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Abstract

Background: The genome architecture mapping (GAM) technique can capture genome-wide chromatin
interactions. However, besides the known systematic biases in the raw GAM data, we have found a new type of
systematic bias. It is necessary to develop and evaluate effective normalization methods to remove all systematic
biases in the raw GAM data.

Results: We have detected a new type of systematic bias, the fragment length bias, in the genome architecture
mapping (GAM) data, which is significantly different from the bias of window detection frequency previously
mentioned in the paper introducing the GAM method but is similar to the bias of distances between restriction
sites existing in raw Hi-C data. We have found that the normalization method (a normalized variant of the linkage
disequilibrium) used in the GAM paper is not able to effectively eliminate the new fragment length bias at 1 Mb
resolution (slightly better at 30 kb resolution). We have developed an R package named normGAM for eliminating
the new fragment length bias together with the other three biases existing in raw GAM data, which are the biases
related to window detection frequency, mappability, and GC content. Five normalization methods have been
implemented and included in the R package including Knight-Ruiz 2-norm (KR2, newly designed by us), normalized
linkage disequilibrium (NLD), vanilla coverage (VC), sequential component normalization (SCN), and iterative
correction and eigenvector decomposition (ICE).

Conclusions: Based on our evaluations, the five normalization methods can eliminate the four biases existing in
raw GAM data, with VC and KR2 performing better than the others. We have observed that the KR2-normalized
GAM data have a higher correlation with the KR-normalized Hi-C data on the same cell samples indicating that the
KR-related methods are better than the others for keeping the consistency between the GAM and Hi-C
experiments. Compared with the raw GAM data, the normalized GAM data are more consistent with the
normalized distances from the fluorescence in situ hybridization (FISH) experiments. The source code of normGAM
can be freely downloaded from http://dna.cs.miami.edu/normGAM/.
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Introduction
The Hi-C technique uses different restriction enzymes and
proximity-based ligation to capture genome-wide chroma-
tin interactions [1, 2], which provides large-scale maps of
the three-dimensional (3D) architecture of the whole
genome. Similar to the Hi-C experiments [1], the genome
architecture mapping (GAM) experiments [3] can also
capture genome-wide chromatin proximities. However,
GAM has the following advantages compared with Hi-C
[1]: (1) GAM only needs ultrathin cryosectioning instead of
ligation; (2) GAM experiments can detect triplet contacts
between multiple chromatin regions more effectively than
the Hi-C experiments; (3) GAM only needs hundreds of
cells compared with millions of cells needed in population
Hi-C experiments [2—4]. Although it is not the focus of this
study, it is important to mention that single-cell Hi-C
technique has been invented [5, 6] to capture the DNA
proximities of individual cells, based on which 3D genome
structures of individule cells can be reconstructed [7].
GAM has been included in the 4D Nucleome (4DN) Net-
work [8], can be visualized using 3D Genome Browser [9],
and has been used to assess the accuracy of 3D chromatin
reconstructions [10]. All of the interacting capture
techniques including Hi-C, the variants of Hi-C such as
HiChIP [11] and SPRITE [12], and GAM can generate
whole-genome contact maps, which can be used to recon-
struct chromatin 3D architectures [13-16].

In the GAM experiment, a slice or an extra thin layer
is cut at a random direction out of a single nucleus. By
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performing the same action on hundreds of nuclei at
random orientations, GAM can gather hundreds of thin
DNA layers. Each of these layers is referred as a nuclear
profile (NP) that contains chromatin fragments that may
be from different regions of a chromosome or even from
different chromosomes [3]. After thin cryosections, five
steps are performed in order to get the GAM DNA reads
[3]: (1) fixing chromatins; (2) protein digestion and cross-
link removal; (3) fragmentation (longer fragments are split
into sub-fragments); (4) universal adaptor addition; and
(5) amplification of the DNA reads. The DNA reads from
the same NP have the same type of adaptor. Therefore,
after being sequenced, all reads are mapped back to the
reference genome to obtain their genomic locations.

After these steps, a co-segregation matrix is generated.
Figure 1a, up shows three example NPs, each containing
one or more bins (the orange, green, and blue colored
beads in Fig. 1); and Fig. la, bottom shows the co-
segregation matrix generated from these NPs. The num-
ber of columns in the co-segregation matrix is equal to
the number of NPs, whereas the number of rows in the
co-segregation matrix is equal to the number of bins of
the whole genome. For example, the top three plus signs
in the column of NP1 indicate that the bins A1, A2, and
A3 are all detected in NP1. The top one plus sign in the
column of NP2 indicates Al is detected in NP2. How-
ever, A2 and A3 are not detected in NP2.

From the co-segregation matrix, the GAM contact
matrix can be generated. The entries in the raw GAM

B Short Long Median

Fig. 1 a An illustration of the calculation of fragment biases we newly found. The bins (ie, A1, A2, A3, B1, and C1) have the same lengths that
are equal to the resolution of interest. The plus sign in the table indicates that the bin is detected in the current NP. The negative sign indicates
that the bin is not detected in the NP. b An illustration of distance biases between restriction sites in the Hi-C experiments. Different fragment
lengths influence ligation efficiency in the Hi-C experiments. ¢ The corresponding fragment length biases in the GAM experiments. Compared

A A NP1 NP2
Al
A3 NP3

B1

: \

NP1 NP2 NP3
Al + + +
A2 + - +
A3 g = g7
A4
Bl + +
B2 - -
C1 £ = =
C2
with the last NP, the lengths of blue and green fragments in the first two NPs are unevenly detected
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contact matrices are obtained by using linkage disequi-
librium Dag = fap — fafs [3], where f45 is equal to the fre-
quency of nuclear profiles in which two bins A and B
are simultaneously detected; f4 or f3 is the frequency of
nuclear profiles in which the locus A or B is detected.
Therefore, it is possible that D5 is less than zero, which
makes the raw GAM contact matrix negative.

There are multiple types of systematic biases found in
the raw population Hi-C data [17, 18] including the biases
caused by different distances between successive restric-
tion sites, GC content, and mappability. We recently con-
firmed that these biases also existed in raw single-cell Hi-
C data [19]. GAM raw data were also found to have the
GC content and mappability biases as mentioned in the
paper that introduced the GAM technique [3]. Moreover,
that paper [3] has mentioned that raw GAM data also
have the window (or bins) detection frequency bias [3]
that will be defined later in Methods section.

Windows and bins are defined interchangeably in this
study as chromatin segments with the same length; and
the window/bin size is also referred as the resolution,
which is used to evenly split an entire chromatin. In
contrast, we define fragments as the chromatin segments
that are cut out based on the restriction enzymes in Hi-
C, for example, the two fragments (blue and green) in
Fig. 1b. We also define fragments as the chromatin
segments existing in each of the NPs in GAM, for example,
the blue and green fragments in Fig. 1c. The relationship
between a fragment and a window/bin is that a fragment is
usually longer and may contain multiple bins.

However, the GAM paper [3] misses an important bias
that is caused by different lengths of fragments, named
by us hereafter as the fragment length bias. This bias is
similar to the bias of distances between restriction sites
in raw Hi-C data. These biases (window detection fre-
quency and fragment length) need to be removed to en-
sure that the significant interactions found in contact
matrices are not resulted from the systematic biases.

In this paper, we demonstrate the existence of the
fragment length bias in raw GAM data caused by differ-
ent fragment lengths from random slicing, which was
not discussed in [3]. A software package named norm-
GAM has been developed that contains five methods for
normalizing raw GAM data including normalized link-
age disequilibrium (NLD) [3], vanilla coverage (VC) [1],
sequential component normalization (SCN) [20], itera-
tive correction and eigenvector decomposition (ICE)
[21], and Knight-Ruiz 2-norm (KR2) [2, 22].

Materials and methods

GAM and hi-C data

We downloaded the raw co-segregation GAM data for
408 nuclear profiles (NPs) from GEO (GSE64881) at two
resolutions (i.e, 1Mb and 30kb). The raw intra-
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chromosomal (cis) GAM contact matrices were gener-
ated using the co-segregation data as input.

We downloaded the raw Hi-C reads for mouse embry-
onic stem (mES) cells from GEO (GSE35156) and com-
bined two HindIII replicates to generate the raw Hi-C
contact matrices at 1 Mb resolution.

Definition of the systematics biases

GC content bias and mappability bias

The GC content and mappability biases in GAM are the
same as in Hi-C [17, 18]. Therefore, detailed definitions
will not be shown here. The GC content bias of a certain
bin is the GC content of its DNA sequence. The mapp-
ability bias of a certain bin is generated in the same way
as in scHiCNorm [19].

Window detection frequency bias

The existence of window detection frequency (WDF)
bias in raw GAM data has been mentioned in [3] and is
intuitively apparent because GAM cannot ensure that all
of the bins are detected with the same frequency. Our
analysis has proved the existence of this bias (data
shown later), which indicates that the random orienta-
tions of the GAM cryosections cannot make all the bins
to have the same chance to be detected in the NPs. For
example, bin Al is detected three times in Fig. la, A2 is
detected two times, and A3 two times. Accordingly, we
define their WDF biases as 3, 2, and 2.

Fragment length bias

The fragment length bias is based on similar idea as the
window detection frequency bias. The window detection
frequency bias is caused by the inconsistent frequencies
for bins to be detected in the NPs, whereas the fragment
length bias is also a type of bias for each bin but is
caused by the inconsistent frequencies for fragments to
be detected in the NPs. Our evaluation results will later
prove that both two biases exist in raw GAM contact
matrices.

For example, in Fig. la the fragment length for the
blue chromatin segment is three bins based on NP1. For
NP2, it is one bin, and three bins in terms of NP3.
Therefore, we define the average fragment length of bin
Al as (3+1+3)/3 based on all of the three NPs. Simi-
larly, we define the average fragment length of bin A2 as
(3+0+3)/3 according to the three NPs. We use the
average fragment lengths from all NPs as the fragment
length bias of the bin. In our software, we omit the div-
ision of the number of NPs because this value is the
same for all the bins. In this way, the fragment length
biases of Al, A2, and A3 are 7, 6, and 6 in the example
in Fig. 1.

The WDF bias and the newly found fragment length
bias in the raw GAM data can be quantified by the /d_
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nld_cis function in our normGAM package. However,
when a user is using the package to normalize raw GAM
data, he/she does not need to quantify these biases in
order to run the normalization algorithms. Instead, the
algorithm can directly remove all the biases. The quanti-
fication of these biases is to prove the existence of the
biases and to evaluate the performance of our bias-
removing algorithms. If GC content and mappability
biases at different resolutions are of interest, users can
obtain the corresponding bias data for different refer-
ence genomes from our previous normalization method
scHiCNorm [19].

Normalization methods
The normalization methods developed for raw Hi-C
contact matrices (e.g, KR [2, 22] and HiCNorm [18])
may not be directly used for raw GAM data because (1)
the input of KR algorithm needs to be a non-negative
symmetric matrix, but the raw GAM contact matrices
may contain negative entries; (2) HiCNorm [18] and
scHiCNorm [19] were designed for count data, but the
raw GAM contacts were composed of real numbers. To
address the first problem, we developed a new method
KR2, the 2-norm of KR, which was able to handle nega-
tive contact matrices.

The Knight-Ruiz (KR) [22] algorithm was designed to
balance a matrix. Given a non-negative symmetric
matrix D, the algorithm tries to find a vector x such that

diag(x)Dx = e, (1)

where diag(x) is a diagonal matrix converted from x, and
e represents a vector of all ones.
Eq. (1) can be turned into:

f(x.) = diag(x.)Dx.—e = 0. (2)
We can obtain the iterative from eq. (2):
Xio1 = diag(Dxy) e (3)

We can also use Newton’s method to get an alterna-
tive to eq. (3):

K = x—f () /f ()

Page 4 of 8

When both sides of eq. (5) are premultiplied by diag(xy),
we can get:

(B + diag(Bie))yp1 = (B + e, (6)

where By = diag (x)Ddiag(x;) and yi, = diag(x) e, 1.
Eq. (6) can be solved using conjugate gradient iteration.
More details about the initial values and stopping criteria can
be found in [22]. The final balanced matrix can be obtained
by diag(x)Ddiag(x). In summary, the original KR was de-
signed for balancing a matrix in the 1-norm. Here, we
present KR2 for balancing a GAM contact matrix in the 2-
norm by taking the following three steps. We first conduct
element-wise product by D, = D - D and then run the original
KR algorithm on D, to get balanced matrix D3 = KR(D,). Fi-
nally, we obtain the normalized matrix D,,,,,, = Ds - sign (D),
where sign(D) denotes signed all-ones matrix; and the entries’
signs are consistent with the corresponding entries in D.

The vanilla coverage (VC) [1], sequential component
(SCN) [20], and iterative correction and eigenvector decom-
position (ICE) [21] normalization methods share similarities
in their methodologies. The details of the three methods are
given below. Each normalized entry is calculated by D;/(ee;),
where Dj; is the entry in the raw contact matrix D.

As for VC, e; is 1-norm of the ith row; and ¢; is 1-norm
of the jth column. As for SCN, e; is 2-norm of the ith row;
and ¢; is 2-norm of the jth column. The original SCN also
uses maximum iterations to reduce errors, but we have
found that SCN performs better when conducting only
one iteration on GAM data. Therefore, the normalization
results from SCN in this work were all using one iteration.

As for ICE, e; is 1-norm of the ith row divided by its
mean value over non-zero bins; and ¢; is 1-norm of the jth
column divided by its mean value over non-zero bins.
There are two stopping criteria in ICE including the max-
imum iteration and error tolerance. Based on our experi-
ence, it is difficult to achieve a pre-defined error tolerance
(e.g., 1le-6) for all chromosomes; and when we set a large
value (e.g., 6000) to the maximum iteration the normal-
ized values for several chromosomes are extremely irregu-
lar. Therefore, we set it to 100 in this work. If the error is
less than le-3, the algorithm will be terminated.

Normalized Linkage Disequilibrium (NLD) was imple-
mented in the same way as described in [3]. The nor-

= x¢—( diag(xx)D + diag(Dxy)) ™" ( diag(xx)Dxy—e)malized D,y is calculated by Dsg/D,pux and D,,,,, is the

(4)

which can be rearranged as:

(D + diag(xx)™" diag(Day))xs1
= Dxy + diag(x;)e. (5)

Let Dy =D + diag (x;)"" diag (Dx;), which is symmetric
as D. The next step is to use inner-outer iteration
schemes with conjugate gradient method to solve eq. (5).

theoretical maximum and defined as:

Dyax = { mm(fAva (l_fA)(l_fB)> ifDAB <0

min(fg(1-f4), fa(1=fp)) if Dap > 0.
Evaluation of the normalization methods

(7)
For each of the four biases (WDF, fragment length,
mappability, and GC content), we sorted the chromatin
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bins in the whole genome (chrl to chr19) based on their
biases, stratified the whole bins of a genome into 20 sets,
and then calculated the average number of GAM con-
tacts between each pair of the 20 sets, resulting in a 20-
by-20 heat map. We did the same operations on both
the raw and normalized GAM contact matrices. A good
normalization method can make the 20-by-20 heat map
as smooth as possible, that is, the normalized 20-by-20
heat map is mostly occupied by one color.

Another evaluation measure is the Pearson’s correl-
ation between the GAM data (both before and after
normalization) and the four known biases. A good
normalization method can achieve a very low correlation
(i.e., close to zero) in terms of each of the four biases.

Results and discussion

We found that the new fragment length bias did exist in
the raw GAM data at 1 Mb and 30 kb resolutions based
on 408 NPs. Figure 2 is for 1 Mb resolution and Fig. 3
for 30kb resolution. Compared with the blue regions
with lower values, the red regions along the diagonal in-
dicate the existence of biases. We did both Students’ t-
tests and Wilcoxon singed-rank tests on the two data
sets of WDF and fragment length biases at 1 Mb reso-
lution for each of 19 chromosomes. The p-values from
the two tests for all chromosomes are consistently lower
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than le-10, indicating that the two biases (WDF and
fragment length) are significantly different from each
other. Together with WDF, mappability, and GC con-
tent, we have detected four biases in the raw GAM data.

We evaluated the performance of the five normalization
methods at 1 Mb and 30 kb resolutions. The normalization
results are shown in Figs. 2, 3, and 4. Compared with the
method we newly designed (KR2), the normalization
method NLD that was previously used in the GAM paper
[3] was not able to effectively eliminate fragment length,
WDEF, mappability, or GC content biases at 1 Mb resolution
although its performance was better at 30 kb resolution for
the biases of WDF and fragment length. All the five
methods eliminated the four known biases in varying de-
grees, with two methods (ie, VC and KR2) performing
much better than the others at both resolutions.

We calculated the Pearson’s correlation between GAM
data (both raw and normalized) and each of the four
biases (Fig. 4), which showed that VC, ICE, and KR2
performed better than the other two methods. Notice
that a zero or close-to-zero correlation indicates
complete or close-to-complete removal of the bias.

We found KR2-normalized GAM data were more sig-
nificantly correlated with the KR-normalized Hi-C data
compared with the ICE or VC normalized GAM and Hi-
C data (Fig. 5), which indicated that the KR-based

-
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normalization methods might be a better choice if
keeping consistency between GAM and Hi-C data is
of interest.

We tested whether the normalization procedures re-
duced or damaged the genomic interacting patterns by
plotting the raw and normalized GAM contact matrices,
see Fig. 6. From the six heat maps, we can observe that

the five normalization methods do not compromise the
interacting patterns found in the raw GAM data.
Moreover, we tested the normalization efficiency by
cross-checking the normalized GAM contacts with the
fluorescence in situ hybridization (FISH) data [23], that
is, by comparing with the normalized FISH-detected dis-
tances between six pairs of loci: three from chromosome
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2 and the other three from chromosome 11. We calcu- data at both 1 Mb and 30kb resolutions. We designed a
lated the Spearman’s rank correlation coefficient be- new normalization method (i.e., KR2) to remove the four
tween the FISH-detected distances and each of the known biases in raw GAM data and implemented other
average GAM contacts from raw, NLP-normalized VC-  four widely-used normalization methods in R, including
normalized, SCN-normalized, ICE-normalized, and KR2- NLD, VC, SCN, and ICE. We evaluated five normalization
normalized matrices; and the results are — 0.2, — 0.26, — 0.54, methods (i.e., NLD, VC, SCN, ICE, and KR2) at 1 Mb and
-0.31, - 0.54, and - 049, respectively. Therefore, we can  30kb resolutions. Our evaluation results show that the five
conclude that the normalization procedures not only re- normalization methods can remove, to different extents,
move systematic biases, but also make the raw GAM data  the four known biases; and two of them (i.e., VC and KR2)

more consistent with the FISH-detected distances. perform better than the rest. Compared with the other
three methods (i.e, NLD, VC, and ICE), the KR2-
Conclusion normalized GAM data are more consistent with the KR-

We found the fragment length bias, a new type of system- normalized Hi-C data. We also showed that the normalized
atic bias in raw GAM data that has not been noticed before =~ GAM data (biases removed) had a higher correlation with
in literature. We proved that this bias existed in raw GAM  FISH data compared with raw GAM data.
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Fig. 6 Heat maps of raw and normalized GAM contact matrices from chromosome 6 (49 Mb — 54 Mb) at 30 kb resolution
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