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Abstract

Background: There are two significant problems associated with predicting protein-protein interactions using the
sequences of amino acids. The first problem is representing each sequence as a feature vector, and the second is
designing a model that can identify the protein interactions. Thus, effective feature extraction methods can lead to
improved model performance. In this study, we used two types of feature extraction methods—global encoding and
pseudo-substitution matrix representation (PseudoSMR)—to represent the sequences of amino acids in human
proteins and Human Immunodeficiency Virus type 1 (HIV-1) to address the classification problem of predicting
protein-protein interactions. We also compared principal component analysis (PCA) with independent principal
component analysis (IPCA) as methods for transforming Rotation Forest.

Results: The results show that using global encoding and PseudoSMR as a feature extraction method successfully
represents the amino acid sequence for the Rotation Forest classifier with PCA or with IPCA. This can be seen from the
comparison of the results of evaluation metrics, which were > 73% across the six different parameters. The accuracy
of both methods was > 74%. The results for the other model performance criteria, such as sensitivity, specificity,
precision, and F1-score, were all > 73%. The data used in this study can be accessed using the following link: https://
www.dsc.ui.ac.id/research/amino-acid-pred/.

Conclusions: Both global encoding and PseudoSMR can successfully represent the sequences of amino acids.
Rotation Forest (PCA) performed better than Rotation Forest (IPCA) in terms of predicting protein-protein interactions
between HIV-1 and human proteins. Both the Rotation Forest (PCA) classifier and the Rotation Forest IPCA classifier
performed better than other classifiers, such as Gradient Boosting, K-Nearest Neighbor, Logistic Regression, Random
Forest, and Support Vector Machine (SVM). Rotation Forest (PCA) and Rotation Forest (IPCA) have accuracy, sensitivity,
specificity, precision, and F1-score values > 70% while the other classifiers have values < 70%.
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Background
Proteins are polymers that are composed of amino acid
monomers associated with peptide bonds, and they are
essential for the survival of an organism. According to
[1], a protein is a linear, chain-like polymer molecule
comprising 10 to thousands of monomer units that are
connected like beads in a necklace, with each monomer,
in turn, comprising 20 natural amino acids. Proteins play
an important role in forming the structural components
of organisms, and they can also carry out the metabolic
reactions needed to sustain life [2]. As essential macro-
molecules, proteins rarely act as isolated agents; instead,
they must interact with other proteins to perform their
functions properly [3]. Protein interactions play a cen-
tral role in the many cellular functions carried out by
all organisms. Thus, when irregularities occur in protein
interactions, bodily malfunctions, such as autoimmune
conditions, cancer, or even virus-borne diseases, can arise.

Widespread recognition of the participation of proteins
in all organismal cellular processes has guided researchers
to predict protein function through the sequencing of
amino acids or protein structures on the basis of their
interactions. Because most protein functions are driven
by interactions with other proteins, developing a bet-
ter understanding of protein structures should lead to a
clearer picture of the impact and benefits of protein inter-
actions [4]. Protein interactions also play a central role in
medical research, as it is often necessary to understand
them when developing disease-curing drugs designed to
prevent or break the interactions between proteins that
can result in disease.

The study of protein interactions generally involves the
use of either experimental or computational methods.
Experimental methods, such as Yeast Two-Hybrid (Y2H),
Tandem Affinity Purification, and Mass Spectrometric
Protein Complex Identification (MS-PCI), are known to
have a number of disadvantages, including substantial
time requirements for identifying protein interactions and
the ability to identify only a small part of the overall pro-
tein interaction, which can potentially lead to significant
mistakes in terms of research outcomes [5]. Usually, a
graph can represent protein-protein interactions (PPIs).
The nodes represent the protein, and the edges repre-
sent the interactions between the proteins [6]. However,
the graph representation can only make clusters of inter-
action. To predict new interactions, we have to use the
amino acid sequencing.

When identifying protein-protein interactions using
amino acid sequencing, computational methods must
solve two major problems: effectively representing a
sequence as a feature vector that can be analyzed and
designing a model that can identify protein interactions
accurately and quickly. To solve these problems, compu-
tational methods generally apply a two-stage approach

involving feature extraction followed by machine
learning [7].

Effective feature extraction methods are required to rep-
resent sequences of amino acids as whole proteins. An
effective feature extraction method will provide better
model performance by skillfully extracting potential infor-
mation from an amino acid sequence and representing it
as feature vectors for further analysis via machine learn-
ing [7]. The feature extraction method has become one
of the most important benchmarks for ensuring the suc-
cessful classification of proteins based on their constituent
amino acids. The success, or even failure, of a classifica-
tion method in identifying protein interactions based on
the sequence of amino acids cannot be seen only from the
point of view of whether or not the classification method
is effective; it must also be determined based on how well a
feature extraction method represents a sequence of amino
acids in the input feature vectors to be analyzed later in
the classification method. Many studies have focused on
developing methods for the feature extraction of amino
acid sequences for use in further machine learning anal-
ysis. Sharma et al. [8] used feature extraction techniques
to recognize protein folds that use the bi-gram feature by
using position-specific scoring matrix (PSSM) and Sup-
port Vector Machine (SVM) as the classifiers. Dehzangi
et al. [9] used the bi-gram feature technique for predicting
protein subcellular localization for Prokaryotic microor-
ganisms, i.e., Gram-positive and Gram-negative bacteria.
Huang et al. [7] developed a successful feature extrac-
tion approach called global encoding, which has come to
play an important role in weighted sparse representation
modeling as a classifier for predicting protein interac-
tions from their amino acid sequences. In a related study,
pseudo-substitution matrix representation (PseudoSMR)
features were also found to be useful in applying the
weighted sparse representation method to the identifica-
tion of interactions between proteins [3].

Machine learning methods adopt algorithms or math-
ematical models to perform classification, and they have
been used to develop multiple classifier systems (MCSs).
Machine learning can be implemented either by apply-
ing multiple classification methods to a given dataset or
by applying a single method to several different data sub-
sets. Most researchers have used the following classifiers:
Gradient Boosting, K-Nearest Neighbor, Logistics Regres-
sion, Random Forest, and SVM. For example, SVM and
Naïve Bayes classifier has been used for analyzing the tex-
ture of the brain 3D MRI images [10]. In 2006, Rodriguez
et al. [11] proposed Rotation Forest as an ensemble classi-
fier method, a type of MCS that uses compound decision
trees to perform classification on several data subsets.
This method involves the application of bagging and Ran-
dom Forest algorithms to perform principal component
analysis (PCA), and then matrix rotation on the datasets,
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which are compiled into compound decision trees. The
rotation process produces decision trees that are mutually
independent. Although the PCA is applied, all principal
components (PCs) are still used to build the decision trees
to ensure the completeness of the data. This method has
been shown to perform well as a classification method
for identifying protein interactions based on amino acid
sequences [5, 12].

The success of feature extraction methods, such as
global encoding and PseudoSMR, in extracting the fea-
tures of amino acid sequences for use as input data,
together with the usefulness of the Rotation Forest
method as a classification method for predicting amino
acid sequences, suggests that these methods could be
combined into a system to successfully predict PPIs,
which was the goal of this study. We also assessed the
performance of the Rotation Forest classifier under two
different transformation methods: PCA and independent
principal component analysis (IPCA). Yao et al. intro-
duced IPCA as a method for successfully combining the
respective advantages of PCA and independent compo-
nent analysis (ICA) for uncovering independent principal
components (IPCs) [13].

Kuncheva and Rodriguez [14] demonstrated that PCA
could be successfully applied as a Rotation Forest trans-
formation method, and that it was more accurate than
random projection and nonparametric discriminant anal-
ysis. The higher accuracy of PCA is due to its ability
to produce rotational matrices with very small correla-
tions, characterized by a reduced cumulative proportion
of matrix diversity, which enables the formation of mutu-
ally independent decision trees within an ensemble sys-
tem. Thus, PCA guarantees a diversity of decision trees
under the Rotation Forest method in the same manner
as the separation of random data free variables. This
prevents the production of large numbers of allegations
that can cause the model to experience inconsistencies
in decision-making. Therefore, PCA can play an impor-
tant role in improving the accuracy of the Rotation Forest
method while ensuring the diversity of the established
ensemble systems.

As mentioned earlier, Yao et al. [13] developed a dimen-
sional reduction method that works in a manner similar
to PCA. Their method transforms an initial data group
to reduce its dimensionality while maintaining a trans-
formed component that can represent the data as a whole.
The method applies PCA in an initial stage to produce a
loading matrix, which contains the coefficients of the lin-
ear combination of the initial free data variables used to
produce the PCs, for input into an ICA stage [13]. Because
the PCA loading matrix for biological data will still con-
tain a large amount of noise, ICA is used to generate a
new loading matrix that contains little or no noise from
which potential data can be extracted. ICA is used in this

process because of its known ability to find hidden (latent)
variables in noisy data [15]. The IPCA process is used to
produce an independent loading vector matrix that is then
applied as a rotation matrix to the initial data group to
produce a set of IPCs.

The IPCA method is often used as a clustering method,
and to perform dimensional reduction. In the present
study, IPCA was not used to perform these tasks; instead,
it was applied in the Rotation Forest method to trans-
form initial free data variables into new variables within
an independent loading vector matrix in which all of the
PCs in the PCA loading matrix were retained. This use
of IPCA as a method of transformation under Rotation
Forest for predicting protein interactions based on amino
acid sequences represents a novel approach in the litera-
ture; accordingly, it was further tested by comparing the
performance of the Rotation Forest method by applying
global encoding for feature extraction under both PCA
and IPCA. The proposed method was then used to predict
the amino acid sequence of Human Immunodeficiency
Virus type 1 (HIV-1) to identify newly identified human
proteins that can interact with HIV-1 proteins based on
a comparison between the respective sequences in both
organisms.

HIV
Although viruses are the smallest reproductive structures,
they have a substantial range of abilities. A virus gener-
ally consists of four to six genes that are capable of taking
over the biological processes within a host cell during its
reproductive process [16]. The virus forces the host cell
to produce new viruses by inserting its genetic informa-
tion, in the form of DNA and viral RNA, into the cell. This
process compromises the host cell to the point that it dies
when the virus reproduction process is complete.

HIV attacks the human immune system. The virus is
often also referred to as an intracellular obligate retrovirus
because of its ability to convert single-stranded RNA into
double-helix DNA within infected cells, and then merge
it with the target cell’s DNA, forcing it to replicate into
new viruses [16]. The targets are cells that can express
CD4 receptors, which play an important role in main-
taining immune system cells, such as T-lymphocytes. In
fact, damage to or destruction of even one T-lymphocyte
cell can lead to the failure of the entire specific immune
response to attacks from harmful pathogens, even, ironi-
cally, from HIV itself [16].

HIV infects the human body through protein interac-
tions. The HIV-linked glycoprotein 120 binds to specific
T-cell receptors to produce bonding between a virus and
the target cell. This bond is then reinforced by the sec-
ond coordinator, which consists of a number of trans-
membrane receptors, such as CC Chemokine Receptor
5 (CCR5) or CXC Chemokine Receptor 4 (CXCR4) that
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bind through 100 interactions between the viral proteins
and the target cells. Once binding has occurred, HIV
glycoprotein 41 allows the virus to enter the target cell
membrane, and its reverse transcriptase enzyme converts
a single strand of RNA into a double-helix DNA virus that
will be carried into the target cell nucleus and inserted into
the cell’s DNA via an integrase enzyme. Once this occurs,
the host cell becomes a provirus.

The connected DNA of the viral and human cells is
transcribed by a polymerase enzyme to produce genomic
RNA and mRNA. The RNA is ejected from the cell
nucleus, and the mRNA undergoes a process of transi-
tion into a polypeptide, which is then incorporated with
the RNA into a new viral core, and assembled on the
surface of the target cell. Protease enzymes then break
down the polypeptide into new proteins and other func-
tional enzymes. This process results in new HIV viruses
that are ready to infect other target cells that express the
CD4 receptor. The reproduction of the HIV virus slowly
creates a failure in the immune system that results in
the body’s inability to fight various types of diseases and
infections in a process known as opportunistic disease
spread; ultimately, this can result in full-blown Acquired
Immunodeficiency Syndrome.

Results
In this study, we used R = 2, 3, 4, 5, 6, 7, and 7 for Global
Encoding and Lg = 2, 3, 5, 6, 8, and 10 for PseudoSMR.
The difference in the value between R and Lg is because
we wanted to compare dimensions that are not too differ-
ent, which can be caused by differences in the values of
those two parameters. We also used K = 1, 5, 10, 15, 20,
and p/3 and L = 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 as
the parameters in the Rotation Forest (PCA) and Rotation
Forest (IPCA) methods. Tables 1 and 2 show the perfor-
mance evaluation results obtained from Rotation Forest
(PCA) and Rotation Forest (IPCA), respectively, for vari-
ous values of L and K, as well as the R parameters, and with
global encoding combined with both methods. For both
methods, the best scores tended to occur for K = p/3
at various values of L and R. The results presented in
both tables indicate that using global encoding as a feature

Table 1 Performance of Rotation Forest (PCA) combined with
global encoding

R Dim. Acc. Sen. Spe. Pre. F1-s.

2 15,350×120 77.85 78.10 77.59 78.50 78.29

3 15,350×180 78.26 78.56 77.95 78.80 78.63

4 15,350×240 79.50 79.91 79.07 79.78 79.33

5 15,350×300 78.57 78.93 78.18 78.97 78.75

6 15,350×360 78.96 79.59 78.30 78.88 79.27

7 15,350×420 78.98 79.01 78.50 79.27 79.18

Table 2 Performance of Rotation Forest (IPCA) combined with
global encoding

R Dim. Acc. Sen. Spe. Pre. F1-s.

2 15,350×120 74.03 73.74 74.35 76.07 74.71

3 15,350×180 75.09 74.91 75.29 76.79 75.47

4 15,350×240 76.00 76.04 75.96 77.17 76.53

5 15,350×300 75.79 75.49 76.12 77.64 76.18

6 15,350×360 76.79 76.48 77.11 78.54 77.50

7 15,350×420 77.19 76.65 77.81 79.39 77.99

extraction method successfully represents sequences of
amino acids; this is seen from a comparison of the eval-
uation metric results, which was > 73% across the six
distinct parameters used in global encoding.

It is further seen that the accuracy of both methods
is > 74%, indicating that both correctly predict inter-
actions between HIV-1 and human proteins in more
than approximately three out of four cases. The other
model performance criteria results are fairly similar to
the accuracy results; all the sensitivity, specificity, pre-
cision, and F-1 score results were > 73%. This indi-
cates that both methods can recognize positive and
negative observations > 73% of the time with a pre-
cision > 75%. The high degree of balance among the
results reveals the high predictive capabilities of both
methods [17].

A comparison of the data presented in Tables 1 and 2
reveals that the Rotation Forest (PCA) method performed
better than the Rotation Forest (IPCA) method across var-
ious dimensions of global encoding. Table 1 shows that the
highest accuracy obtained by the Rotation Forest (PCA)
method (79.50%) occurs on the global encoding dataset
with R = 4, corresponding to a data dimensionality of
15, 350 × 240; the highest accuracy obtained by the Rota-
tion Forest (IPCA) method (77.19%) occurs at R = 7, or
at a dimensionality of 15, 350 × 420. However, changing
the parameter difference (R) in the global encoding does
not significantly affect the performance of either method,
as the accuracy (Acc.), sensitivity (Sen.), specificity (Spe.),
precision (Pre.), and F1-score (F1-s.) values all lie within
a range of two percentage points. This suggests that it is
possible to successfully represent amino acid sequences
using smaller dimensionalities (i.e., lower values of R) in
the global encoding. Conversely, increasing the number
of global encoding parameters will increase the dimen-
sionality of the data, which, in turn, will increase the time
complexity and memory requirements of an algorithm
used to solve a problem.

The data presented in Tables 3 and 4 show the per-
formance results obtained, respectively, by the Rotation
Forest (PCA) and Rotation Forest (IPCA) methods using
the PseudoSMR dataset. The former performs best at
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Table 3 Performance of Rotation Forest (PCA) combined with
PseudoSMR

Lg Dim. Acc. Sen. Spe. Pre. F1-s.

2 15,350×120 77.78 77.48 79.37 78.59 79.44

3 15,350×180 79.41 79.63 80.19 79.40 79.44

5 15,350×240 80.24 81.22 79.36 79.28 80.21

6 15,350×300 78.29 79.19 80.55 78.44 78.95

8 15,350×360 79.37 80.94 80.80 80.61 79.74

10 15,350×420 78.89 79.57 80.41 78.63 79.09

Lg = 5, whereas the latter performs best at Lg = 8.
However, the respective performance evaluation criteria
results differ within a limited range of 0.02 to 0.03, indicat-
ing that both methods have good predictive ability. This
result also confirms that increasing the Lg parameter used
in the PseudoSMR feature method does not result in a sig-
nificant difference in model performance, suggesting that
a small Lg parameter can successfully represent amino
acid sequences. As with the R global encoding pattern, the
size of the Lg parameter in the PseudoSMR feature should
be considered because any increases in it will increase the
dimensionality of the data and, thus, the computational
complexity.

From the results listed in Tables 1, 2, 3 and 4, it is seen
that Rotation Forest (PCA) outperforms Rotation For-
est (IPCA) on both the global encoding and PseudoSMR
datasets. It is also seen that both feature extraction meth-
ods are skillful at representing sequences of amino acids
as vector inputs for further analysis, even when small R or
Lg parameters are used. K and L are the most important
parameters for determining the performance of Rotation
Forest under the grid search method. In the assessments
above, we set K = p/3 and L = 90 as these values tended
to result in strong performance by both the PCA and the
IPCA model variants.

From the results presented in Tables 1, 2, 3 and 4, it
is seen that the Rotation Forest (PCA) method outper-
forms the Rotation Forest (IPCA) method on both the
global encoding and PseudoSMR datasets. It is also seen
that both feature extraction methods effectively represent

Table 4 Performance of Rotation Forest (IPCA) combined with
PseudoSMR

Lg Dim. Acc. Sen. Spe. Pre. F1-s.

2 15,350×120 76.27 76.32 77.98 76.89 76.94

3 15,350×180 75.94 76.97 78.98 76.97 76.97

5 15,350×240 77.48 77.83 78.17 77.83 77.83

6 15,350×300 76.89 79.19 79.31 78.44 77.53

8 15,350×360 77.83 76.87 79.92 79.27 78.04

10 15,350×420 76.74 76.46 79.83 78.59 77.33

Table 5 Performance of Gradient Boosting combined with
global encoding

R Dim. Acc. Sen. Spe. Pre. F1-s.

2 15,350×120 67.17 69.83 64.45 66.73 68.25

3 15,350×180 67.87 70.50 65.19 67.41 68.92

4 15,350×240 67.77 69.78 65.72 67.51 68.63

5 15,350×300 67.64 70.14 65.09 67.23 68.65

6 15,350×360 67.90 68.85 66.93 68.01 68.43

7 15,350×420 68.00 69.16 66.82 68.04 68.59

sequences of amino acids as vector inputs for further
analysis, even when small R or Lg parameters are used. K
and L are the most important parameters for determin-
ing the performance of the Rotation Forest classifier under
the grid search method. In the assessments above, we set
K = p/3 and L = 90 because these values tended to result
in strong performance by both the PCA and the IPCA
model variants.

From the results listed in Tables 5, 6, 7, 8, 9, 10, 11,
12, 13 and 14, it can be seen that classifiers, such as Gra-
dient Boosting, K-Nearest Neighbor, Logistic Regression,
Random Forest, and SVM, cannot surpass the success of
Rotation Forest (PCA), which outperforms Rotation For-
est (IPCA) in terms of accuracy, sensitivity, specificity, and
precision.

Sensitivity analysis of K and L rotation forest parameters
Figures 1 and 2 show that, at a given value of K, the clas-
sification accuracy of the Rotation Forest (PCA) method
tends to increase with the value of L under both global
encoding and PseudoSMR. The accuracy of classification
is seen to be maximum at K = p/3; this result is consis-
tent with the finding in [11], which also reported optimal
Rotation Forest accuracy at K = p/3. Thus, at K = p/3,
the ability of PCA to ensure diversity in the ensemble
system through its transformation process is optimized.
Moreover, it appears that Rotation Forest requires only
a few decision trees to obtain good performance results,
as it was observed that increasing the value of L tends to
result in converging performance. It should also be noted

Table 6 Performance of K-Nearest Neighbor combined with
global encoding

R Dim. Acc. Sen. Spe. Pre. F1-s.

2 15,350×120 61.13 64.72 57.45 60.83 62.72

3 15,350×180 61.52 64.78 58.19 61.27 62.97

4 15,350×240 60.89 64.16 57.56 60.68 62.37

5 15,350×300 60.84 63.90 57.71 60.68 62.25

6 15,350×360 61.59 64.41 58.72 61.44 62.89

7 15,350×420 61.88 64.88 58.82 61.67 63.23
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Table 7 Performance of Logistic Regression combined with
global encoding

R Dim. Acc. Sen. Spe. Pre. F1-s.

2 15,350×120 58.18 57.76 58.61 58.76 58.26

3 15,350×180 58.81 59.52 58.08 59.18 59.35

4 15,350×240 58.39 58.02 58.77 58.96 58.49

5 15,350×300 59.22 59.36 59.08 59.70 59.53

6 15,350×360 60.16 60.03 60.29 60.69 60.36

7 15,350×420 60.53 60.91 60.14 60.94 60.92

that increasing L will lead to increased computational
complexity and time.

As seen from Fig. 3, the global encoding dataset tends
to produce Rotation Forest (IPCA) results similar to those
of Rotation Forest (PCA). Furthermore, Rotation Forest
(IPCA) is also most accurate at K = p/3, while, generally,
producing the worst results at K = 1. This corresponds to
no separation of the original free variables, with the PCA
simply turning all the free variables over to the process
of forming a decision tree in each classifier. This empha-
sizes the importance of the feature separation process in
improving the performance of Rotation Forest (IPCA) in
terms of producing a diversity of combined decision trees
from the global encoding dataset. As seen in Fig. 4, the
PseudoSMR dataset also produces similar results for both
Rotation Forest (IPCA) and Rotation Forest (PCA), with
the classifier performing best at K = p/3.

Discussion
In this assessment, all of the PC coefficients contained
in the loading matrices of both methods were used. This
was done following [14], which showed that the PC coef-
ficients with the smallest diversity have the highest influ-
ence on the process of forming a composite tree on Rota-
tion Forest (PCA). However, in Rotation Forest (IPCA),
the use of IPCA as a preliminary transformation method
serves to reduce the dimensionality of the data and elimi-
nate noise from the loading matrix prior to inputting into
the ICA process. This might account for the reduced per-
formance of Rotation Forest (IPCA) relative to Rotation

Table 8 Performance of Random Forest combined with global
encoding

R Dim. Acc. Sen. Spe. Pre. F1-s.

2 15,350×120 75.20 71.02 79.46 77.93 74.31

3 15,350×180 75.17 71.43 78.99 77.63 74.40

4 15,350×240 75.01 71.02 79.09 77.62 74.17

5 15,350×300 75.46 71.27 79.73 78.21 74.58

6 15,350×360 75.66 70.55 80.88 79.03 74.55

7 15,350×420 76.84 72.72 81.04 79.66 76.03

Table 9 Performance of Support Vector Machine combined with
global encoding

R Dim. Acc. Sen. Spe. Pre. F1-s.

2 15,350×120 60.84 95.20 25.75 56.70 71.07

3 15,350×180 61.62 95.31 27.22 57.21 71.50

4 15,350×240 61.62 94.79 27.75 57.26 71.39

5 15,350×300 61.57 94.07 28.38 57.29 71.21

6 15,350×360 62.01 94.33 29.02 57.57 71.50

7 15,350×420 61.91 93.91 29.23 57.54 71.36

Forest (PCA), as the IPCA result matrix possibly retains
information that is not important because it does not
select features from the initial feature set. Rotation For-
est (PCA) is also likely to experience constraints when
using noisy data, which can occur when the feature extrac-
tion method fails to represent a protein sequence. In such
cases, the PCs generated by the PCA might be unable to
extract relevant information from the data and build good
decision trees. Further research is required to test these
hypotheses.

Rotation Forest also requires a large computation time
for large datasets or large values of K and L. This situation
might be mitigated by introducing parallel computational
methods in subsequent research. In the present study,
we also processed, but did not include, pairs of amino
acid sequence data that have similarities of more than
40%. We did this to reduce noise from the data. However,
the method for determining the best similarity criteria to
reduce noise from the data should be further developed.
Finally, additional datasets can be used to further test the
performance of the respective models, while other predic-
tion models, aside from decision tree C4.5, can be devel-
oped to solve problems using Rotation Forest (PCA) and
Rotation Forest (IPCA) methods. In this research study,
we compared the model with state-of-the-art from other
machine learning models, such as SVM, K-Nearest Neigh-
bor, Random Forest, and other algorithms. It is expected
that this research could provide basic ideas for further
research in predicting the interactions of human proteins

Table 10 Performance of Gradient Boosting combined with
PseudoSMR

Lg Dim. Acc. Sen. Spe. Pre. F1-s.

2 15,350×120 67.56 70.01 65.05 67.28 68.62

3 15,350×180 67.77 70.88 64.57 67.25 69.02

5 15,350×240 69.75 72.46 66.98 69.14 70.76

6 15,350×300 68.71 70.94 66.42 68.44 69.66

8 15,350×360 68.99 72.07 65.84 68.41 70.19

10 15,350×420 68.92 70.88 66.90 68.73 69.79
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Table 11 Performance of K-Nearest Neighbors combined with
PseudoSMR

Lg Dim. Acc. Sen. Spe. Pre. F1-s.

2 15,350×120 66.36 70.42 62.20 65.66 67.96

3 15,350×180 66.86 70.68 62.94 66.18 68.36

5 15,350×240 66.13 69.88 62.30 65.43 67.58

6 15,350×300 65.95 70.22 61.56 65.22 67.62

8 15,350×360 66.21 70.58 61.72 65.43 67.90

10 15,350×420 66.31 70.27 62.25 65.64 67.88

with HIV-1 using amino acid sequence data using the
Rotation Forest method.

Conclusion
In this study, global encoding and PseudoSMR were
found to be very capable of representing series of amino
acids, and the combination of these representation meth-
ods with Rotation Forest (PCA) and Rotation Forest
(IPCA) resulted in generally good classification perfor-
mance across the range of feature extraction parameters
that were examined. The lack of significant differences in
model performance suggests that both feature extraction
methods perform best at relatively small values of R and
Lg, as increasing either would lead to issues of increased
data dimensionality and, in turn, heavier computational
loads. This result affirms that research related to extract-
ing features for sequences of amino acids in proteins must
look at using good input data with dimensionality that is
not too high.

The Rotation Forest (PCA) method performed best in
terms of predicting protein–protein interactions between
HIV-1 and human proteins using global encoding, with an
accuracy, sensitivity, specificity, and precision of 79.77%,
79.91%, 79.07%, and 79.77%, respectively, at R = 4. The
Rotation Forest (IPCA) method obtained correspond-
ing values of 77.20%, 76.65%, 77.81%, and 79.40% at
R = 7. Similarly, using PseudoSMR with Rotation For-
est (PCA) resulted in an accuracy, sensitivity, specificity,
and precision of 80.23%, 81.25%, 79.35%, and 79.28%,
respectively, at Lg = 5. Using PseudoSMR with Rotation

Table 12 Performance of Logistics Regression combined with
PseudoSMR

Lg Dim. Acc. Sen. Spe. Pre. F1-s.

2 15,350×120 62.56 64.51 60.56 62.67 63.57

3 15,350×180 61.70 64.35 58.98 61.69 62.99

5 15,350×240 63.11 65.86 60.29 62.88 64.33

6 15,350×300 63.16 64.51 61.77 63.40 63.95

8 15,350×360 63.47 64.92 61.99 63.67 64.29

10 15,350×420 63.37 64.56 62.14 63.64 64.10

Table 13 Performance of Random Forest combined with
PseudoSMR

Lg Dim. Acc. Sen. Spe. Pre. F1-s.

2 15,350×120 75.51 71.66 79.46 78.17 74.77

3 15,350×180 75.12 70.37 79.99 78.31 74.13

5 15,350×240 76.89 72.61 81.25 79.82 76.05

6 15,350×300 76.06 71.86 80.36 78.97 75.25

8 15,350×360 76.92 72.63 81.31 79.95 76.12

10 15,350×420 75.72 71.35 80.20 78.72 74.85

Forest (IPCA) resulted in corresponding values of 77.83%,
76.87%, 79.92%, and 79.26% at Lg = 8.

Both methods achieved optimal results at K = p/3 for
various values of L, R, and Lg. Although Rotation Forest
(PCA) was somewhat better at predicting protein–protein
interactions between HIV-1 and human proteins, the dif-
ference in performance between the two classifiers was
insignificant. All the PC coefficients were used in the load-
ing matrix in this study, based on the results of Kuncheva
and Rodriguez [14], who found that coefficients of PCs,
with even the smallest variation, can affect the process of
composite tree formation in Rotation Forest (PCA). How-
ever, further research should be conducted to determine
whether the use of all the major component coefficients
by Rotation Forest (IPCA) is effective, as the additional
feature selection processing used by this method to elim-
inate noise from the loading matrix might reduce its
performance relative to Rotation Forest (PCA).

Methods
Gold standard dataset
The data used in this study consisted of the amino acid
sequences of several HIV-1 proteins, some of which are
interactive with human proteins, and some are not. Both
datasets were obtained from https://www.ncbi.nlm.nih.
gov/, which was accessed in September 2017 in several
stages. A total of 15,665 pairs of HIV-1 proteins that inter-
act with human proteins were obtained from the website,
although the data required further paring-down to elim-
inate cases in which individual human proteins could

Table 14 Performance of Support Vector Machine combined
with PseudoSMR

Lg Dim. Acc. Sen. Spe. Pre. F1-s.

2 15,350×120 63.26 68.11 58.29 62.63 65.25

3 15,350×180 62.38 67.18 57.44 61.84 64.40

5 15,350×240 65.27 71.17 59.24 64.07 67.43

6 15,350×300 64.62 70.16 58.92 63.68 66.76

8 15,350×360 65.55 71.45 59.50 64.42 67.76

10 15,350×420 65.11 70.78 59.29 64.09 67.27

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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Fig. 1 Correlation of the level of accuracy of classification of Rotation Forest (PCA) with K and L under global encoding (R = 4)

interact with different strains of a single HIV-1 protein to
reduce data repetition.

Following the selection process mentioned above, the
dataset comprised 7,760 HIV-1-human protein–protein
pairs. To identify individual sequences of amino acids
from within the proteins, we searched for HIV-1 and
human protein amino acid lines on [18], which was
accessed in September 2017, and we obtained the com-
plete amino acid sequence for each protein in the
interaction dataset. The noninteracting protein dataset

was obtained by downloading the entire human pro-
tein dataset along with its corresponding amino acid
sequences. In total, the human protein database con-
tains 109,671 proteins; a random sample of proteins from
this database was then compared with the interaction
dataset to find mismatches (i.e., proteins in the for-
mer that were not present in the latter). Based on this
search, 69,129 noninteracting proteins were identified,
of which 7,760 pairs were randomly selected to provide
a dataset that balanced the interacting dataset. Overall,

Fig. 2 Correlation of the level of accuracy of classification of Rotation Forest (PCA) with K and L under PseudoSMR (Lg = 5)
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Fig. 3 Correlation of the level of accuracy of classification of Rotation Forest (IPCA) with K and L under global encoding (R = 7)

15,520 pairs of interacting and noninteracting human and
HIV-1 protein amino acid sequences were selected for
the study.

The next step was to select all the datasets that had
previously been obtained. Two selection criteria were
used to eliminate sequences from the dataset in this
step: pairs of amino acid sequences with similarities ≥
40% and sequences with residue lengths of < 50 were
excluded from further use. The remaining protein dataset,
comprising 15,350 interacting and noninteracting protein

pairs, was then defined as the gold standard dataset,
or the golden dataset. Two distinct feature extraction
methods were then applied to the golden dataset to pro-
duce vectors for input into the Rotation Forest in the
next stage.

Global encoding amino acid sequence
As mentioned in the previous sections, effective fea-
ture extraction methods for representing the sequences
of amino acids within proteins produce better model

Fig. 4 Correlation of the level of accuracy classification of Rotation Forest (IPCA) with the values of K and L combined with PseudoSMR (Lg = 8)
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performance. In general, feature extraction methods are
used to extract candidate amino acid sequences as feature
vectors to be inputted into a machine learning method
[19]. Global encoding is a feature extraction method that
was developed by Huang et al. to predict protein inter-
actions through application of a weighted sparse rep-
resentation classifier to amino acid sequences [7]. The
method classifies residual or amino acid codes into six ini-
tial classes based on the psychochemical nature of each
residue. It then constructs 10 groups comprising two sub-
sets, each consisting of three different classes. The next
step is to transform each sequence of amino acids into
10 binary rows corresponding to its respective group; this
binary sequence is referred to as a sequence of character-
istics. Each sequence of characteristics is then partitioned
following a specific strategy, and the number of parti-
tions is adjusted to the size of the used parameter (R).
Finally, the resulting sequence of characteristic partitions
is extracted into a vector feature for input into a Rotation
Forest classifier. The steps of the global encoding method
are given in detail, below [7].

Step 1: transformation of amino acid protein sequence
Each amino acid is grouped into six different classes
according to the psycho-chemical characteristics of each
amino acid, as shown in Table 15 [20].

Based on the information presented in Table 15, 10
groups of codes can be formed by dividing the six classes
into two subsets in which each subset contains three dif-
ferent classes. Thus, this method produces 10 groups,
each containing two subsets, each of which, in turn, con-
tains three different classes. An example of this structure
is as follows: {D1, D2, D3} and {D4, D5, D6}, {D1, D2,
D4} and {D3, D5, D6}, {D1, D2, D5} and {D3, D4, D6},
{D1, D2, D6} and {D3, D4, D5}, {D1, D3, D4} and {D2,
D5, D6}, {D1, D3, D5} and {D2, D4,D6}, {D1, D3, D6} and
{D2, D4, D5}, {D1, D4, D5} and {D2, D3, D6}, {D1, D4, D6}
and {D2, D3, D5}, {D1, D5, D6} and {D2, D3, D4}. Here,
there are a total of 10 groups of two bracketed subsets
of classes.

A sequence of amino acids T = t1, t2, . . . , tn where
t1, t2, . . . , tn is the residue or the i-th amino acid code of
the sequence, is transformed into 10 rows of characteris-
tics corresponding to the 10 groups. As an illustration, we

Table 15 Classification of amino acids

Aliphatic amino acids D1 = {A,V,L,I,M,C}

Aromatic amino acids D2 = {F,W,Y,H}

Polar amino acids D3 = {S,T,N,Q}

Positive amino acids D4 = {K,R}

Negative amino acids D5 = {D,E}

Special shape D6 = {G,P}

show four sequences of characteristics, which are grouped
into H1(ti) and H2(ti) as follows:

H1(pi) =
⎧
⎨

⎩

1, pi ∈ {D1, D2, D3}
i = 1, . . . , n,

0, pi ∈ {D4, D5, D6}
(1)

H2(pi) =
⎧
⎨

⎩

1, pi ∈ {D1, D2, D4}
i = 1, . . . , n,

0, pi ∈ {D3, D5, D6}
(2)

H10(pi) =
⎧
⎨

⎩

1, pi ∈ {D1, D5, D6}
i = 1, . . . , n,

0, pi ∈ {D2, D3, D4}
(3)

where Hu(pi) is the sequence of u-characteristics of a
given amino acid sequence and u = 1, 2, . . . , 10.

Step 2: partitioning the characteristic sequence
In this stage, all the characteristic sequences of length
n are partitioned by dividing each sequence into several
subsequences of varying length. A characteristic sequence
Hu = s1, s2, . . . , sn, in which s1, s2, . . . , sn are the elements
of the sequence given by values of 0 or 1, is divided into
many R sub-characteristic sequences, where R is an inte-
ger. The k-th subsequence of Hu, denoted by SubsHk , is
composed of the first �kn/R� numbers of Hu.

Step 3: feature vector extraction
In this stage, the features of the composition and tran-
sition vectors are extracted from the characteristics of
the subsequences generated in the partition stage. Two
descriptors are produced in this step: (1) a composition
descriptor that gives the respective frequencies of “0” and
“1” in each subsequence characteristic and (2) a transition
descriptor that calculates the frequency of changing from
1 to 0 or from 0 to 1 in each subsequence [7].

PseudoSMR features
As mentioned above, in order to extract features, we
used SMR, a new method that was introduced in 2011 to
sequence proteins that store evolutionary information [3].
The proposed PseudoSMR method forms each sequence
of proteins into an initial N × 20 matrix, where N is the
length of a single sequence of proteins and 20 is the total
number of amino acid types. It then substitutes the mem-
bership value of each pair of amino acids into the matrix.
Here, a BLOSUM62 matrix, which is often used to calcu-
late alignment between two different protein sequences, is
used. The value of the BLOSUM62 matrix is based on the
observed polypeptide alignments found from sampling
very large datasets.
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The SMR matrix is constructed as follows:

SMRi =

⎡

⎢
⎢
⎢
⎣

V1,1 V1,2 . . . V1,20
V2,1 V2,2 . . . V2,20

...
...

. . .
...

VN ,1 VN ,2 . . . VN ,20

⎤

⎥
⎥
⎥
⎦

(4)

, i = 1, 2, . . . , total number of protein pairs,
where Vi,j denotes the possible BLOSUM62 value

describing the i-th amino acid of the protein sequence
showing the mutation value of the y-th amino acids in the
evolutionary process. When preparing the SMR matrix,
the lengths of the constituent vectors can vary depend-
ing on the length of the corresponding proteins. To ensure
that all the vectors have the same length, the protein
sequences and amino acid compositions within the vec-
tors are adjusted to form the final PseudoSMR matrix, as
follows:

PseudoSMR(n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
N

∑N
i=1 K(i, j),

n = 1, . . . , 20
j = 1, . . . , 20

1
N−lg

∑N−lg
i=1 [ K(i, j) − K(i + lg, j)]2 ,

j = 1, . . . , 20
lg = 1, . . . , MaxLg
n = 20 + j + 20 · (lg − 1)

MaxLg = 15
(5)

K(i, j) = SMR(i, j) − 1
20

∑20
a=1 SMR(i, a)

√
1

20
∑20

a=1(SMR(i, b) − 1
20 SMR(i, a))2

(6)

IPCA
The rapid growth of technology and increase in research
resulted in a vast pool of biological data that cannot be
easily processed or represented, and new methods must
be developed to uncover relevant and important infor-
mation and relationships contained within these data.
Although several statistical methods have been developed
to address these challenges, solving the big data problem
using conventional statistical methods is often difficult
because the number of observations is often smaller than
the corresponding number of variables, and the avail-
able data contains a large amount of noise [13]. IPCA, a
new method for addressing this problem [13], is an unsu-
pervised learning method for uncovering useful patterns
by reducing the dimensionality of data through a projec-
tion process that decomposes it into more informative
components. Unlike ICA, IPCA does not directly reduce
noise from the data, but instead it applies ICA to reduce

the noise from the vector loading matrix results obtained
from the PCA.

The underlying assumption of this method is that not
all variables in a biological system will contribute signif-
icantly to the biological process mechanisms, and there-
fore informative variables should be given priority over
irrelevant variables in the loading matrix. Using IPCA
to remove noise from the loading matrix is expected to
produce a super-Gaussian data distribution based on the
reduction of the non-Gaussian states of the PCA loading
matrix to eliminate noise in the matrix by selecting the
more informative components [13]. The IPCA algorithm
introduced in uses the following steps [13]:

1. Implement singular value decomposition on a
centered matrix X(n×p) to obtain the loading matrix.

2. Select m components to reduce the dimensionality of
the data from the PCA loading matrix results.

3. Implement fast ICA on the loading matrix to obtain
an independent loading vector.

4. Take the projection X(n×p) onto the m independent
loading vectors to obtain IPCs.

5. Sort the PCs on the basis of the kurtosis value
corresponding to the independent loading vector.

Rotation forest ensemble classifiers
Due to their improved problem-solving abilities, MCSs
have become a focus of both theoretical and practical
attention in recent years, and MCSs are being increasingly
used to optimize information retrieval from big data [11].

Bagging and Random Forest are MCS approaches that
employ ensembles or combinations of decision trees. Bag-
ging has two main stages: bootstrapping and aggregation.
Bootstrapping is used for the random sampling of prelim-
inary data used to build a compound tree. Aggregation is
used to combine the estimation results obtained by bag-
ging and merging all the alleged values into an alleged end
value to represent the solution of a problem. Although
bagging has been shown to be capable of reducing the
predictive error rate for a single decision tree [21], it has
disadvantages in cases in which the initial data correla-
tion is very large, or the initial data have a high degree of
noise. In such circumstances, bagging tends to produce a
large variety of allegations, which results in inconsistency
in making decisions [22]. To address this problem, in 2001,
Breiman [21] proposed a new method, Random Forest, to
improve the bagging method.

The fundamental difference between Random Forest
and bagging lies in how the respective algorithms form
combinations of decision trees. The free modifier used to
perform separation on decision tree nodes is only one of
an overall set of initial free variables produced as a result
of random selection. The Random Forest process aims to
produce decision trees of different sizes and shapes that
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should have reduced inter-tree correlations and, therefore,
a smaller set of assumptions than under bagging [23].

In 2006, Rodriguez et al. [11] proposed a new ensemble
classifier method known as Rotation Forest to simultane-
ously improve the accuracy and diversity of each classifier
in the ensemble system. This method represents a modi-
fication of bagging and Random Forest methods based on
the application of PCA to construct a rotational matrix
that transforms initial variables into new variables to be
used in constructing independent decision trees. Fur-
thermore, the use of PCA ensures the diversity of the
classifiers produced using this method [11], and all the
major components resulting from the PCA process are
retained to maintain the completeness of the information
contained in the data [14].

In order to better understand how Rotation Forest
works, we examined its application on a dataset X con-
taining n observations and p features. We let y =
[ y1, y2, . . . , yn]T , where yj represents the value of the class
label set {w1, w2}. The decision tree in the ensemble is
denoted by D1, . . . , DL and the feature set of X is denoted
by F. The two parameters applied—the number of deci-
sion trees used (L) and the number of feature subsets
(K)—play a central role in determining the success of the
Rotation Forest method.

The first step is to choose the number of decision trees
(L) to be used. To establish the training data to build the
decision tree Di, i = 1, 2, . . . , L, the following steps are
taken:

1. Split F into K disjointed subsets at random, where K
is a factor used to determine the value of n used to
set the number of features contained in the feature
subset as M = n

K .
2. Select the feature corresponding to a subset of F(i,j)

contained in the corresponding column from the
training data Ei and then randomly select each
nonempty subset to obtain a bootstrap object sample
of 75% of the data.

3. Apply the PCA technique to use up to M features
and X subsets from the selected F(i,j) to order the
coefficients of the PCs by size M × 1 as
a(1)

(i,j), a(2)
(i,j), . . . , a(M)

(i,j) . Note that, because it is possible
to generate some zero eigenvalues, fewer than M
vectors can be obtained. PCA is performed across the
sets to avoid duplication of the coefficients if the
same feature subset is selected for different groups.

4. Construct a sparse rotation matrix Ri using the
obtained coefficients as in Eq. 7.

5. Sort the columns of Ri according to the original
feature sequence into a rearranged rotation matrix
Ra

i . The transformed training set for classifier Ei is
then given by XRa

i .
6. Use XRa

i to build the set of classification trees Di.

Ri =

⎡

⎢
⎢
⎢
⎢
⎣

a(1)
i,1 , ..., a(M1)

i,1 0 ... 0
0 a(1)

i,2 , ..., a(M2)
i,2 ... 0

...
...

. . .
...

0 0 ... a(1)
i,K , ..., a(MK)

i,K

⎤

⎥
⎥
⎥
⎥
⎦

(7)

The Rotation Forest (PCA) method developed in this
study uses an algorithm corresponding to the original
Rotation Forest algorithm proposed in [11], as described
above, and it differs from the proposed Rotation Forest
(IPCA) method only in terms of how the third step of
the above algorithm is carried out. Following the basic
IPCA approach described earlier in this paper, Rotation
Forest (IPCA) performs IPCA analysis on X∗ij and uses
all the coefficients of the PCA loading matrix as inputs
into the ICA method to obtain an independent loading
vector

(
ST)

.

Evaluation measures
To measure the performance of the proposed method, we
applied five-fold cross-validation and several metrics—
overall prediction accuracy, sensitivity, specificity, preci-
sion, and F1-score—which are defined as follows:

Accuracy = TP + TN
TP + FP + TN + FN

, (8)

Sensitivity = TP
TP + FN

, (9)

Precision = TP
TP + FP

, (10)

Specificity = TN
TN + FP

, (11)

F1 − score = 2 × Sensitivity × Precision
Sensitivity + Precision

, (12)

where true positive (TP) denotes the number of correctly
predicted true PPIs between HIV-1 and human proteins,
false negative (FN) denotes the number of true PPIs
between HIV-1 and human proteins that were predicted
to be noninteracting pairs, false positive (FP) denotes the
number of true noninteracting pairs predicted to be PPIs,
and true negative (TN) denotes the number of correctly
predicted true noninteracting pairs.
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