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Abstract

Background: Recent advancements in in situ gene expression technologies constitute a new and rapidly evolving
field of transcriptomics. With the recent launch of the 10x Genomics Visium platform, such methods have started to
become widely adopted. The experimental protocol is conducted on individual tissue sections collected from a
larger tissue sample. The two-dimensional nature of this data requires multiple consecutive sections to be collected
from the sample in order to construct a comprehensive three-dimensional map of the tissue. However, there is
currently no software available that lets the user process the images, align stacked experiments, and finally visualize
them together in 3D to create a holistic view of the tissue.

Results: We have developed an R package named STUtility that takes 10x Genomics Visium data as input and
provides features to perform standardized data transformations, alignment of multiple tissue sections, regional
annotation, and visualizations of the combined data in a 3D model framework.

Conclusions: STUtility lets the user process, analyze and visualize multiple samples of spatially resolved RNA
sequencing and image data from the 10x Genomics Visium platform. The package builds on the Seurat framework
and uses familiar APIs and well-proven analysis methods. An introduction to the software package is available at
https://ludvigla.github.io/STUtility_web_site/.

Keywords: Spatial transcriptomics, Transcriptomics, Genomics, Software, Visualization, Image processing, Data
analysis, R-package, 3D

Background
Gene expression analysis has become a standard tool for
the study of gene regulation, cellular state and biological
function in both bulk and single cell samples. However,
the transcriptional profiles of individual cells are influ-
enced by their localization in the tissue. As such, import-
ant information for the complete understanding of the
biological underpinnings reflected in the transcriptional
state requires simultaneous knowledge about morpho-
logical context [1, 2]. Recent technological advances

have enabled this spatial information to be simultan-
eously obtained together with quantitative transcript
measurements.
Spatial Transcriptomics (ST) is a method [1–3] that

can be used to profile the transcriptome of tissues
spatially and is today widely accessible using the 10x
Genomics Visium platform. Overall, the spatial methods
are quickly gaining traction among researchers, and
lately several computational software packages have been
released with support for spatial analyses [4–7]. How-
ever, there is currently no software package for ST data
that lets the user process the images, align stacked ex-
periments, and finally visualize them together in 3D to
create a holistic view of the tissue.
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Implementation
Here, we present STUtility, an R package that conveni-
ently enables the user to perform these tasks. STUtility
can be used for normalization, identification of spatial
expression patterns alignment of consecutive stacked tis-
sue images and visualizations. STUtility builds on the
Seurat framework and uses familiar APIs and well-
proven analysis methods. STUtility uses RNA count and
image data as input. Specifically, it is created with com-
patibility for using 10x Genomics Space Ranger output,
which is a set of analysis pipelines provided by 10x Gen-
omics that process raw Visium RNA-seq and image data
(https://support.10xgenomics.com/spatial-gene-expres-
sion/software). All analysis, image processing and
visualization in STUtility is conducted within R.

Results and discussion
The poly A targeted whole transcriptomics spatial
methods are continuously improving the boundaries of
cellular resolution. Nevertheless, the commercially avail-
able alternatives have not yet reached single-cell level,
and, in their current format, typically capture transcripts
from multiple cells in each spatial measurement spot.
Although the data is derived from a mixture of cells, its
characteristics are similar to those of single-cell RNA-
seq (scRNA-seq) [8]. One of the main challenges in both
ST and scRNA-seq, from a data analysis perspective, is
the sparsity of the data (capture efficiency). Moreover,
differences in tissue permeabilization, reverse transcrip-
tion efficiency and other sources of technical noise may
elevate the challenges. Hence, data transformation and
normalization prior to various downstream analysis steps
plays a major role in the ability to correctly characterize
meaningful biological regional differences in transcrip-
tional profiles [9]. Technical variation is further in-
creased by the fact that comprehensive tissue models
usually consist of multiple tissue sections, which may
have been sequenced at different points in time, using
different capture arrays, and with slightly different con-
ditions. Various data transformation strategies have been
proposed, and current state-of-the-art normalization
methods for scRNA-seq data are based on statistical
modeling. For example, SCTransform is a method avail-
able in the Seurat v3 R package [8] that uses a regular-
ized negative binomial regression model and manages to
retain the biological heterogeneity within the tissue sec-
tions while still being able to remove much of the tech-
nical variation. Seurat is widely used within the field,
displays good performance in benchmarking studies
[10], is frequently updated and works well with larger
data sets [11]. Accordingly, we have chosen to build our
visualization tool on top of the Seurat framework.
As an introduction to STUtility, we have established a

website (https://ludvigla.github.io/STUtility_web_site/)

that outlines its functionality and provides examples of
the available features. Here, we give a short demonstra-
tion of the capabilities by using publicly available 10x
Genomics Visium and in-house generated ST data. The
complete STUtility workflow is conducted within R
(Fig. 1). The input to STUtility consists of count files
and bright field image data from Hematoxylin and Eosin
(H&E) stained tissue sections, and all Seurat functions
for handling and transforming the data can be utilized.
On top of this, STUtility adds multiple features for
spatial analysis, image processing and visualization.
The image processing procedure includes (i) masking

the tissue to remove the array background from the
image, (ii) automatic alignment of multiple samples, or
(iii) manual alignment with an interactive Shiny R
application.
The masking procedure converts a low-resolution rep-

resentation of the HE images into “superpixels”, followed
by k-means clustering into two groups to segment out
the areas located inside or outside of the tissue (Add-
itional file 1). For the automatic alignment strategy, a
reference image is selected and the remaining images are
then aligned to the reference using an iterative closest
point algorithm (ICP) [12] (Additional file 2: Figure S1).
The ICP algorithm finds a transformation matrix that
maps coordinates from each sample to the reference and
can handle rigid transformations, i.e. offsets along the x
and y axis (translations), rotations and reflections. If the
automatic alignment fails, the transformation matrix can
be found by manually aligning the images in a user
interface (Additional file 2: Figure S2). The user can
choose to utilize the masked and aligned images in all
subsequent STUtility plotting functions. Moreover, the
aligned images can be stacked to create a turntable 3D
model of the tissue, which e.g. can be used to visualize
gradually shifting changes in gene expression (Additional
file 2: Figure S3). This 3D model is constructed by run-
ning a simple cell segmentation on each aligned tissue
section based on intensity differences compared to the
non-nuclei compartments of the cell to produce 2D
point patterns. Although not offering a precise cell seg-
mentation, this approach is able to sufficiently capture
the overall morphological structure of the tissue in a
time efficient manner (Additional file 2: Figure S4). The
complete 3D stack is then created by assigning a z-
coordinate to each 2D point pattern of nuclei from each
tissue section, whereupon various strategies for
visualization can applied. For example, STUtility pro-
vides a multiple feature view using the HSV color scale
(Fig. 2a, Additional file 2: Figure S5) to visualize the
spatial localization of non-overlapping features as exem-
plified in mouse hippocampus. Each selected feature is
assigned a unique color defined by splitting the hue par-
ameter into even breaks. Next, the feature values are
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rescaled to values between 0 and 1 and encoded in the V-
channel. Then, for each spot, the feature with the highest
value is selected to color the spot based on the feature associ-
ated hue and value. A value of zero gives the capture area a
black color regardless of feature, whereas higher values in-
crease the intensity of the corresponding feature color. This
allows for simultaneous visualization of multiple non-
overlapping features, giving a clear representation of, for ex-
ample, distinct factor-based transcriptomic profiles of interest.
Added analysis functionality includes a Non-negative

Matrix Factorization (NMF) [13] to decompose ST data
into a lower dimensional space (Fig. 2a-c), a test to rank
genes by degree of spatial autocorrelation (Fig. 2d) and a
method for identification and extraction of neighboring
capture-spots to a region of interest within a connected

spatial network (Figs. 1b and 2e). The ranking method
makes use of connection networks (or neighboring
graphs) where each capture-spot (node) is connected to
neighboring spots located within or close to the minimum
center to center distance (i.e. 100 μm for Visium arrays) to
form a local neighborhood. Neighborhood networks can
be defined across multiple sections simultaneously and
then used to compute the spatial lag for each gene, de-
fined as the summed expression of that gene across the
connected spots. Each gene is then ranked by the Pearson
correlation between the lag vector and the original expres-
sion vector in decreasing order. The same connection net-
work can be used for extracting neighboring capture-spots
for a region of interest. This method can for example be
used on cancer tissue as a tool to automatically define the

Fig. 1 Schematic overview of the procedure, from tissue collection to final visualization of the data analysis results. a Thin tissue sections are
placed on the ST/Visium array. Barcoded capture-probes store spatial information which is added to the captured transcript prior to sequencing.
Imaging data is obtained by microscopy of stained tissue sections. The sequencing data is used as input to demultiplexing and transcript
quantification pipelines. The count data together with the image data are used as inputs to STUtility. Image processing (including masking and
alignment), and all further data analysis (e.g. dimensionality reduction, factor analysis, identification of spatially correlated genes) is conducted
within R. b Spatial autocorrelation. Two vectors are defined: (i) the original expression vector for each gene and each capture-spot and (ii) the
Spatial lag expression vector, which for each capture-spot and gene takes the summed expression of up to six neighbors. Spatial autocorrelation
is defined as the Pearson correlation between the two vectors (i) and (ii) with the rationale that genes with spatial structure will display a higher
correlation to their neighbors. c The aligned images can be visualized in a turntable 3D model within R in which a combination of features can
be visualized. Here, the NMF factors of the tissue are shown in the HSV color scale
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Fig. 2 (See legend on next page.)
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border surrounding a tumor region to study tumor het-
erogeneity represented by unique transcriptome signa-
tures within the tumor core compared to tumors along
the tumor front (edge) (Fig. 2e).
STUtility also includes a manual annotation tool based

on the Shiny R framework. The manual annotation tool
allows the user to interactively select and label individual
or sets of capture areas. These labels are saved within
the S4 object and can be used, for example, during su-
pervised differential gene expression (DGE) between re-
gions of interest.
To demonstrate the STUtility workflow for ST and

10x Visium data, we performed analyses of multiple tis-
sues from mouse and humans (as exemplified below).
An identical workflow was used for all sample types to
demonstrate the usability of the general workflow: NMF
was used to uncover low-dimensional structure of tis-
sues based on the high-dimensional count data and the
spatial autocorrelation test was used to find genes with
clear spatial patterns. Various visualization strategies
available in STUtility after the image processing steps
where then utilized to explore the results.
In mouse brain samples, multiple distinct factors could

be extracted with well-defined spatial patterns (Fig. 2a-b),
and the top ranked genes from the spatial autocorrelation
test displayed clear spatial dependencies in their expres-
sion (Additional file 2: Figure S6). In the breast cancer tis-
sue samples, clearly separated areas of tumor cells can be
defined from the H&E images by histopathology. How-
ever, the morphological features alone do not show the re-
markable heterogeneity of cellular states present within
the tumor. Using the NMF based factor analysis in STUti-
lity, this diversity can be comprehensibly visualized, and
driver genes for the different tumor areas can be identified
to strengthen the mechanistic interpretation (Additional
file 2: Figure S7). The driver genes reveal a striking differ-
ence in ongoing cellular dynamics at the time of sampling.
For example, one of the tumor areas factors (factor_3) is
driven by immune response related genes (CPB1, HLA-B/
C, PSMB8, IL6ST). Another factor instead displays a
unique expression profile of markers previously shown to
be dysregulated in various tumor types (e.g. MGP, S100,
TFF3) [14–16]. Factor_7 on the other hand is concen-
trated to a small region between tumor areas with a strong
signature for the presence and regulation of T and B cells

(CCL19, TRBC2, CD52, MS4A1, TRAC), possibly forming
a tertiary lymphoid structure [17]. Exploring further, ob-
servations from the outer region (leading edge) of the
tumor area with elevated immune activity found earlier
can be automatically extracted from the neighborhood
network constructed by STUtility. Differential expression
analysis (DEA) displays high expression of immunoglobu-
lin genes in the outer (tumor leading edge) region com-
pared to the inner core region of the tumor (Fig. 2e).
Clusters can favorably be visualized using the split view
functionality (Additional file 2: Figure S8). In the lymph
node sample, the NMF based factor analysis reveals several
distinct spatial patterns; factor_1 associated with an anti-
viral response within a smaller sub-area of the lymph node
and factor_2 and factor_4 showing clear signatures of T
cell and Plasma cell activity (Additional file 2: Figure S9).
Finally, rheumatoid arthritis samples were used to demon-
strate the 3D application to a sample set consisting of mul-
tiple consecutive ST sections. The user can contract or
expand the space between the sections, in order to either
create a dense point cloud reflecting actual distance or
introduce spacing for easier identification of feature transi-
tions between sections (Additional file 2: Figure S10). Over-
all, the spatially resolved data, analyzed using STUtility, is
able to present a landscape view about the ongoing cellular
states of the tissue.

Conclusions
Most of the spatial transcriptomics methods to date are
based on using thin tissue sections, approximately the
thickness of a cell, resulting in a 2D picture of the tran-
scriptional state at a certain point in time at the precise
location of sampling within the whole tissue. In order to
achieve a comprehensive profile, multiple sections can
be consecutively sectioned and aligned. The aligned im-
ages can then also be used to create a 3D model for
visualization purposes. However, there is currently no
tool available that performs this alignment or
visualization in an easy and automatic fashion. More-
over, manual alignment quickly becomes cumbersome
for large image stacks.
Here, we presented STUtility, a tool that deliver a

complete workflow for spatial transcriptomics data, from
sequencing and image data processing to the creation of
a final 3D model of the tissue. The tool handles data

(See figure on previous page.)
Fig. 2 Spatial analysis of sagittal mouse brain and human breast cancer samples. a NMF identifies multiple spatially distinct factors within the
mouse brain (4 separate tissue sections) that are visualized in the HSV color scale. b Visualization of driver genes of some of the NMF factors seen
in (a). c NMF factor with clear histological relevance corresponding to a tumor area within the breast cancer samples. d Example of a top-ranking
gene, Fth1, according to the proposed spatial autocorrelation metric performed on two adjacent sections to increase the robustness of the
analysis. e NMF factors were clustered in Seurat, and capture-spots neighboring to one of the tumor clusters were automatically extracted by
STUtility (left) for a differential expression analysis between core and tumor edge. The core and tumor edge display significant differences in
expression of various immunoglobulin and Extracellular Matrix (ECM) related genes (right)
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from previous ST arrays [1–3, 18] and 10x Genomics
Visium arrays and is delivered as an open and accessible
R package.

Availability and requirements
STUtility is compatible with R version > = 3.6 and has
the following dependencies: akima (> = 0.6), imager (> =
0.41), magick (> = 2.0), Matrix (> = 1.2), Morpho (> =
2.7), Rvcg (> = 0.18), Seurat (> = 3.0.0), spatstat (> =
1.61), viridis (> = 0.5), data.table (> = 1.12.2), ggplot2
(> = 3.2), ggiraph (> = 0.6), imagerExtra (> = 1.3.2),
NMLM (> = 0.4.3), raster (> = 3.0), reshape2 (> = 1.4.3),
scales (> = 1.0), shinyjs (> = 1.0), SingleCellExperiment
(> = 1.2). STUtility is available at https://github.com/
jbergenstrahle/STUtility.

Methods
Data input and transformation
The same workflow was used for all samples: The count
and image data were used as input to STUtility, and fil-
tering was performed to remove lowly abundant genes
and capture-spots with too little information by thresh-
olding on the raw count values. The SCTransform func-
tion in Seurat was used to normalize the data.

Factor analysis and clustering
Non-negative Matrix Factorization (NMF) was used to
decompose the normalized data into factor activities.
The NMF method can be accessed through the
RunNMF function in STUtility which is created based
on a method described earlier [13], using Independent
Component Analysis (ICA) as initialization method and
non-negative transformed Pearson residuals as input
data. In short, the NMF method decomposes the gene
expression matrix A into two non-negative matrices A =
WH, where W is the feature loadings matrix (features x
factors) and H is a matrix representing the data in a low
dimensional space (factors x spots). Gene drivers were
selected for each factor by extracting the top ranked fea-
tures in the feature loadings matrix W. The low dimen-
sional representation was then used as input to the
Seurat functions FindNeighbors and FindClusters.

Spatial autocorrelation
Specific genes demonstrating spatial patterns were ob-
tained with a ranking method for spatial autocorrelation,
where a connection network for each capture-spot is
created based on the distance between the spot and its
neighbors. The threshold for classifying a spot as a
“neighbor” was set to 150 μm. The networks were used
to compute the spatial lag for each gene, defined as the
summed expression of that gene across the spots classi-
fied as neighbors to the capture-spot under consider-
ation. The Pearson correlation between the spatial lag

vector and the normalized count vector was then used
to determine the overall spatial correlation across the
tissue section. To demonstrate the validity of using the
Pearson correlation for this usage, a code notebook
demonstration is provided in Additional file 6.

Differential gene expression
DEA between the outer and the inner region of the
tumor was conducted with the FindMarkers function
provided in the Seurat R package, after detecting the
border capture-spots with the RegionNeighbours func-
tion in STUtility. The FindMarkers function was run
with default parameters, which imply a non-parametric
Wilcoxon rank sum test.

Image processing – masking
Prior to visualization of results, image processing was
performed. First, the H&E images were downscaled to a
width of 400 pixels with retained aspect ratios, do dem-
onstrate this ability which is used to reduce memory de-
mands. A threshold was put on the downscaled images
using Otsu’s method as implemented in the threshold
function of the imager R package. Isotropic blurring was
applied to the images, and a Simple Linear Iterative
Clustering (SLIC) algorithm was used to convert the im-
ages into superpixels [19], i.e. a clustering of pixels based
on color similarity in the image plane. Finally, k-means
(kmeans function in the stats package, with k = 2) clus-
tering was used to segment the images into two regions:
inside/outside tissue. A visual demonstration of the
masking process is shown in Additional file 1.

Image processing – alignment
Alignment of the tissue sections was performed by ICP as
implemented in the R package Morpho, using the first
image as reference. As input to the ICP algorithm, we
used the pixel coordinates of the edges of the tissue de-
fined during the masking procedure. First, the tissue edges
are detected from the previously defined image masks by
computing an image gradient (imgradient in imager R
package). Next, the tissue edge pixel coordinates are ex-
tracted from the images and leveraged into the ICP
method, computed for each pair of target samples and ref-
erence. The ICP method returns a transformation matrix
for each sample that can be used to map coordinates be-
tween the sample and reference. The image alignment is
then performed using the imwarp function (imager R
package) using the transformation matrix defined by ICP
as the mapping function. To achieve a smooth transform-
ation of the images, the direction was set to “backward”
with a “cubic” interpolation.
For specific parameters used during the filtering and

factor analysis steps, see the individual RMarkdown files
for each sample (Additional files 3, 4 and 5).
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Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-06832-3.

Additional file 1: A step by step description of the masking procedure.

Additional file 2: Supplementary figure S1-S10.

Additional file 3: RMarkdown which includes the analysis of the 10x
Genomics public data sets.

Additional file 4: RMarkdown which includes the 3D view of
rheumatoid arthritis data.

Additional file 5: RMarkdown on how to use the RegionNeighbours
function.

Additional file 6: HTML notebook demonstrating spatial
autocorrelation.
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