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Abstract

Background: Crop wild relatives (CWRs) contain genetic diversity, representing an invaluable resource for crop
improvement. Many of their traits have the potential to help crops to adapt to changing conditions that they
experience due to climate change. An impressive global effort for the conservation of various CWR will facilitate
their use in crop breeding for food security.

The genus Brassica is listed in Annex | of the International Treaty on Plant Genetic Resources for Food and Agriculture.
Brassica oleracea (or wild cabbage), a species native to southern and western Europe, has become established as an
important human food crop plant because of its large reserves stored over the winter in its leaves.

Brassica cretica Lam. (Bc) is a CWR in the brassica group and B. cretica subsp. nivea (Bcn) has been suggested as a
separate subspecies. The species Bc has been proposed as a potential gene donor to brassica crops, including broccoli,
cabbage, cauliflower, oilseed rape, etc.

Results: We sequenced genomes of four Bc individuals, including two Bcn and two Bc. Demographic analysis based on
our whole-genome sequence data suggests that populations of Bc are not isolated. Classification of the Bc into distinct
subspecies is not supported by the data. Using only the non-coding part of the data (thus, the parts of the genome
that has evolved nearly neutrally), we find the gene flow between different Bc population is recent and its genomic
diversity is high.

Conclusions: Despite predictions on the disruptive effect of gene flow in adaptation, when selection is not strong
enough to prevent the loss of locally adapted alleles, studies show that gene flow can promote adaptation, that local
adaptations can be maintained despite high gene flow, and that genetic architecture plays a fundamental role in the
origin and maintenance of local adaptation with gene flow. Thus, in the genomic era it is important to link the
selected demographic models with the underlying processes of genomic variation because, if this variation is largely
selectively neutral, we cannot assume that a diverse population of crop wild relatives will necessarily exhibit the wide-
ranging adaptive diversity required for further crop improvement.
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Background

Crop wild relatives

Although many plant species are used in food and
agriculture, only 30 crops account for the 95% of food
production worldwide [1]. Domesticated crops, used for
food production, show reduced genetic diversity com-
pared to their respective crop wild relatives (CWRs).
This genetic “bottleneck” of domestication [2] resulted
in loss of valuable alleles. On the other hand, during the
domestication process, introgression from wild species
may generate additional genetic diversity [3, 4].

As wild ‘progenitors’ of crops continue to evolve under
abiotic and biotic stresses, it is very important to con-
serve this resulting genetic biodiversity, which can be
useful for agriculture (in situ conservation). Seed banks
or germplasm collections are also important to preserve
as another resource for agriculture (ex situ conserva-
tion). The total genome sequencing of CWRs may be
used first to characterize wild populations and inform
strategy for their conservation. On the other hand, ana-
lysis of the sequence can reveal genetic variation and im-
portant genetic characters that have been lost during
domestication, and that could be transferred into crop
species to support food security, climate adaptation and
nutritional improvement [1]. The ready availability of
low-cost and high-throughput re-sequencing technolo-
gies enables the survey of CWR genomes for genetic
variation and novel genes and alleles.

Recent decades have seen some remarkable examples
of introducing favored traits from CWRs into their re-
spective domesticated crop plants. In most cases, these
traits concern resistance to biotic stresses, such as resist-
ance to late blight (Phytophthora infestans) from the
wild potato Solanum demissum Lindl [5, 6].. Besides bi-
otic tolerance, many quantitative trait loci have been
identified and/or introduced, affecting the grain quality
for increased yield, such as from Oryza rufipogon, a wild
species of rice, to Oryza sativa [7] and grain hardness
from Hordeum spontaneum (wild barley) [8].

Brassica oleracea: crops and genomic features
Brassica oleracea L. belongs to the family Brassicacea
and is a very important domesticated plant species, com-
prised of many vegetable crops as different cultivars,
such as cauliflower, broccoli, cabbages, kale, Brussels
sprouts, savoy, kohlrabi and gai lan. Brassica oleracea in-
cludes wild cabbage, which is found in coastal southern
and western Europe. The species has become very popu-
lar because of its high content of nutrients, such as vita-
min C, its anticancer properties [9] and the high food
reserves in its leaves.

Brassica oleracea constitutes one of the three diploid
Brassica species in the classical triangle of U (Nagaharu
U. 1935) [10] (genome: CC), that contains nine
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chromosomes. The other two species in this group are
B. rapa (L.) (genome: AA) with 10 chromosomes and B.
nigra (L) W. D. J. Koch (the black mustard) (genome:
BB) with 8 chromosomes.

These three closely related species gave rise to new
allotetraploid species that are very important oilseed
crops: B. juncea (genome: AABB), B. napus L. (genome:
AACC) and B. carinata (genome: BBCC). There is
evidence for each of the Brassica genomes having
undergone a whole-genome duplication [11, 12] and a
Brassicaceae-lineage-specific whole-genome triplica-
tion, which followed the divergence from the Arabi-
dopsis lineage [13, 14].

In 2014, Liu et al. [15] reported a draft genome of B.
oleracea var. capitata and a genomic comparison with
its very close sister species B. rapa. A total of 45,758
protein-coding genes were predicted, with mean tran-
script length of 1761bp and 3756 non-coding RNAs
(miRNA, tRNA, rRNA and snRNA). It is observed that
there is a greater number of transposable elements (TEs)
in B. oleracea than in B. rapa as a consequence of con-
tinuous amplification over the last 4 million years (MY),
the time that the two species diverged from a common
ancestor, whereas in B. rapa the amplification occurred
mostly in the last 0.2 MY [15]. Moreover, there has been
massive gene loss and frequent reshuffling of triplicated
genomic blocks, which favored over-retention of genes
for metabolic pathways.

Brassica cretica

Among the Aegean islands, Crete is the largest and the
most floristically diverse. It has experienced a much lon-
ger history of isolation compared to the smaller Aegean
islands. Over two-thirds of all Greek plant species are
found in Crete and it has the greatest proportion of en-
demic species in the Aegean area [16-18]. Crete was
separated from the mainland of Greece around 8 million
years ago [16, 19, 20]. For many Cretan plant species
suitable habitat is restricted at present to high-altitude
areas that are surrounded by a ‘sea’ of low-lying areas
acting as dispersal barriers [21]. This includes various
chasmophytic plant species, of which Brassica cretica
Lam. (Fig. 1) is a typical example. It is a wild plant spe-
cies preferentially inhabiting limestone cliffs and gorges,
mainly in Crete but also in the surrounding coastal areas
of other Mediterranean countries [22]. A wild relative of
the cultivated cabbage (B. oleracea L.), Brassica cretica
[23] is hermaphrodite (has both male and female organs)
and pollinated by insects. This CWR species is diploid
(2n = 18), partially self-incompatible and has a native dis-
tribution in Greece (mainly Crete and North Pelopon-
nese). The plants are perennial and up to 150 cm high,
with white or yellow, insect-pollinated flowers that de-
velop into siliqua. Preliminary analyses of electrophoretic
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Fig. 1 a: Brassica cretica subsp. nivea; b: Brassica cretica; ¢: Brassica cretica in the plants’ growth chamber

variation show that B. cretica is outcrossing (little devi-
ation from Hardy-Weinberg equilibrium) and that popu-
lations on Crete have undergone extensive divergence at
allozyme loci [23]. The geographical isolation has been
proposed as the main reason of the significant differ-
ences observed among the local B. cretica populations
for several morphological traits [22, 24]. Furthermore,
flower colour differences could constitute an additional
mechanism of genetic isolation among populations if dif-
ferent pollinators prefer different types of flower [25].
However, the rates of migration among B. cretica popu-
lations have not been properly quantified, making it un-
clear whether the low gene flow alone could explain the
population divergence, or whether local adaptation (di-
vergent selection) must be invoked. Widén and col-
leagues [24] reported that the observed high levels of
differentiation at allozyme loci and quantitative traits
among Cretan B. cretica populations, were consistent
with non-adaptive differentiation combined with limited
gene flow. However, allozymes may not provide accurate
assessments of population structure and gene flow,
since, at least one allozyme locus is under diversifying
selection in a variety of species [16, 26—28]. Moreover,
Edh et al. [16] using nuclear and chloroplast microsatel-
lite markers, studied the differentiation of seven Cretan
populations of B. cretica and concluded that current pat-
terns of diversification in B. cretica mainly result from
genetic drift.

Brassica cretica Lam. is a wild relative of many crops
in the genus Brassica, proposed to be one of the ances-
tors of broccoli, Brussel sprouts, cabbage, cauliflower,
kale, swede, turnip and oilseed rape. Since this species is

thought to be a gene donor of many crops in the
Brassica oleracea group, it might contain genes that are
not present in the domesticated crops, as well as, a dif-
ferent set of resistance genes (R genes) that code for the
intracellular immunity NLRs receptors (NOD-Like Re-
ceptors). Analysis of the NLRsome of wild species would
potentially help us find which genes or loci are respon-
sible for the recognition of effectors from important
phytopathogens and thus create resistant plants in the
field via transfer of these favored genes/loci [29].

Aim of this work

Here, we perform genome-wide resequencing of four
individuals of B. cretica to investigate mechanisms of
diversification of four isolated B. cretica populations tak-
ing into consideration their genomic and subspecies
variation. That analysis is based on alignment of se-
quence data against the reference genome of B. oleracea
and is not dependent on de novo assembly of the B.
cretica genome. Nevertheless, we also assembled the
sequence data to generate draft assemblies of the four B.
cretica genomes, which may serve as a useful resource
for bioprospecting of traits for introgression into brassi-
caceous Crops.

Results

Genome-wide resequencing of B. cretica

Sequencing of genomic DNA yielded 73.3 M, 83.3 M,
824 M and 53.1 M pairs of 300-bp reads respectively
from individuals PFS-1207/04, PFS-001/15, PFS-109/04
and PFS-102/07. Aligning these reads against the B. oler-
acea reference genome resulted in 54.8, 62.6, 63.6 and
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39.5-fold average depths of coverage respectively. The
alignments of resequencing reads versus reference gen-
ome were used for variant calling on which the demo-
graphic analysis is based (see below). The distribution of
variants across the reference genome is summarized as a
Circos plot in Fig. 2.

This genome-wide resequencing data also allowed us
to assay conservation of genes among the four B. cretica
genomes, by examining coverage of annotated genes in
the B. oleracea reference genome (see Fig. 3). The ma-
jority of B. oleracea genes are conserved in all four B.
cretica genomes; however, significant numbers of genes
are private to a single individual or subset of the four in-
dividuals (Fig. 3; Additional file 3: Table S5).

Draft genome assemblies

Since no reference genome sequence is available for B.
cretica, we used the reference genome of the closely re-
lated B. oleracea for the variant calling that underlies the
demographic analysis that is the focus of this study.
Nevertheless, our generation of sequence data from B.
cretica genomes presented the opportunity to assemble
draft-quality genome sequences that could be a useful
resource for future studies on this CWR species.
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We performed de-novo assembly using SOAPdenovo2
and deposited these in GenBank under accessions GCA_
003260655.1, GCA_003260635.1, GCA_003260675.1 and
GCA_003260695.1. These assemblies have limited use-
fulness, being poorly contiguous, with N5, contig lengths
of between one and three kilobases; however, they have
the advantage of being purely de novo and therefore not
dependent on any assumptions based on a reference
genome.

To improve contiguity, we subjected the initial assem-
blies to reference-guided scaffolding against the pub-
lished B. oleracea reference genome using RaGOO [34]
and then performed 10 iterations of gap-closing using
GapfFiller [35] scaffolding. The resulting assemblies were
submitted to GenBank as GCA_003260655.2, GCA_
003260635.2, GCA_003260675.2 and GCA_003260695.2.

Table 1 shows that reference-guided scaffolding and
gap closing generated significantly more contiguous as-
semblies, with contig N5, lengths ranging from 13.4 to
25.9 kb and scaffold N5, lengths exceeding 20 Mbp. We
also assessed the completeness of gene-space in each of
our assemblies and previously published Brassica gen-
ome assemblies, using BUSCO3 [37]; results are summa-
rized in Table 1. Our B. cretica draft genome assemblies

g

N

1

Fig. 2 Distribution of variation across the B. cretica genomes. Variants were identified by aligning B. cretica genome resequencing reads against
the B. oleracea reference genome as described in the Methods section. The outer ring represents the nine pseudomolecules of the reference
sequence. The next ring indicates the density of SNPs that distinguish all four B. cretica genomes from the B. oleracea reference genome. The
next ring represents density of SNPs that distinguish subspecies nivea from the other two B. cretica genomes. The innermost ring show density of
other SNPs that show variation among the four B. cretica genomes. The image was rendered using BioCircos [30]
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Fig. 3 Conservation of Brassica oleracea genes across the four re-sequenced genomes of Brassica cretica. The Venn diagram shows the numbers
of genes confirmed to be present in each of the four genomes. Genes and reference genome sequence were taken from the Bolbase database
[31]. Sequence reads were aligned against the reference genome with BWA and coverage of each gene calculated using the coverageBed utility
in BEDtools [32]. A gene was considered present only if it was 100% covered by sequence reads. The Venn diagram was rendered using the
webserver [33]. The full list of coverages for each gene is provided in Additional File 3: Table S5

are less complete that previously published sequences of
closely related Brassica genomes. The most complete
genome assembly is that of PFS-1207/04, which shows
72% completeness (1534 / 2121). This compares with
levels of up to 82% (1752 / 2121) completeness in previ-
ously published related genomes (see Table 2). Auto-
mated annotation of the PFS-1207/04 genome (GenBank
accession GCA_003260655.1) via the MAKER pipeline
generated 30,360 predicted protein-coding genes.

Demographic model inference
Demographic analysis based on genome-wide analysis of
genetic variation suggests that populations of B. cretica

are not isolated. We suggest that the classification of the
B. cretica in distinct subspecies is not supported by the
data. Using only the non-coding part of the data (thus,
the parts of the genome that has evolved nearly neu-
trally), we find the gene flow between different B. cretica
population is recent and its genomic diversity is high.
We followed two approaches to infer the neutral
demographic model for the B. cretica data. The two ap-
proaches are related to the separation of the individual
plants into distinct groups (i.e., populations or subspe-
cies). According to the first, the subspecies approach, we
separate the individuals into two groups specified by
their subspecies definition. Plants A and B are

Table 1 Summary statistics for draft genome assemblies, as assessed by Quast [36]

Assembly B. cretica individual Contigs Scaffolds Contig Nsq (b.p.) Scaffold Nsq (b.p.) Total length (b.p.)
GCA_003260655.1 PFS-1207/04 106,991 - 2820 - 412,521,210
GCA_003260655.2 PFS-1207/04 22,126 2934 25,920 36,085,697 332,349,879
GCA_003260635.1 PFS-001/15 100,644 - 2197 - 208,353,552
GCA_003260635.2 PFS-001/15 17,704 2393 18,959 21,769,174 208,273,179
GCA_003260675.1 PFS-109/04 108,738 - 1572 - 434,935,090
GCA_003260675.2 PFS-109/04 19,266 2464 26,184 31,308,560 288,739,113
GCA_003260695.1 PFS-102/07 105,350 - 1027 - 40,021,1799
GCA_003260695.2 PFS-102/07 21,300 2337 13,399 21,937,562 202,548,557
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Table 2 Completeness of gene-space for each genome assembly, as assessed by BUSCO3 (Waterhouse et al. 2017). Each assembly
was assessed against the set of 2121 dicotyledonous plant benchmarking universal single-copy orthologs

Assembly Plant

Complete single copy Complete duplicated Fragmented Missing

GCA_000695525.1
(cite doi: https://doi.org/10.1186/gb-2014-15-6-r77)

GCA_000309985.2
(cite DOI: https://doi.org/10.1038/ng.919)

GCA_000604025.1

GCA_000695525.1
(cite: doi: https://doi.org/10.1186/gb-2014-15-6-177)

GCA_003260655.1
GCA_003260655.2

Brassica rapa

B. oleracea

B. oleracea

B. cretica PFS-1207/04
B. cretica PFS-1207/04

GCA_003260635.1
GCA_003260635.2
GCA_003260675.1
GCA_003260675.2

B. cretica PFS-001/15
B. cretica PFS-001/15
B. cretica PFS-109/04
B. cretica PFS-109/04

B. cretica PFS-102/07
B. cretica PFS-102/07

GCA_003260695.1
GCA_003260695.2

B. oleracea chromosomes 1741 322 10 48
1705 387 10 19
1714 378 9 20
1752 336 10 23
1319 171 337 294
1534 209 175 203
619 72 415 1015
983 99 242 797
1003 123 457 538
1275 170 262 414
658 55 627 781
1011 89 442 579

characterized as B. cretica subsp. nivea SFP1207/94 and
Brassica cretica subsp. nivea SFP0001/15 (Cretan iso-
late), respectively, and they constitute group 1, whereas
plants C and D are B. cretica SFP109/07 and B. cretica
SFP102/07, respectively, and they define group 2. The
second approach is based on the principal component
analysis (PCA) plot of the data, which depends on the
differences at the DNA level. We call the second
approach the genetic approach. We applied logistic prin-
cipal component analysis (http://arxiv.org/abs/1510.
06112v1) (logPCA) since the polymorphisms at each site
define a binary state. The results of the logPCA are
shown in Fig. 4.

Demographic model inference based on the subspecies
definition

Following the subspecies definition of the two groups of
plants, the model “Vicariance with late discrete admix-
ture” is the most likely among the 30 different models
with two populations. Such a model suggests that the
two subspecies were discrete for a long period of time.
However, recently, introgression took place from group
1 (plants A and B) to group 2. Such a massive gene flow
suggests that the two groups of plants may not define
distinct subspecies, therefore they can be considered as
different population of the same species (Fig. 5A).

Demographic model inference based on the PCA plot

Based on the logPCA results, we identified two popula-
tions, the first comprising three individuals (B, C, D) and
the second containing one (A). This result is based on
the first principal component axis (PC1). It is important

to note that although the A, B, and C plants were sam-
pled from Central Greece and D from Crete, logPCA
shows that the Cretan individual is genetically closer to
B and C than to A. The distances of A and D to the B-C
clusters are similar and as a result, we generated an add-
itional population schema grouping together A, B, C and
D as another subpopulation, in accordance to the data
variability presented along PC2 axis.

For the first grouping, the “Founder event and discrete
admixture, two epoch” model, was selected as the most
possible demography model (Fig. 5B). The second
grouping resulted in the “Divergence with continuous
symmetric migration and instantaneous size change” as
the best model to explain the data (Fig. 5C). The first
model specifies that the original population split into
two subgroups that allowed symmetric migration be-
tween them, continuing the population size of each sub-
group changed, whereas the second model allows the
subpopulations to migrate as the time progresses and
the second subpopulation experiences a population size
change. The joint 2 population AFS for the real and the
simulated data, as well as their difference (residues) are
shown in Fig. 6.

In all grouping definitions, it is apparent that popula-
tions are not isolated. There is considerable gene flow
between all possible groupings of the populations. Espe-
cially, in the subspecies-based grouping, the inferred
model proposes introgression between the two groups,
i.e., massive, directional gene flow. Furthermore, a simu-
lation examination suggests that dadi is able to distin-
guish a model with gene flow from a model without
gene flow in about 79% of the cases indicating a rather
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Fig. 4 The logPCA results of binary SNP data at the level of the first two Axes. Along the PCT we defined the members of 2 populations. Population 1
consists of plant A, whereas population 2 of plants B, C, and D. The PC1 and PC2 explain 51% of the data variance

robust inference outcome (see Methods). Thus, the sub-
species classification scheme of the studied Brassica cre-
tica plants may be, in fact, not supported by the
modelling outputs. The parameter values for all inferred
demographic models as well as the AIC scores of the
competing models are presented in the Additional file 2:
Tables S1, S2 and S3.

The above finding poses the need for further studies
concerning the potential gene flow between populations
of B. cretica and their effects in adaptive traits in both in
situ and ex situ conservation strategies, as well as in
cases of genetic improvement especially with newly in-
troduced genes [38].

Discussion

This study used genome-wide resequencing to investi-
gate mechanisms of diversification of four isolated B.
cretica populations, taking into consideration their gen-
omic and subspecies variation. There is already evidence
of gene flow between wild and crop types of Brassica
[39]. Similar observations have been reported in the case
of wild relatives of rice [40, 41], which further encourage
the incorporation of the followed methodology; that is
the demographic model selection in the crop wild rela-
tives research. Of course, habitat suitability should also

be taken into consideration [40, 42], since ecological fac-
tors may also influence the directions and the spatial
patterns of gene flow but in the absence of georefer-
enced data it was necessarily out of scope of the current
article. Nevertheless, in future studies a combination of
the followed methodology with Ecological Niche Model-
ling (ENM) [43, 44] is highly recommended.

In the case of taxonomic segregation, the “vicariance-
driven divergence with no migration in the early stages”
model indicates that the two taxa typically formed as the
result of novel and/or emerging geographical barriers,
possibly in combination with genetic drift and/or with
the contribution of local adaptation for some traits. Con-
cerning whether non-ecological versus ecological process
of genetic isolation took place [45], we cannot resort to
a single explanation since our data are not adequate for
such an inference. The late discrete unidirectional ad-
mixture event conforms to the classical view that in
different periods in the evolutionary history of a taxon,
different factors (ecological and/or non-ecological) may
contribute to the process of speciation inducing or
failing to complete it [46]. Nevertheless, taking into con-
sideration the prevailing hypothesis that plant diversifi-
cation in the Aegean region is driven by neutral rather
than adaptive differentiation among isolated populations
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Fig. 5 Demographic Model Inference based on the subspecies definition and on the PCA plot, all nu* represent populations with nuA referring to the

ancestral population, f signifies the flow for the admixture event, m represents the migration between the populations (units 2Nmy), s is the fraction of
the population for each subspecies and T1, T2 represents timepoints for the events (units 2N,). Understanding mechanisms generating parallel genomic
divergence patterns among populations is a modern challenge in population ecology, which can widely contribute in the perception of the intraspecific

event is corroborated

\

diversification of crop wild relatives. Here we investigated the genomic divergence between three population schemes of Brassica cretica using
demographic model selection. According to the above results we can support that strict isolation is not recorded between populations. Discrete
unidirectional admixture event (a) or continuous symmetric migration (b) was recorded indicating an absence of insuperable barriers in gene flow
between populations. Even in the case of taxonomic segregation (c), where strengthen barriers would be expected, late discrete unidirectional admixture

[16, 47-49], we can consider genetic drift as a possible
scenario for this population scheme. It is worthy of men-
tion that a few studies using population and landscape
genetics approaches in Brassicaceae have already re-
vealed a significant signal indicating local adaptation
[50]. Smykal et al. [51] also proposed that most of the
variation they detected within and between populations
of wild pea in northern Fertile Crescent reflects genetic
processes such as drift, founder effect and infrequent
out-crossing with related individuals, rather than envir-
onmental selection pressure.

Unidirectional gene flow has also been reported in other
organisms, such as in the case of two lizard subspecies,
where gene flow from one subspecies (Podarcis gaigeae
subsp. weigandi) into another (Podarcis gaigeae subsp.
gaigeae) but not in the other direction, recorded by
Runemark et al. [52]. In our case, it takes place from the
B. cretica subsp. nivaea into the B. cretica. Flower colour
might be an explanatory factor of the unidirectional ad-
mixture event, as in B. cretica subsp. nivea it is white,
while in B. cretica it may vary from white to bright yellow;
however, this explanation contradicts Edh et al. [16] who
claimed that there is no evidence that flower colour has
had in their study any significant effect on gene flow via
pollen among the investigated B. cretica populations.
Nevertheless, in the view of Edh et al. [16] it is depending
on the sensitivity of the selected markers (nuclear and

chloroplast microsatellites) this flower-coloured based ex-
planation remains standing. Baack et al. [53] report several
cases of pre-pollination reproductive isolation related with
flower colour and pollinator behavior.

However, independently of whether population
genomic divergence is driven by non-ecological or
ecological underline mechanisms, the consequences
of this late unidirectional admixture event possibly
contributed to the high uncertainty or absence of
clear consensus of the status of these taxa, as already
reported by Edh et al. [16] This is also in line with
the treatment of these taxa in the recent Vascular
Flora of Greece [54], where the taxon B. cretica
subsp. nivea has not been suggested as a standing
subspecies.

In the case of non-taxonomic segregations, that is
the case of genomic-variation based population
schemes, both divergence and founder event were re-
corded as split mechanisms of the original population,
while continuous symmetric migration and discrete
unidirectional admixture event in late epoch respect-
ively were specified. In the literature of population
genetics, migration and gene flow are often used
interchangeably [55]. Nevertheless, migration refers to
the movement and dispersal of individuals or gametes,
and gene flow for the movement of alleles, and even-
tually their establishment, into a genetic pool different
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from their genetic pool of origin [55, 56]. In our case
a more appropriate term to use for migration would
be dispersal, as migration is mainly used for animals,
incorporating also the seasonal movements.

Conclusion

In contrast to selection pressure, chance events play a
central role in the genomic variation between popula-
tions by founder effect [45]. Consequently, in the case
of the resulted founder effect demographic model, we
can eliminate the role of the environment from con-
sideration as an important contribution to genetic

variation, while in the case of the divergence model,
the genomic variation may be a result of selection
pressure strengthening the role of environment.
Nevertheless, despite predictions on the disruptive ef-
fect of gene flow in adaptation, when selection is not
strong enough to prevent the loss of locally adapted
alleles, an increasing number of studies show [55]
that gene flow can promote adaptation, that local ad-
aptations can be maintained despite high gene flow,
and that genetic architecture plays a fundamental role
in the origin and maintenance of local adaptation
with gene flow. Thus, in the genomic era it is import-
ant to link the selected demographic models with the
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underlying processes of genomic variation because, if
this variation is largely selectively neutral, we cannot
assume that a diverse population of crop wild rela-
tives will necessarily exhibit the wide-ranging adaptive
diversity required for further crop improvement.

Methods

Plant material

Due to the high phenotypic variability of B. cretica, a
number of subspecies and varieties have been defined.
Snogerup et al. [22] recognize three subspecies of B.
cretica: subsp. aegea, subsp. cretica, and subsp. laconica,
whereas Gustafsson et al. [57] suggest only two subspe-
cies, subsp. cretica and subsp. nivea (sometimes referred
to as B. cretica subsp. cretica var. nivea [58];), which in-
cludes (pale) yellow and white-flowered variants,
respectively.

According to the Vascular Flora of Greece [54] there
are three subspecies: B. cretica subsp. aegaea (Heldr. &
Halacsy; Snogerup; Gust & Bothmer), B. cretica subsp.
cretica and B. cretica subsp. subsp. laconica (Gust. &
Snogerup), while B. cretica subsp. nivea (Boiss &
Spruner; Gust. & Snogerup) and B. nivea (Boiss &
Spruner) are considered as synonyms and misapplied to
B. cretica Lam. subsp. cretica, which has been reported
for the mainland of Greece and for the floristic region of
Crete and Karpathos [54].

For the present study, three mainland and one island
population of B. cretica from Greece have been studied.
Two B. cretica subsp. nivea (Boiss & Spruner) M. A.
Gust. & Snogerup individuals from the first two main-
land populations respectively (A, B) and two B. cretica
Lam. individuals, one from the third mainland popula-
tion (C) and the other from Crete, the island population
(D), have been used for the genome assemblies (Fig. 1).
The studied taxa are not protected by National law or
EU legislation. Moreover, the plant species is not in-
cluded in the Appendices of the Convention on Inter-
national Trade in Endangered Species of Wild Fauna
and Flora (CITES). The plant material was provided by
the National Seed Bank of Greece, under the authority
of the Greek Ministry of Rural Development and Food.

Total DNA extraction, library preparation and sequencing
Genomic DNA was extracted from the young emerging
leaves using two previously published protocols. For
total DNA isolation up to 1g plant leaf tissue was used.
For the DNA isolation we used several protocols includ-
ing the DNeasy Plant Mini Kit from Qiagen, as the man-
ufactures propose. Likewise, we used a modified triple
CetylTrimethyl Ammonium Bromide (CTAB) extraction
protocol for total plant DNA isolation, as it has been de-
scribed before [59].
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The yield and quality of DNA were assessed by
agarose gel electrophoresis and by a NanoDrop spectro-
photometer (NanoDrop Technologies, Wilmington,
Delaware) and quantified by Qubit broad range assay
(Thermo Fisher Scientific). llumina sequencing libraries
were prepared, after fragmenting 500 ng of DNA to an
average size of 500 bp, using NEXTflex 8-barcode Rapid
DNAseq kit for Illumina sequencing (Perkin Elmer) with
adapters containing indexes and 5-8 cycles polymerase
chain reaction (PCR) [60]. Library quality was deter-
mined using D1000 screen-tapes (Agilent) and libraries
were either sequenced individually or combined in equi-
molar pools.

Sequencing was performed on the Illumina HiSeq
2500 at the University of Exeter, using a Rapid-Run
flowcell, yielding pairs of 300-bp reads.

Genome assembly

Prior to assembly and alignment, Illumina HiSeq
sequence reads were filtered on quality scores and
trimmed to remove adapter sequences using Trim
Galore [61] with q =30 (Quality Phred score cutoff = 30).
Reads were assembled into contigs using SOAPdenovo2
[62] with k=127 (k-mer value = 127). Configuration files
used for the SOAPdenovo2 assembly can be found on
FigShare at under DOI https://doi.org/10.6084/m9.fig
share.7583396. Contigs shorter than 500 bp in length were
removed.

Variant calling
We used the closely related species
After trimming and filtering with TrimGalore, sequence
reads were aligned against the reference sequence using
Burrows-Wheeler Aligner (BWA) [63] mem version
0.7.15-r1140 with default options and parameter values.
Candidate SNVs were identified using Sequence Align-
ment/Map tools (SAMtools)/binary call format tools
(BCFtools) package, version 1.6 [64], using the following
command-lines:

samtools mpileup -u -f genome.fasta
alignment.bam 4 alignment.bcf and Brassica
oleracea as reference to map the contigs from the four
plants using the Burrows-Wheeler Aligner [65]. The
produced SAM files were then converted to BAM by
samtools [64]. Using the BAM files, we marked the du-
plicates and called variants per-sample using Haplotype
Caller as indicated by the GATK Best Practices. We
followed the pipeline to create a single VCF file identify-
ing the joined-called SNPs and indels which are ready
for filtering. Concluding the GATK pipeline, we filtered
the variants by quality score recalibration. We trans-
formed the final VCF file to ms [66] output since the
dadi python package requires ms format by using a
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custom script, (Fig. 2 for the distribution of these vari-
ants across the genome).

Genome annotation

Genome annotation was performed using the MAKER
pipeline [67, 68] version 2.31.10. Ab initio gene predic-
tion was performed using Augustus [69] version 3.1
trained on Arabidopsis. Configuration files for the
MAKER annotation can be found on FigShare under
DOI https://doi.org/10.6084/m9.figshare.7583672. The
GFF file generated by MAKER was converted into
NCBI’s Feature Table (.tbl) format using Genome Anno-
tation Generator [70] version 2.0.1.

Allele frequency Spectrum (AFS)

The AFS defined as € = {£;: number of sites with derived
allele counts being i} is a useful summary of the data es-
pecially for demography inference. To calculate the AFS,
we mapped the reads of B. cretica to the B. oleracea ref-
erence genome. This allowed us to use all specimens
and also to use the B. oleracea as an outgroup that
denotes the ancestral state. Following the GATK best
practices pipeline [71], this mapping resulted in
approximately six million single nucleotide polymor-
phisms (SNPs).

Brassica oleracea has been examined thoroughly in the
past and there is a gene list of the organism organized
into chromosomes. We used this list to exclude SNPs
with a distance less than 10kb from those coding re-
gions. This process of removing SNPs is necessary when
the SNPs are used to infer the demographic model. Due
to linkage disequilibrium SNPs within or in the proxim-
ity of genic regions are affected by selection forces, espe-
cially negative selection. Negative selection effectively
increases the low frequency derived variants and there-
fore it introduces biases in the demographic inference.
For this reason, we excluded SNPs located within or in
the proximity of genic regions.

Demographic inference

Inferring the demographic model employing genome-wide
data

Reconstructing the demographic history of a population
is a process based on statistical inference. The amount
of available information is therefore critical for the
robust inference of the demographic model. Analyzing a
small number of non-recombining loci, even with large
sample size (number of individuals) results in poor infer-
ence because the power fades rapidly upon moving back
in time and only a few independent lineages remain
(coalescent rate is related to the square of the number of
lineages). A better approach is to use genome-wide data
even with a small number of individuals. Thus, in
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contrast to the many-individuals approach, a few ge-
nomes (even a single diploid genome) contains hundreds
of thousands of independent loci (due to recombin-
ation), each of which provides information about the
demographic history of the population. It has been
shown that it is possible to infer the demographic his-
tory of a whole population even by using a single diploid
individual [72].

Using dadi to infer the demographic model Inferring
a demographic model consistent with a particular data
set requires random walks into a large parameter space
by simulating the model using Monte Carlo coalescent-
theory based approaches. The most well-known ap-
proach based on Monte Carlo coalescent simulations is
the Approximate Bayesian Computation (ABC) inference
[73]. The main handicap of these methods is their scal-
ability to genome-wide size data sets. Another issue
arises when multiple populations are free to interact
through migration (either symmetric or asymmetric)
resulting in an increase of the parameters and, therefore,
the required complex calculations. These complexities
hinder any effort to thorough explain the statistical
properties of the summary statistics produced during the
walks. To avoid these problems we based our demo-
graphic model inference on the multi-population allele
frequency spectrum (AFS) [74-77], due to the fact that
demographic history of a population is reflected in the
allele frequency spectrum. By comparing the different
spectra produced by simulations and observations we
can access the model’s goodness of fit and estimate the
best parameter values for each model.

In spite of the existence of efficient algorithms for the
simulation of a single population AFS [78-80], the joint
AFS between two or more populations still requires very
computationally intensive coalescent simulations. For
more than two populations the computational complex-
ity becomes prohibitively large. Approximations of the
joint-AFS using a numerical solution of a diffusion
equation have been used extensively in the past [81], en-
abling simulations of a joint-AFS for two populations in
a reasonable computation time. Although the diffusion
approach neglects linkage disequilibria, we can use
composite likelihood function as a consistent estimator
for evaluating genetic scenarios. Concerns about the use
of composite likelihood in population genetics are over-
come by allowing conventional and parametric bootstrap
of the data.

The dadi python package [82] implements these
approximations and in conjunction with the dadi_pipe-
line described in [83] allows for adequate exploration of
the parameter space. The dadi_pipeline consists of
three optimization rounds and a final plotting step.
We used 30 demography models ranging from simple
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(populations never diverge) to complex (ancient diver-
gence with asymmetric migrations between the two
populations) to find the best fitting model. These
demographic models comprise a thorough list of two
population possible models and they were first exam-
ined by Portik et al. [83].

The initial two rounds of optimizations search the par-
ameter space for the parameter set that best describes
the data under each of the thirty models. For every
model we sampled 50 different parameter sets and 50
repetitions of the each set to get the actual global max-
imum for each model while avoiding local maxima. We
based our selections of the best parameter values on the
AIC score for each model. To assess which demographic
model better reflects the true demographic history of the
B. cretica population a simple comparison between the
respective AIC scores from each model is not valid be-
cause AIC is not comparable between non-nested
models. We compared the models using Akaike weights
[84], by calculating the difference between each model’s
AIC and the AIC of the best candidate model. With a
simple transformation we can calculate an estimate of
the relative likelihood L; of each model i and by dividing
each Li with the sum of Li we can normalize the weights
and compare the models, and therefore we can find the
model that better fits the data [84].

Dadi pipeline performance on small sample sizes The
dadi_pipeline was successfully used in the past for iden-
tifying the demography model of populations with more
than 8 samples [83]. To estimate its performance on our
number of samples, we chose the A-BCD grouping and
simulated 100 datasets using Hudson’s ms [66] given
our proposed parameters as arguments.

We run the three optimization rounds of the pipeline
for each dataset, using our proposed model and a model
that specifies no gene flow between the populations.

We used the Akaike Information Criterion (AIC) to
compare the fit of a model with gene flow and a model
without gene flow.. We subtracted the AIC of the gene
flow model from the AIC of the no gene flow model. A
positive result indicates that dadi correctly identifies our
proposed model with gene flow as the better fit for the
simulated data. The dadi_pipeline is successful in this
task in 79% of the cases (Additional file 1: Fig. S1).

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512864-019-6439-x.

Additional file 1: Figure S1. Differences of AIC between the no gene
flow model and the proposed (gene flow) model.
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