation
levels in TEs than their 2 kb upstream and 2 kb down-
stream regions (Additional file 8). In addition, the LTR
Copia and LTR Gypsy super families had no distinct dif-
ferences in three CG, CHG, and CHH methylation levels
among TEs and their 2 kb upstream and downstream re-
gions in all three tissues.

As shown in Fig. 5d, the three methylation contexts
were ranked consistently from highest to lowest methy-
lation as CG, CHG, and CHH, no matter which genic
regions or tissue types were considered. Moreover, pro-
moter regions had higher methylation levels compared
with either gene bodies or 2kb downstream regions in
all three stem tissues. It was notable that gene bodies
had lower methylation levels, especially for CHG and

CHH, as compared with either the promoter regions or
the 2kb downstream regions. To compare methylation
levels in the three genomic contexts in different genic
regions across multiple tissues, multiple comparison
testing was conducted; significant differences among
difference comparisons are provided in Additional file 9.
Within the promoter regions, there were no significant
differences in CG methylation levels among PS, TS, and
SS (Additional file 9A). There were significant differ-
ences in CHG methylation levels between PS and TS
and also between PS and SS (Additional file 9B) and
significant differences in CHH methylation levels among
PS, TS, and SS (Additional file 9C). Within the gene
bodies, there were significant differences in CG contexts
between TS and SS (Additional file 9D), in CHG
contexts between PS and TS and between PS and SS
(Additional file 9E), and in CHH contexts among PS,
TS, and SS (Additional file 9F). Within the 2 kb down-
stream regions, there were significant differences in CG
methylation levels between PS and SS, in CHG between
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PS and TS and between PS and SS, and in CHH methy-
lation levels between any combination of PS, TS, and SS
(Additional file 9G-I). However, despite being statisti-
cally significant, the variations observed in methylation
levels are limited.

Relation between DNA methylation and gene expression

To investigate the potential influence of gene methyla-
tion on gene expression during wood formation, tran-
scriptome profiling of PS, TS, and SS was conducted
using the same materials used for methylome analysis.
Based on the FPKM gene expression levels, we classified
all genes into non-expressed or expressed genes; the lat-
ter were further divided into three groups based on their
expression level: low, moderate, or high. We then scruti-
nized the differences in CG, CHG, and CHH methyla-
tion levels within the proximal promoters, gene bodies,
and 2 kb downstream regions of genes having different
expression levels. As shown in Fig. 6, the four differen-
tially expressed groups had different methylation levels
in the three methylation contexts among proximal pro-
moters, gene bodies, and 2kb downstream regions. As
expected, non-expressed genes had the highest CHG
and CHH methylation levels in gene body regions and
the highest CG, CHG, and CHH methylation levels
within 2kb downstream regions in PS, TS, and SS. In
contrast, non-expressed genes had the lowest CHH
methylation levels and moderate CG and CHG methyla-
tion levels in upstream 2 kb promoter regions in PS, TS,
and SS. Interestingly, regardless of their expression
levels, expressed genes had higher CG, but lower CHG
and CHH, methylation levels than non-expressed genes
in gene bodies in PS, TS, and SS. Expressed genes with
moderate expression levels had the highest CG methyla-
tion levels within gene bodies, and the highest CG and
CHG methylation levels in promoter regions in PS, TS,

and SS. These results suggest that genes with different
expression levels correspond to different CG, CHG, and
CHH methylation levels in different genic regions.
Overall, CG and CHG methylation patterns in expressed
genes are similar in promoter regions while CHG and
CHH methylation patterns in expressed genes are simi-
lar in gene bodies and downstream regions.

To further evaluate the relationships between genic
methylation and gene expression, genes with transcrip-
tomic profiles were classified into unmethylated (None)
and methylated groups; genes in the methylated group
were further divided into three subgroups: the bottom
third were referred to as the low-methylation subgroup
(Low), the middle third as the moderate-methylation
subgroup (Moderate), and the top third as the high-
methylation group (High) based on their methylation
levels. The results suggest that methylations in gene bod-
ies have more obvious correlation on gene expression than
those in promoters and 2 kb downstream regions in all
three methylation contexts (Additional file 10). The pro-
portion of genes with the lowest methylation levels within
promoters and with the highest methylation levels within
2 kb downstream regions were the lowest among the three
methylation levels, no matter which type of methylation
contexts they were. Moreover, the greatest proportion of
genes were moderately methylated in gene bodies in all
three methylation contexts. These results suggest that
methylation level and context have different effects on
gene expression depending on their genic location.

To further study the relationship between genic methy-
lation and gene expression, Spearman correlation analysis
was performed between methylation levels in the whole
gene frame (bodies +2kb flanking regions) and gene
expression levels. As shown in Additional file 11, the over-
all correlation rho was low regardless of the methylation
types and the developmental stages. However, the rho can
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reach 0.25 in gene bodies for CG methylation in PS, TS,
or SS. Such a rho may indicate that methylation levels in a
small fraction of gene bodies have relatively higher correl-
ation with their expression levels.

Widespread dynamic gene methylation in P. trichocarpa
stems

To determine the relationship between developmetal
stages and methylation, we analyzed the differentially
methylated regions (DMRs) between PS and TS and
between TS and SS. For PS vs TS, the 1206 DMRs (1160
hypermethylated and 46 hypomethylated regions)
(Fig. 7a) overlapped 653 differentially methylated genes
(DMG@Gs) (625 hypermethylated and 28 hypomethylated
genes). For TS vs SS, the 1556 DMRs (1524 hypermethy-
lated and 32 hypomethylated regions) overlapped the
858 DMGs (831 hypermethylated and 27 hypomethy-
lated genes) (Fig. 7b). At same time, we also identified
4978 differentially expressed genes (DEGs) from PS vs
TS and 4780 DEGs from TS vs SS (Fig. 7c). However,
there are only 123 common genes between the 653
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DMGs and the 4978 DEGs from PS vs TS, and 114 com-
mon genes between the 858 DMGs and the 4780 DEGs
from TS vs SS (Fig. 7d and e).

Functional enrichment analysis on the 123 common
genes revealed the enrichment of phenylpropanoid bio-
synthesis, phenylalanine metabolism, and the biosyn-
thesis of secondary metabolites (Fig. 8a) from PS vs TS.
KEGG pathway enrichment analyses on the rest of the
DMGs from PS vs TS revealed the enrichment of path-
ways including pyrimidine metabolism, isoflavonoid
biosynthesis, caffeine metabolism, and homologous re-
combination (Additional file 12A). Enrichment analyses
with the DEGs from PS vs TS revealed pathways for
phenylpropanoid biosynthesis, phenylalanine metabol-
ism, and the biosynthesis of secondary metabolites
(Additional file 12B), suggesting that DNA methylation
participates in the initial stage of secondary cell wall
formation. The same analysis was applied to the 114
genes common to DMGs and DEGs from TS vs SS, and
the results showed that diterpenoid biosynthesis, ubi-
quinone and other terpenoid-quinone biosynthesis,
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phenylalanine metabolism, plant hormone signal trans-
duction, and phenylpropanoid biosynthesis pathways
were among those enriched (Fig. 8b). It was surprising
that the enriched pathways in the rest of the DMGs
from TS vs SS only consisted of brassinosteroid biosynthesis
and caffeine metabolism pathways (Additional file 12C); the
remaining DEGs from TS vs SS revealed multiple metabolic
pathways, including biosynthesis of secondary metabolites,
phenylpropanoid biosynthesis, and flavonoid biosynthesis
(Additional file 12D), again indicating that DNA methylaton
contributes to secondary wood formation and metabolites
during the TS to SS transition.

Since transcription factors (TFs) lie at the center of gene
regulation, we identified TFs with pronounced alterna-
tions in methylation levels. We found 32 TFs in the
DMGs from PS vs TS and 39 TFs in the DMGs from TS
vs SS which shared 11 TFs with the 229 DEGs from PS vs
TS and 6 TFs with the 245 DEGs from TS vs SS (Add-
itional files 13 and 14). For example, we found the TFs
NAC056, MYB52, NTL9, WRKY27, and MYB106 from PS
vs TS (Additional file 13) and the TFs bZIP21, MYBS52,
ANACO047, and HRD from TS vs SS (Additional file 14).

Discussion

Whole-genome bisulfite sequencing (WGBS) is a power-
ful technology for studying genome-wide DNA methyla-
tion patterns at single-nucleotide resolution. To date, an
increasing number of plant species have been studied
using WGBS, ranging from model species like A.

thaliana [23, 24, 34] to some agriculturally important
crops like rice [38, 39], maize [40], soybean [41], tomato
[42], spruce [43], oil palm [44], and P. trichocarpa [45].
However, there is still a lack of understanding of the
roles of methylation in secondary growth and develop-
ment of tree species. Here, we decoded the single-base
poplar stem methylome by WGBS and obtained an over-
all average of ~ 48.78%, ~ 30.39%, and ~ 5.72% methylation
levels in CG, CHG, and CHH contexts (Additional file 1),
respectively. Although methylation levels in poplar stems
fell into the ranges described for other angiosperms (CG: ~
30.5% to ~ 92.5%, CHG: ~ 9.3 to ~ 81.2%, and CHH: ~ 1.1%
to ~ 18.8%) [46], they were on the lower end in each methy-
lation context. The relatively low methylation levels in pop-
lar stems maybe due, in part, to the fact that the P.
trichocarpa genome (~ 422.9 Mb) is small compared to that
of other plant species; previous studies have demonstrated
that DNA methylation level is positively correlated with
genome size [43, 46]. For example, apple, which has a mod-
erately sized genome (~742Mb), had ~53.6%, ~ 37.7%,
and ~ 8.5% methylation levels in CG, CHG, and CHH
contexts, respectively [47]. In A. thaliana, CG sites show a
bimodal distribution and tend to be either unmethylated or
highly methylated, whereas CHG and CHH sites are rarely
methylated at high levels [23, 24]. This phenomenon
implies that distinct mechanisms are responsible for main-
taining different methylation types. As reported, CG methy-
lation is copied faithfully during DNA replication, whereas
CHG and CHH methylation are perpetually targeted by
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histone methylation and/or noncoding RNAs [13]. Interest-
ingly, in P. trichocarpa, we found bimodal distribution pat-
terns (unmethylated or methylated) for both CG and CHG
methylation (Fig. 3a and b), suggesting that CHG methyla-
tion is maintained more robustly and copied more faithfully
in poplar than in A. thaliana. Additionally, our results
showed that methylated sites were concentrated on non-
CG sites in the genome of P. trichocarpa, particularly on
CHH sites, which is similar to observations in other
trees [36, 48]. We also found that methylation levels
of poplar stems were negatively correlated with gene
numbers (Fig. 4), which was consistent with previous
studies [49]. Furthermore, CG, CHG, and CHH
methylation levels were positively correlated with TE
density (Fig. 4) in the similar ways as what were
demonstrated as in apple [47]. Some types of TEs,
including LTR Copia and LTR Gypsy, are primarily
distributed in pericentromeric regions of chromo-
somes [50]; we found that methylation of poplar stems
also peaked in the centromere and pericentromeric
regions as demonstrated in Fig. 3d and Additional files
2, 3, and 4. This finding has also been reported in
other plant species [46, 47], indicating that hypermethyla-
tion may contribute to the maintenance of chromosomal
stability and segregation.

Tissue differentiation coupled with distinct methyla-
tion levels is a universal phenomenon in all multicellular
organisms. For example, methylation levels differ among
seven distinct tissue types in P. trichocarpa [30], includ-
ing vegetative bud, male inflorescence, female catkins,
leaves, roots, xylem, and phloem, and in leaves [51],
buds [52], and xylem [53] in natural populations of
Chinese white poplar. Such a differentiation in methyla-
tion is essential for plant growth and development [54].
In this study, we found that the percentage of minimally
methylated (0-10%) CG, CHG, and CHH sites decreased
in TS and SS than PS (Fig. 3a, b and c). Therefore,
mCG, mCHG, and mCHH sites could be established
more stably in TS and SS. We also found that CG and
CHH methylation levels showed significant differences
among PS, TS, and SS. For CHG methylation, although
PS showed more noticeable differences when compared
with either TS or SS, there were no significant differ-
ences between TS and SS (Additional file 6). The methy-
lation levels in CG contexts were highest in TS, and the
methylation levels in CHH contexts were highest in SS
(Fig. 5). These results suggest that, to some degree, gen-
ome methylation is in accord with wood formation in
poplar stems and undergoes an obvious alteration at the
initiation of secondary growth. It is well known that
demethylases plays an important role in DNA methyla-
tion. In TS and SS, the reduced expression of demethy-
lases (PtrDME-A, PtrDME-B, PtrDEMETER-LIKE 2-A,
and PtrDEMETER-LIKE 2-B) might contribute to the
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increased methylation level (Fig. 2). Moreover, the
enzymatic activities of two proteins, DRM1 and DRM2,
are responsible for asymmetric CHH methylation [55].
PtrDRM1/2-B and PtrDRM1/2-C had significant higher
expression levels in TS and SS (Fig. 2), respectively, than
other developmental stages. The increased CHH methy-
lation level may have something to do with the increased
expression of PtrDRM1/2 in TS and SS.

It has been reported that DNA methylation can re-
press gene expression [56]. However, the relationship
between DNA methylation and gene transcription is
more nuanced than initially realized. For example, rice
promoter methylation repressed gene expression only in
some heavily methylated gene loci; on the contrary, gene
body methylation was positively, rather than negatively,
correlated with gene expression [35]. In this study, we
found that the relationship between DNA methylation
and gene expression was complicated by genic regions,
methylation contexts, and developmental states. Previous
results showed that methylation tends to suppress gene
transcription, and non-methylated genes had higher ex-
pression levels [31]. However, in our study, we found
that the expressed genes in PS, TS, and SS had higher
CG but lower CHG and CHH methylation levels in gene
bodies than non-expressed genes (Fig. 6). In addition,
Methylation in gene bodies corresponded more strongly
with gene expression levels than methylation in either
promoter or 2kb downstream regions. In general, we
found that, compared to expressed genes, non-expressed
genes in PS, TS, and SS had the lowest CHH methyla-
tion in promoter regions, the highest CHG and CHH
methylation levels in gene bodies, and the highest CG
and CHG methylation levels in 2 kb downstream regions
(Fig. 6). DNA methylation in promoters has been shown
to affect gene expression levels, and the influence of pro-
moter methylation on gene expression increases as the
methylation level escalates [57-59]. In this study, we
found that, regardless of developmental stage (PS, TS,
and SS), CHH methylation levels in promoter regions
positively corresponded to gene expression levels (Fig. 6¢)
and thus may be used as an epigenetic mark for gene
expression in poplar stems. However, CHH methylation
levels in the promoter regions of active genes were not
consistently higher than those of other gene groups, par-
ticularly genes with moderate expression levels. Therefore,
caution needs to be taken when CHH methylation is used
as an epigenetic mark of gene expression.

We identified only 123 common genes in 653 DMGs and
4978 DEGs from PS vs TS, and 114 common genes in 858
DMGs and 4780 DEGs from TS vs SS (Fig. 7d and e),
which suggests that developmental processes are coupled
with 5mC to some degree. The counterparts of some com-
mon genes in A. thaliana are involved in cell growth
(CCR4 [60], MAP 70-1 [61], and UGT85A [62]), secondary
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cell wall biosynthesis (NACO056 [63], PALI [64], FLAII [65],
C4H [66], and MYB52 [67]), and hormone and signal trans-
duction (WRKY27 [68], UGT84B1 [69], anac047 [70], PIPI
[71], and CYP716A1 [72]) (Additional files 15 and 16), indi-
cating that methylation can affect some individual pathway
or regulatory genes involved in wood formation. For ex-
ample, expression of PtrPAL2 (Potri.008G038200) increased
dramatically with the change of DNA methylation sites in
PS vs TS (Additional file 15). As we also know, the deamin-
ation of phenylalanine by PAL is the first step in
monolignol biosynthesis [64]. Some PAL genes are specific-
ally expressed in differentiating xylem, while others are
expressed in many other tissues. Homologs of PtrPAL2 in
Populus fremontii x angustifolia [73] and in Populus ESTs
[74, 75] also suggests that it is xylem specific. PtrC4H1
(Potri.013G157900) was also observed with the similar
changes in TS vs SS (Additional file 16). C4H converts cin-
namic acid into 4-hydroxycinnamic acid, a precursor for
many phenylpropanoids including flavonoids, phytoalexins,
and monolignols [76]. PtrC4H1 transcripts are abundant in
differentiating xylem, suggesting that it is important in
monolignol biosynthesis [66]. In addition, our functional
enrichment analysis showed that DNA methylation partici-
pated in the initial stage of secondary cell wall formation,
but thereafter DNA methylation mainly influenced second-
ary metabolites. This was further verified by analyzing
methylated TFs. Of the 32 and 39 methylated TFs
identified from PS vs TS and TS vs SS, respectively, 11 are
among the 229 DEGs from PS vs TS and 6 are among 245
DEGs from TS vs SS (Additional files 13 and 14). However,
among these 16 methylated TFs, there were three
PtrMYB52 genes (Potri.008G089700, Potri.012G039400,
and Potri.015G033600) whose counterparts in A. thaliana
have been shown to regulate secondary cell wall formation
[67]. This supports the idea that DNA methylation may
affect wood formation by modulating transcription net-
works during the transition from primary growth to wood
formation. According to an earlier study, differences in the
expression of specific genes with unique methylation pat-
terns, rather than relative methylation levels between the
two tissue types, plays a critical role in wood biosynthesis
[31]. The location of cytosine methylation within MYB and
NAC genes might differentially affect the abundances of
their transcripts, which is applicable to PerMYBS52 gene too.
Through integrated analysis of genomic, DNA methylomic,
and transcriptomic differences between cultivated and wild
rice, primary DNA sequence divergence has been shown to
be the major determinant of methylational differences at
the whole genome level, but DNA methylational differences
alone can only account for limited gene expression vari-
ation between cultivated and wild rice [35]. Although we
failed to detect large scale methylation of wood formation
genes during the transition from primary to secondary
growth, we still observed the role of methylation in wood
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formation. It is possible that methylation may also affect
wood formation indirectly by modulating hormone and sig-
naling transduction; as shown (Fig. 8), the common genes
between DMGs and DEGs from a comparison of TS vs SS
were enriched in hormone signal transduction pathways.
There is evidence that DNA methylation can affect the sig-
naling processes of various hormones, including salicylic
acid (SA) under biotic stress [77] and auxin, abscisic acid
(ABA), SA and ethylene under abiotic stress [47]. Changes
in methylation were observed particularly in the bodies of
expressed genes and to a lesser extent in transposable ele-
ments. Together, DEGs and DMRs were significantly
enriched in genes related to phytohormone metabolism or
signaling pathways [19], suggesting that an indirect influ-
ence of methylation on wood formation may exist.

Conclusion

Our study providled DNA methylomes from multiple
poplar stem tissues varying from predominantly primary
to secondary growth, and then characterized the correc-
tion between DNA methylation with gene expression
during P. trichocarpa stem development. Our results in-
dicate that DNA methylation only marginally affects
pathway genes and regulators involved in wood forma-
tion, suggesting that further studies of wood formation
should lean towards studying the indirect effects of
methylation. The information and data provided here
will be instrumental for understanding the roles of
methylation in wood formation in tree species.

Methods

Plant materials

A few plantlets of P. trichocarpa clone Nisqually-1,
whose genome was sequenced [78] early, were obtained
from the Shanghai Institute for Biological Sciences,
Chinese Academy of Sciences, and vegetatively propa-
gated in our lab using tissue culture [79]. The plantlets
were planted in humus soil and grown under 16 h/8h
day/night photoperiod at 25°C in the greenhouse at
Northeast Forestry University for 90 days. Then, 63 trees
were used as experimental materials for anatomical and
histological analysis, transcriptomic profiling, and DNA
methylation sequencing. The lengths of all internodes
(IN) from the apical buds to the bases of the main stems
of all trees were measured. As illustrated in Fig. 1a, the
IN2, IN4, and IN8 internodes, representing the PS, TS,
and SS stages from primary growth to secondary growth,
respectively, were used for anatomical and histological
analysis. Other internodes were immediately frozen in
liquid nitrogen and stored at -80°C for qRT-PCR,
RNA-seq, and DNA methylation sequencing. Three in-
dependent biological replicates were used for each of the
above experiments.
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Anatomical and histological analysis of poplar stems
Approximately 3-mm-long segments of each internode
sample from PS, TS, and SS were fixed in FAA buffer
(50% ethanol, 5% acetic acid and 3.7% formaldehyde) and
then embedded in paraffin. Transverse sections (8-um
thick) were cut from the embedded tissues with a sliding
microtome (HM340E, Microm, Germany). Microscopic
sections were stained with 0.025% (m/v) toluidine blue-O
for 30's, washed with dH,O, mounted on glass slides, and
then examined using bright field microscopy (BX43,
Olympus, Japan). The lignin present in the secondary
walls in microsections was detected by histological strain-
ing with 2.5% phloroglucinol in 12N HCI for 3 min and
then observed using a microscope (Stereo Lumar.V12,
Zeiss, Germany). Cellulose was stained with 0.25 pg/mL
calcofluor white for 2 min and then visualized and photo-
graphed with a UV fluorescence microscope.

DNA methylation analysis using qRT-PCR

Previous studies have shown that genes such as METI
[80], DRM1, DRM?2 [55], CMT3 (81, 82], DDM1 [83],
DME [84], DEMETER-LIKE2 [85], and ROSI [86] play
crucial roles in maintaining various genomic methylation
states. To determine whether the methylation states corres-
pond to different developmental stages in poplar stems, the
orthologs of the above genes in P. trichocarpa were retrieved
from the Phytozome database [87] using a Basic Local
Alignment Search Tool (BLAST) program named BLASTP.
DNA methyltransferase (PtrMETI1A/B), DOMAINS REAR
RANGED METHYLTRANSFERASE 1 (PtrDRM1/2-A-C),
CHROMOMETHYLASE 3 (PtrCMT3-A-C), and DECREA
SE IN DNA METHYLATION 1 (PtrDDM1-A/B) are each
involved in DNA methylation [88], and DEMETER (DME)
DNA demethylase (PtrDME-A/B), PtrDEMETER-LIKE 2-A/
B, and REPRESSOR OF SILENCING 1 (PtrROSI) are
involved in DNA demethylation. The expression levels of
these genes in PS, TS, and SS were analyzed using qRT-
PCR, as in our previous study [89]. Transcript of PtrActin
was used as an endogenous control to normalize expression
in different samples. Primers used for these studies are listed
in Additional file 17. The expression level of each gene
relative to the reference gene was calculated using the delta-
delta CT method. Each measurement was carried out with
three biological replicates, and each biological replicate has
three technical replicates. Each error bar represents a stand-
ard error (SE) of the mean fold changes of the three bio-
logical replicates.

WGBS library construction and high-throughput
sequencing

Plant samples were ground to powder in liquid nitrogen
and genomic DNA was isolated using the DNeasy Plant
Mini Kit (Qiagen China, Shanghai). The quantity and
quality of extracted DNA were determined with a
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NanoDrop ND-1000 (Thermo, USA). Then, genomic
DNA was fragmented to 100-300 bp by sonication (Cov-
aris, Massachusetts, USA) and purified with a Mini Elute
PCR Purification Kit (Qiagen, MD, USA). The fragmented
DNAs were end-repaired and a single “A” nucleotide was
added to the 3" end of the blunt fragments. Then the gen-
omic fragments were ligated to methylated sequencing
adapters. Adaptor-added DNA was subjected to bisulfite
conversion using the EZ DNA Methylation Gold Kit
(Zymo Research), and the bisulfite-treated DNA was PCR
amplified for 16 cycles. The resultant DNA was subjected
to paired-end sequencing on an Illumina HiSeq 2500 se-
quencer; reads of 150 nucleotides were generated.

Mapping and processing of BS-Seq reads

Raw read sequences generated by the Illumina pipeline
in FastQ format were first subjected to quality control
[90]. To get high quality clean reads, raw reads were
filtered according to the following rules: 1) remove reads
containing more than 10% unknown nucleotides (N); 2)
remove low quality reads containing more than 40% low
quality (Q-value <20) bases. Clean reads were then
mapped to the P. trichocarpa reference genome using
BSMAP software (version: 2.90) with default parameter
[91]. Briefly, both clean reads and the reference genome
were first transformed into bisulfite-converted versions
(C-to-T and G-to-A converted). Then, the converted
reads were aligned to the similar versions of the con-
verted genome in a directional manner. To eliminate the
bias produced by the alignment of duplicates generated
by PCR, a de-duplication step was used to remove reads
mapping to the same position of the reference genome.
Finally, sequence reads that produced a unique best
alignment from the two alignment processes (original
top and bottom strand) were compared to the normal
genomic sequence, and the methylation state of all cyto-
sine positions in the read were inferred [92]. The bisul-
fite conversion rate of lambda DNA was calculated and
used as a measure of the false discovery rate in the iden-
tification of the methylation site according to the bino-
mial probability distribution. Each replicate (sample) was
mapped to genome separately. After read mapping, we
merged multiple replicates by running a 200 bp sliding
window in a step of 100 bp. The methylation rates of the
same windows, which have the same chromosomal pos-
ition, across different replicates were merged to get the
unified methylated cytosine percentage. The methylation
levels of each of the three methylation types, CG, CHG,
and CHH, were calculated in the whole genome, in each
chromosome, and in different genomic regions. For all
genic regions, methylation profiling of gene bodies and
2 kb flanking regions (both sides of the genes) were plot-
ted based on the average methylation levels of different
sliding windows.
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Identification of differentially methylated regions
Differential DNA methylation between the two samples at
each locus was determined using Pearson’s chi-square test
(x2) in methyl Kit (version: 1.7.10) [93]. The minimum read
coverage for a base to call a methylation status was set to 4.
DMRs for each sequence context (CG, CHG, and CHH)
conform to the following criteria: 1) For CG and CHG,
numbers of GC or CHG in each window >5, absolute value
of the difference in methylation ratio > 0.25, and q < 0.05; 2)
For CHH, numbers in a window >15, absolute value of the
difference in methylation ratio >0.15, and q < 0.05; 3) For
all C, numbers in a window >20, absolute value of the dif-
ference in methylation ratio > 0.2, and q < 0.05.

Transcriptome sequencing and gene expression analysis
The same plant materials used for methylome analysis
were also used for RNA isolation. The materials were
first ground to powder in liquid nitrogen and total RNA
was isolated using an RNA isolation kit (Auto Lab
Biotechnology, Beijing, China). Using the RNase-Free
DNase Set (Qiagen), we performed on-column DNase
digestions three times during the RNA purification. The
quantity and quality of extracted RNA were determined
with a NanoDrop ND-1000 (Thermo, USA).

Whole transcriptome libraries were constructed using
the NEB Next Ultra Directional RNA Library Prep Kit for
[lumina (NEB, Ipswich, MA, USA) according to the man-
ufacturer’s instructions; the resulting libraries were
assessed for size, quantitation, integrity and purity using a
Bioanalyzer 2100 system and qPCR (Kapa Biosystems,
Woburn, MA, USA). The libraries with good quality were
subsequently sequenced on a HiSeq 2500 instrument that
was set to produce 125 bp paired-end reads of 125 nucleo-
tide long. Raw sequences were cleaned as follows: 1) re-
move reads containing adapters; 2) remove reads
containing more than 10% unknown nucleotides (N); 3)
remove low quality reads containing more than 50% low
quality (Q-value<20) bases. After that, the clean reads
from all the samples were mapped to the P. trichocarpa
genome using Bowtie2 [94] and TopHat2 [95] software
with default parameters [96]. The expression levels of the
protein-coding genes were calculated and normalized
using fragments per kilobase of gene per million mapped
fragments (FPKM) by Cufflinks (version 2.2.1) [97].

Genes were divided into non-expressed genes (FPKM <1)
and expressed genes. The latter were further divided into
three groups based on expression levels, including
minimally-expressed genes (Low, 1 <FPKM <10), moder-
ately expressed genes (Moderate, 10 < FPKM <100), and
highly expressed genes (High, FPKM >100).

Relation between DNA methylation and gene expression
DMRs were annotated using the gene annotation file P.tri-
chocarpa_444_v3.1.genegff3.gz from the P. trichocarpa
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reference genome provided by Phytozome [78, 87]. The po-
sitions and types of TEs were obtained from Ptrichocarpa_
533_v4.1.repeatmasked_assembly v4.0.gff3.gz downloaded
from the Joint Genome Institute website (https://genome.
jgi.doe.gov/portal/pages/dynamic OrganismDownload.
jsf?organism=Phytozome) [37]. Annotations were done by
comparing the chromosome position information of DMRs
with the corresponding annotation information in the gene
annotation file. When a DMR overlapped a gene (> 1nt),
including a gene body and the 2 kb flanking region on ei-
ther side, the DMR was associated with this gene and was
then designated a DMQG. Spearman correlation analysis was
performed to discern statistical relationship between DNA
methylation and gene expression within gene bodies and
their +2 kb flanking regions. To explore the potential con-
tribution of DNA methylation to the differentiation of gene
expression, DMGs, DEGs, and common genes between
DMGs and DEGs were subjected to KEGG pathway enrich-
ment analysis (KEGG: http://www.genome.jp/kegg/).
KOBAS software [98] was used to test the statistical enrich-
ment of DEGs in various KEGG pathways.

Data analysis

The data were analyzed using one-way ANOVA and
Duncan’s multiple range test using SPSS 21 (Chicago,
IL, USA). A statistically significant level was set to a p
value < 0.05. The data are presented as mean * standard
error (SE) with each SE being calculated from three in-
dependents biological samples.
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ent letters on the top of the error bars indicate statistically significant dif-
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of methylated genes compared with unmethylated genes in CG, CHG,
and CHH contexts in primary stems (PS), respectively. (D), (E), and (F)
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levels. None represents the unmethylated group. Low represents the bot-
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third of the methylation group. High represents the top third of the
methylation group.

Additional file 11. Correlation between 5-methylcytosine methylation
in different genic regions and gene expression in primary stems (PS),
transitional stems (TS), and secondary stems (SS) of poplar. (A), (B), and
(Q) represent CG, CHG, and CHH DNA methylation contexts, respectively.
The regions of promoter, gene body, and 2 kb downstream regions were
split on the x-axis to investigate the Spearman rank correlation (y-axis)
between levels of methylation and expression. Rho >0 means positive
correlation, and rho <0 means negative correlation.

Additional file 12. KEGG pathway enrichment of the rest of the
differentially methylated genes (DMGs) and differentially expressed genes
(DEGS). (A) and (B) represent KEGG pathway enrichment of the remaining
DMGs and DEGs in primary stems (PS) vs transitional stems (T9),
respectively. (C) and (D) represent KEGG pathway enrichment of the
remaining DMGs and DEGs in TS vs secondary stems (SS), respectively.
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