
SOFTWARE Open Access

PaCBAM: fast and scalable processing of
whole exome and targeted sequencing
data
Samuel Valentini1, Tarcisio Fedrizzi2, Francesca Demichelis2 and Alessandro Romanel1*

Abstract

Background: Interrogation of whole exome and targeted sequencing NGS data is rapidly becoming a preferred
approach for the exploration of large cohorts in the research setting and importantly in the context of precision
medicine. Single-base and genomic region level data retrieval and processing still constitute major bottlenecks in
NGS data analysis. Fast and scalable tools are hence needed.

Results: PaCBAM is a command line tool written in C and designed for the characterization of genomic regions
and single nucleotide positions from whole exome and targeted sequencing data. PaCBAM computes depth of
coverage and allele-specific pileup statistics, implements a fast and scalable multi-core computational engine,
introduces an innovative and efficient on-the-fly read duplicates filtering strategy and provides comprehensive text
output files and visual reports. We demonstrate that PaCBAM exploits parallel computation resources better than
existing tools, resulting in important reductions of processing time and memory usage, hence enabling an efficient
and fast exploration of large datasets.

Conclusions: PaCBAM is a fast and scalable tool designed to process genomic regions from NGS data files and
generate coverage and pileup comprehensive statistics for downstream analysis. The tool can be easily integrated
in NGS processing pipelines and is available from Bitbucket and Docker/Singularity hubs.

Background
Genomic region and single-base level data retrieval and
processing, which represent fundamental steps in genomic
analyses such as copy number estimation, variant calling
and quality control, still constitute one of the major bot-
tlenecks in NGS data analysis. To deal with the computa-
tionally intensive task of calculating depth of coverage and
pileup statistics at specific chromosomal regions and/or
positions, different tools have been developed. Most of
them, including specific modules of SAMtools [1] and
BEDTools [2] and the most recent Mosdepth [3], only
measure and optimize the computation of depth of
sequencing coverage. Few others, like the pileup modules
of SAMtools, Sambamba [4], GATK [5] and ASEQ [6]
provide instead statistics at single-base resolution, which

is essential to perform variant calling, allele-specific ana-
lyses and exhaustive quality control. Although most of
these tools offer parallel computation options, scalability
in terms of memory and multiple processes/threads usage
is still limited. To enable an efficient exploration of large
scale NGS datasets, here we introduce PaCBAM, a tool
that provides fast and scalable processing of targeted re-
sequencing data of varying sizes, from WES to small gene
panels. Specifically, PaCBAM computes depth of coverage
and allele-specific pileup statistics at regions and single-
base resolution levels and provides data summary visual
reporting utilities. PaCBAM introduces also an innovative
and efficient on-the-fly read duplicates filtering approach.
While most tools for read duplicates filtering work on
SAM/BAM files sorted by read name [1, 7] or read pos-
ition (Tarasov et al., 2015, broadinstitute.github.io/picard)
and generate new SAM/BAM files, PACBAM performs
the filtering directly during the processing, not requiring
the creation of intermediate BAM/SAM files and fully
exploiting parallel resources.

© The Author(s). 2019, corrected publication 2024.Open Access This article is distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: alessandro.romanel@unitn.it
1Laboratory of Bioinformatics and Computational Genomics, Department of
Cellular, Computational and Integrative Biology (CIBIO), University of Trento,
Trento, Italy
Full list of author information is available at the end of the article

Valentini et al. BMC Genomics (2019) 20:1018
https://doi.org/10.1186/s12864-019-6386-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-019-6386-6&domain=pdf
http://orcid.org/0000-0003-4855-8620
http://broadinstitute.github.io/picard
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:alessandro.romanel@unitn.it

Implementation
PaCBAM is a command line tool written in C pro-
gramming language that combines multi-threaded
computation, SAMTools APIs, and an ad-hoc data
structures implementation. PaCBAM expects as input
a sorted and indexed BAM file, a sorted BED file with
the coordinates of genomic regions (namely the target,
e.g. captured regions of a WES experiment), a VCF file
specifying a list of SNPs of interest within the target
and a reference genome in FASTA format. PaCBAM
implements a multi-threaded solution that optimizes
the execution time when multiple cores are available.
The tool splits the list of regions provided in the BED
file and spawns different threads to execute parallel
computations using a shared and optimized data
structure. The shared data structure collects both re-
gion and single-base level information and statistics
which are processed and finally exposed through four
different output options. Each output mode provides
the user with only the statistics of interest, generating
a combination of the following text output files: a)
depth of coverage of all genomic regions, which for
each region provides the mean depth of coverage, the
GC content and the mean depth of coverage of the
sub-region (user specified, default 0.5 fraction) that
maximizes the coverage peak signal, to account for the
reduced coverage depth due to incomplete match of reads
to the captured regions (Additional file 1: Figure S1); b)
single-base resolution pileup, which provides for each gen-
omic position in the target the read depth for the 4
possible bases (A, C, G and T), the total depth of
coverage, the variants allelic fraction (VAF), the
strand bias information for each base; c) pileup of
positions with alternative base support, which ex-
tracts the pileup statistics only for positions with
positive VAF, computed using the alternative base
with highest coverage (if any); d) pileup of SNPs posi-
tions, which extracts the pileup statistics for all SNPs
specified in the input VCF file and uses the alterna-
tive alleles specified in the VCF file for the VAF
calculation and the genotype assignment (Additional
file 1 for details). All output files are tab-delimited
text files and their format details are provided in the
Additional file 1.
PaCBAM allows the user to specify the minimum base

quality score and the minimum read mapping quality to
filter out reads during the pileup processing.
In addition, we implemented an efficient on-the-fly

duplicated reads filtering strategy which implements an
approach that is similar to the Picard MarkDuplicates
method but that applies the filter during region and
single-base level information retrieval and processing
without the need of creating new BAM files (Additional
file 1). The filtering strategy, which fully exploits multi-

core capabilities, uses single or paired read alignment
positions (corrected for soft-clipping at the 5′ end) and
total mapping size information to identify duplicates and
implements ad-hoc data structures to obtain computa-
tional efficiency.
PaCBAM package also includes a Python script to gen-

erate visual data reports which can be directly used for
quality control. Reports include plots summarizing dis-
tributions of regions and per-base depth of coverage,
SNPs VAF distribution and genotyping, strand bias
distribution, substitutions spectra, regions GC content
(Additional file 1: Figure S2-S8).

Results
PaCBAM performances were tested on an AMD
Opteron 6380 32-cores machine with 256 GB RAM.
To mimic different application scenarios, we mea-
sured the execution time and memory used by PaC-
BAM to compute pileups from multiple input BAM
files spanning different depth of coverage and differ-
ent target sizes (Additional file 1: Table S1) using an
increasing number of threads. We compared PAC-
BAM performances against pileup modules of SAM-
tools, Sambamba and GATK (SAMtools offer no
parallel pileup option).
In terms of runtime, as shown in Fig. 1a and Add-

itional file 1: Figure S9-S11, PaCBAM and Sambamba
are the only tools that scale with the number of threads
used. PaCBAM outperforms all other tools in all tested
conditions. Of note, while PaCBAM pileup output files are
of constant size, output files of SAMtools, Sambamba and
GATK have a size that is function of the coverage; among
all the experiments we run in the performance analyses,
PaCBAM output is up to 17.5x smaller with respect to
outputs generated by the other tested tools.
While GATK and PaCBAM, as shown in Fig. 1b and

Additional file 1: Figure S12-S14, have a memory usage
that depends only on the target size, Sambamba usage
depends on both target size and number of threads and
SAMtools usage is constant. Above 8 cores, PaCBAM
beats both GATK and Sambamba in all tested conditions
in memory usage.
As an example of performance comparison, when

analyzing a BAM file with ~300X mean coverage
and ~30Mbp target size using 30 threads (Fig. 1a-b),
PaCBAM improves execution time of 4.9x/5.27x and
requires 80%/82% less memory compared to Sam-
bamba/GATK.
Of note, in the sequencing scenarios here considered,

PaCBAM demonstrates up to 100x execution time im-
provement and up to 90% less memory usage with re-
spect to the single-base pileup module of our previous
tool ASEQ (Additional file 1: Figure S15).

Valentini et al. BMC Genomics (2019) 20:1018 Page 2 of 5

Fig. 2 Comparison of PaCBAM results with other tools. a Comparison of PaCBAM and GATK depth of coverage (left) with zoom in the coverage
range [0,500] (right); number of positions considered in the analysis and correlation results are reported. b Comparison of allelic fraction of ~ 40 K
positions annotated as SNPs in dbSNP database v144 and having an allelic fraction > 0.2 in both PaCBAM and GATK pileup output. c Single-base
coverage obtained by running either Picard MarkDuplicates + PaCBAM pileup or PaCBAM pileup with duplicates filtering option active (left) with
zoom in the coverage range [0,500] (right). d Regional mean depth of coverage obtained by running either Picard MarkDuplicates + PaCBAM
pileup or PaCBAM pileup with duplicates filtering option active

Fig. 1 PaCBAM performances. Time (a) and memory (b) required by PaCBAM to perform a pileup compared to SAMtools, GATK and Sambamba,
using increasing number of threads. The figure focuses on the analysis of a BAM file with ~300X mean coverage and ~30Mbp target size using 30
threads. Note that parallel pileup option is not available for SAMtools and red lines in panel a and b refer to the average of single thread executions

Valentini et al. BMC Genomics (2019) 20:1018 Page 3 of 5

Depth of coverage and pileup statistics of PaCBAM
pileup were compared to GATK results on a BAM file
with ~300X average coverage and ~64Mbp target size
observing almost perfect concordance (Fig. 2a-b).
PaCBAM duplicates removal strategy was tested by

comparing PaCBAM pileups obtained from a paired-
end BAM file first processed with Picard MarkDupli-
cates or parallel Sambamba markdup, to PaCBAM
pileups obtained from the same initial BAM file but
using the embedded on-the-fly duplicates filtering. As
shown in Fig. 2c-d and Additional file 1: Figure S16,
both single-base and region level statistics results are
strongly concordant, with single-base total coverage
difference (with respect to Picard) that in 99.94% of
positions is < 10X, single-base allelic fraction differ-
ence that in 99.95% of positions is < 1% and region
mean coverage difference that in 99.96% of regions is
<10X (Additional file 1: Figure S17). In addition, PaC-
BAM strategy improves overall execution time of 2.5x/
1.7x with a single thread and of 25x/3x with 30
threads compared to Picard and parallel Sambamba,
respectively (Additional file 1: Table S2, Fig. 2c,
Additional file 1: Figure S16A).
Overall, these analyses demonstrate that PaCBAM ex-

ploits parallel computation resources better than existing
tools, resulting in evident reductions of processing time
and memory usage, that enable a fast and efficient cover-
age and allele-specific characterization of large WES and
targeted sequencing datasets. The performance analysis
is completely reproducible using an ad-hoc Debian-
based Singularity container (Additional file 1: Table S3).

Conclusion
We presented PaCBAM, a fast and scalable tool to
process genomic regions from NGS data files and
generate coverage and pileup statistics for down-
stream analysis such as copy number estimation,
variant calling and data quality control. Although de-
signed for targeted re-sequencing data, PaCBAM can
be used to characterize any set of genomic regions
of interest from NGS data. PaCBAM generates both
region and single-base level statistics and provides a
fast and innovative on-the-fly read duplicates filtering
strategy. The tool is easy to use, can be integrated in
any NGS pipeline and is available in source/binary
version on Bitbucket and containerized from Docker
and Singularity hubs.

Availability and requirements
Project name: PaCBAM
Project home page: bcglab.cibio.unitn.it/PaCBAM
Operating system(s): Platform independent
Programming language: C, Python
License: MIT

Additional file

Additional file 1: Figure S1. Genomic region mean coverage
computation. Figure S2. Cumulative coverage distribution report. Figure
S3. Variant allelic fraction distribution report. Figure S4. SNP allelic
fraction distribution report. Figure S5. Alternative bases distribution
report. Figure S6. Strand bias distribution report. Figure S7. Genomic
regions depth of coverage distribution report. Figure S8. Genomic
regions GC content distribution report. Figure S9. Run time comparison
at 150X depth of coverage. Figure S10. Run time comparison at 230X
depth of coverage. Figure S11. Run time comparison at 300X depth of
coverage. Figure S12. Memory usage comparison at 150X depth of
coverage. Figure S13. Memory usage comparison at 230X depth of
coverage. Figure S14. Memory usage comparison at 300X depth of
coverage. Figure S15. Memory usage comparison among PaCBAM
pileup and pileup module of ASEQ. Figure S16.
Comparison of PaCBAM duplicates filtering strategy to Sambamba
markdup and Picard MarkDuplicates modules. Figure S17. Performance
of PaCBAM duplicated reads filtering. Table S1. Mean depth of coverage and
target sizes of all BAM files used to test PaCBAM performance.Table S2. Time
and memory usage of
duplicates filtering performance analyses. Table S3. Versions of the tools used
in performance evaluation analysis.

Abbreviations
NGS: Next-Generation Sequencing; SNP: Single Nucleotide Polymorphism;
VAF: Variant(s) Allele Frequency; WES: Whole-Exome Sequencing

Acknowledgments
Not applicable.

Authors’ contributions
AR designed and implemented PaCBAM. SV designed and implemented
visual reporting scripts and performed all performance analyses. TF and FD
contributed with tool testing, access to computational resources and
performance analyses. AR supervised the project. All authors contributed to
the writing and editing of the manuscript and approved the manuscript.

Funding
The research leading to these results has received funding from AIRC under
MFAG 2017 - ID. 20621 project - P.I. Romanel Alessandro - for the design,
implementation and performance analyses and from NCI P50 CA211024-01
Weill Cornell Medicine Prostate Cancer SPORE - Demichelis Francesca - for
testing and performance analyses.

Availability of data and materials
All data and analysis scripts supporting the results of this article are available
at bcglab.cibio.unitn.it/PaCBAM_Performance_Analysis.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Laboratory of Bioinformatics and Computational Genomics, Department of
Cellular, Computational and Integrative Biology (CIBIO), University of Trento,
Trento, Italy. 2Laboratory of Computational and Functional Oncology,
Department of Cellular, Computational and Integrative Biology (CIBIO),
University of Trento, Trento, Italy.

Valentini et al. BMC Genomics (2019) 20:1018 Page 4 of 5

http://bcglab.cibio.unitn.it/PaCBAM

Received: 27 March 2019 Accepted: 11 December 2019

References
1. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The

sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:
2078–9.

2. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics. 2010;26:841–2.

3. Pedersen BS, Quinlan AR. Mosdepth: quick coverage calculation for
genomes and exomes. Bioinformatics. 2018;34:867–8.

4. Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: fast
processing of NGS alignment formats. Bioinformatics. 2015;31:2032–4.

5. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A
framework for variation discovery and genotyping using next-generation
DNA sequencing data. Nat Genet. 2011;43:491–8.

6. Romanel A, Lago S, Prandi D, Sboner A, Demichelis F. ASEQ: fast allele-
specific studies from next-generation sequencing data. BMC Med Genet.
2015;8. https://doi.org/10.1186/s12920-015-0084-2.

7. Faust GG, Hall IM. SAMBLASTER: fast duplicate marking and structural variant
read extraction. Bioinformatics. 2014;30:2503–5.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Valentini et al. BMC Genomics (2019) 20:1018 Page 5 of 5

https://doi.org/10.1186/s12920-015-0084-2

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation

	Results
	Conclusion
	Availability and requirements
	Additional file
	Abbreviations
	Acknowledgments
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

