
METHODOLOGY ARTICLE Open Access

ReVac: a reverse vaccinology computational
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Abstract

Background: Reverse vaccinology accelerates the discovery of potential vaccine candidates (PVCs) prior to
experimental validation. Current programs typically use one bacterial proteome to identify PVCs through a filtering
architecture using feature prediction programs or a machine learning approach. Filtering approaches may eliminate
potential antigens based on limitations in the accuracy of prediction tools used. Machine learning approaches are
heavily dependent on the selection of training datasets with experimentally validated antigens (positive control)
and non-protective-antigens (negative control). The use of one or few bacterial proteomes does not assess PVC
conservation among strains, an important feature of vaccine antigens.

Results: We present ReVac, which implements both a panoply of feature prediction programs without filtering out
proteins, and scoring of candidates based on predictions made on curated positive and negative control PVCs
datasets. ReVac surveys several genomes assessing protein conservation, as well as DNA and protein repeats, which
may result in variable expression of PVCs. ReVac’s orthologous clustering of conserved genes, identifies core and
dispensable genome components. This is useful for determining the degree of conservation of PVCs among the
population of isolates for a given pathogen. Potential vaccine candidates are then prioritized based on conservation
and overall feature-based scoring. We present the application of ReVac, applied to 69Moraxella catarrhalis and 270
non-typeable Haemophilus influenzae genomes, prioritizing 64 and 29 proteins as PVCs, respectively.

Conclusion: ReVac’s use of a scoring scheme ranks PVCs for subsequent experimental testing. It employs a
redundancy-based approach in its predictions of features using several prediction tools. The protein’s features are
collated, and each protein is ranked based on the scoring scheme. Multi-genome analyses performed in ReVac
allow for a comprehensive overview of PVCs from a pan-genome perspective, as an essential pre-requisite for any
bacterial subunit vaccine design. ReVac prioritized PVCs of two human respiratory pathogens, identifying both novel
and previously validated PVCs.
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Background
Reverse vaccinology pipelines use genome datasets to
identify potential vaccine candidates (PVCs) based on in
silico prediction of hallmark features of an ideal vaccine
candidate antigen. These features include presence of
epitopes exposed on the bacterial surface for host immune
recognition, antigenicity, sequence conservation across

isolates, and expression during infection [1, 2]. Since the
development and application of reverse vaccinology to the
case of Serogroup B meningococcus [3], its potential for
growth has increased significantly with the advent of
next-generation sequencing techniques, development of
bioinformatic tools for multi-genome analyses, protein
functional predictions, and high throughput protein
expression platforms [4]. These advances in technology
offer an opportunity to generate new reverse vaccinology
programs that accurately predict candidate bacterial
proteins for use in subunit-based vaccines.
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Several tools have been developed for antigen predic-
tion and vaccine candidate identification, including
NERVE, Jenner-Predict, Vaxign, VaxiJen, VacSol, and
Bowman-Heinson [5]. These tools typically follow either
filtering or machine learning algorithms. The filtering
workflows utilize a single program for each feature
prediction and filter out proteins at each stage. A limita-
tion of the filtering architecture is the potential of
elimination of vaccine candidates from further analyses,
in the event of a false negative prediction by any given
bioinformatic tool. The machine learning workflows use
datasets of known PVCs and negative controls to classify
antigens and non-antigens through a probability score.
To date, tools applying either of the two approaches
consider protein sequences exclusively. An extensive
review of all these workflows can be found in Dalsass
et al. [5].
Here we describe ReVac, a computational pipeline for

prediction and prioritization of protein-based bacterial
vaccine candidates for experimental verification. ReVac
surveys several genomes, using multiple independent
tools for predictions of the same feature, to assess a large
panel of protein features and sequence conservation.
ReVac also scans both the protein and DNA sequences
of genes for repeat sequences that could mediate phase
variation (gene on/off switching) or protein structure
variations, attributes that are typically not desirable in a
candidate for vaccine development [6]. ReVac compiles
all data across various features, at the protein and
nucleotide level, from several bacterial genomes, into
one tab-delimited output file. It also scores each protein
based on each individual feature in parallel, without
eliminating any candidate from analyses. A general prob-
lem in reverse vaccinology is that most workflows pre-
dict hundreds of proteins as vaccine candidates,
rendering experimental verification assays cumbersome
[5]. Although some provide a ranking of candidates
based on sequence similarity with curated epitopes [7],
this approach does not promote the discovery of new
types of candidates from different bacteria. ReVac uses
its own scoring scheme for the output of each feature
prediction tool that is part of its workflow. The scoring
scheme was developed, based on manually observing
trends of feature predictions, of control datasets of
known antigens and non-antigens. These control data-
sets were obtained from various antigen/epitope data-
bases of predicted and experimentally curated proteins,
namely Protegen, AntigenDB, Vaxign’s control datasets,
ePSORTB. We supplemented these publicly available
datasets with known antigens from our Moraxella catar-
rhalis and non-typeable Haemophilus influenzae (NTHi)
datasets [8–13]. These control datasets consist of DNA
and protein sequences from various Gram-positive and
Gram-negative species, which were run through ReVac

(Additional file 1), and the corresponding scoring
scheme is shown in Table 2.
The final output of ReVac consists of a list of pre-

dicted vaccine candidates sorted based on their ReVac
scores, an aggregate scoring scheme that combines indi-
vidual feature weights assigned to each of the candidates’
features. This allows the user to consider candidates by
perusing those with the highest ReVac scores. Import-
antly, ReVac accounts for strain to strain variation when
prioritizing top candidates by generating clusters of
orthologous genes across all genomes of the species of
interest. ReVac displays average scores of gene conserva-
tion for each ortholog cluster to provide an estimate of
variation. These two innovations in reverse vaccinology
application allow for selection of a manageable number
of conserved PVCs for experimental verification and
vaccine development.

Results
ReVac workflow
The ReVac pipeline uses the Ergatis workflow manage-
ment system to analyze all data on distributed computer
clusters [14]. Figure 1 shows the overall workflow and
components of ReVac. Parallel computing allows ReVac
to run efficiently while performing predictions on entire
collections of input genomes. Analysis is launched using
a list of GenBank-formatted genomes as input. ReVac’s
foundation components convert the GenBank files to
formats suiting each predictive tool’s input, as necessary.
Amino acid and nucleotide gene sequence FASTA files,
as well as annotation General Feature Format (GFF),
files are created. Their content is then binned into
smaller subsets of data that are submitted as parallel
batches on the compute cluster.
ReVac utilizes several bioinformatic tools for its pro-

tein or nucleotide feature predictions (Fig. 1, Table 2,
and Methods) that are grouped into the following cat-
egories: subcellular localization, antigenicity & immuno-
genicity, conservation & function, exclusion features,
genomic islands, and foundation components. Subcellu-
lar localization contains tools predicting overall protein
localization from the analyses of lipoprotein signal,
transmembrane helices, signal peptide presence, adhesin
potential, and HMM (Hidden Markov Model) domains
associated with surface exposure. Antigenicity & im-
munogenicity covers Major Histocompatibility Complex
(MHC) class I and II binding capabilities, B-cell epitope
presence, overall MHC immunogenicity and a BLAT
(BLAST-Like Alignment Tool) [15] alignment with
known experimentally verified epitopes, acquired from
the Immune Epitope Database & Analysis Resource
(IEDB) [16]. Conservation & function applies 4 different
methods for generating clusters of orthologs, and imple-
ments a tool that updates annotations and assigns Gene
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Ontology (GO) terms [17]. Exclusion features determine
protein similarity to Homo sapiens proteins (risk of auto-
immunity) and a user-defined list of commensal organ-
isms (to address the risk of depleting the microbiome),
as well as the prediction of amino acid and/or nucleotide
repeats that mediate phase variation. Genomic Islands
(GI) prediction informs whether or not a gene is carried
within a putative mobile element and therefore trans-
missible between isolates or species. Lastly, foundation
components refer to all tools involved in file format con-
version, input data generation and text processing. The
implementation of multiple prediction tools and scoring
schemes for most of the features considered compen-
sates for each individual tools’ potential for false nega-
tive/positive predictions. Given these attributes, ReVac

offers an innovative and comprehensive workflow design
for reverse vaccinology.
Outputs from ReVac’s components are systematically

converted into tab-delimited format and grouped by
protein IDs or locus tags derived from the GenBank
files. This is achieved using in-house Perl scripts, to gen-
erate ReVac’s initial gene feature summary table. This
table is then parsed using ReVac’s scoring algorithm
(Table 2) and a final score-sorted summary table is re-
ported. These two tables include results for all genes
provided as input without eliminating any potential can-
didates. To look for highly conserved core vaccine candi-
dates, the scored summary table is further parsed for
overall protein conservation, comparing all 4 orthology
methods used, across all genomes. ReVac then refines

Fig. 1 Schematic of the ReVac workflow, its components and underlying features. Blue arrows indicate the components where control datasets
were used to develop the scoring algorithm. Red arrows indicate a user’s input query dataset, which runs through all components and the
scoring algorithm, to output a list of prioritized candidates for the supplied species. Scoring based on core genes or orthology components is
indicated by the black arrow
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the list of PVCs for those with ReVac scores comprised
of a distribution of ideal PVCs feature (i.e where the
ReVac scores were penalized by a total of less than 10%
of its overall score, due to the presence of undesirable
PVC’s scoring features). All clusters are then grouped
and given an ortholog ID. Their annotation, average,
minimum and maximum ReVac scores are reported at
an ortholog cluster level. Based on scores observed for
positive and negative controls we used, clusters harbor-
ing average scores higher than a ReVac score of 10 with
minimum variation (based on the reported average,
minimum and maximum) in the scores across the clus-
ter, are ranked as top PVCs. A higher score cutoff can
be chosen by the user to further reduce the number of
prioritized candidates. Here, 10 was chosen as the cutoff
for our NTHi and M. catarrhalis datasets, as it was
observed that the frequency of non-antigens was higher
below this value (Fig. 2, left peak of Controls), while the
frequency of antigens formed a second distinct peak for
scores 10 and higher (Fig. 2, right peak of Controls) (See
also Additional file 1). Implementation of higher cutoffs
to focus the list of candidates in a separate small table

does not eliminate any candidates from the complete
scored table. Other candidates can be selected by scan-
ning the full table that shows PVCs in ranked order and
evaluating the relative importance of features that may
have diminished their overall score.

Control datasets used for development of the scoring
scheme
The control datasets used in ReVac comprise a total of
564 proteins acquired from Vaxign, Protegen and Anti-
genDB [8, 9, 12], as well as our manually curated list of
NTHi and M. catarrhalis antigens [10, 11]. Where
possible, protein identifiers (IDs) from these three pub-
lic databases were systematically converted to Uniprot
unique IDs for consistency and ease of access to protein
characteristics (Additional file 1: Sheet 3). Because
ReVac is the first pipeline to consider nucleotide
features associated with candidate antigens, we also ob-
tained closely related nucleotide sequences for all pub-
lic candidates by retrieval of best TBLASTN [18] hits
against the National Center for Biotechnology
Information (NCBI) nt database of non-redundant

Fig. 2 A density plot showing the scores for all sequences run through ReVac, and the cutoff for our M. catarrhalis and NTHi datasets
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nucleotide sequences (all hits were to the respective
species). Among other features, nucleotide sequences
provided information on simple sequence repeats
(SSRs) that may mediate phase variation.
Since these databases contained some of the same

sequences or different alleles of the same antigens, we
used OrthoMCL [19] to identify their orthologs (Add-
itional file 1). Of the 564 proteins, 376 were assigned to
102 clusters by OrthoMCL. As we were interested in the
scores across all alleles of an antigen, we included all
564 in our analysis. The 564 proteins were split into 136
Gram-positive and 428 Gram-negative datasets using the
species and associated Gram stain information provided
from their respective databases. We also used the species
hits from the TBLASTN results for this purpose. These
two datasets were then run on two pipelines, each with
relevant Gram-positive or Gram-negative parameters re-
quired for some of the tools incorporated in ReVac. Of
the 564, 41 were unique non-antigens from Vaxign [9]
and were included to assess their scores relative to our
weighing scheme. All proteins from control datasets
were run through the workflow (except orthology given
the wide range of species represented) for development
of the scoring scheme (Table 2.). Inspection of positive
and negative control proteins enabled optimization and
implementation of score boosting for desired features
carried by real antigens, as well as maximum thresholds
of penalization in the case of autoimmunity and SSRs, as
described in the Methods. Summary tables from ReVac
runs on all datasets are available in Additional files 1, 2
and 3.
A subset of the controls used is presented in Table 1

to illustrate the process of optimizing feature scoring.
The scores for each component were developed by ob-
serving trends in the predicted features of all the tools
and their correlation to whether the control protein was
antigenic or non-antigenic. For example, the first 2 anti-
gens from Table 1, the pertactin autotransporter from
Bordetella pertussis and the peptidoglycan-associated
outer membrane lipoprotein (P6) from NTHi, have over-
all subcellular localization predictions suggesting surface
exposure, consistent with previous experimental findings
[11, 20, 21]. The tools that accurately predicted these
features were assigned positive weights (shown in Table 2)
to identify other proteins displaying these features. In
events when multiple tools show strong predictions of
surface localization, the ReVac score is boosted as it was
observed in multiple antigens from the dataset, and these
features indicate a strong potential vaccine candidate. As
for the tools that provided no features for these two anti-
gens, they were not weighted negatively as they weren’t
necessary for surface exposure in the case of these two an-
tigens but may be relevant to other proteins. We see this
in the case of the Streptococcus agalactiae antigen, C

protein alpha-antigen [22], where the presence of trans-
membrane helices and adhesin features were predicted in
the protein. These tools were also assigned positive
weights for identification of these features in other pro-
teins, based on their observed frequency within the con-
trol dataset (Table 2). Since some of the tools have no
conclusive feature predictions for certain sequences, such
antigens have lower overall ReVac scores.
Certain predicted features among outputs for these

tools were not assigned weights as it was observed that
their predictions may not accurately predict PVCs and
hence, we were unable to assign a justified positive or
negative weight. As such, PSORTB [13] suggests that the
heparin binding protein (NHBA) from the Gram-
negative bacterium Neisseria meningitidis, currently used
in a multicomponent vaccine against meningococcal ser-
ogroup B, is localized exclusively in the periplasm. How-
ever, this is not consistent with experimental evidence
that indicates the protein is exposed on the bacterial sur-
face [23]. Thus, in the case of PSORTB predicted peri-
plasmic proteins, no negative weight was assigned as
some periplasmic predictions may be inaccurate or in-
conclusive such as in the case of NHBA. To account for
this, we used multiple different tools for more accurate
prediction of subcellular localization. Another example
would be the case of pneumolysin from Streptococcus
pneumoniae, an extracellular virulence factor [24].
PSORTB provided a strong extracellular prediction,
however LipoP [25] suggested a cytoplasmic protein.
Again, for the same reason, intracellular predictions of
LipoP were not penalized. Wherever similar and other
trends were noticed among other tools the weights were
assigned and distributed using similar justifications (De-
scribed further in Methods). The remaining non-antigens
had feature predictions and annotations consistent with
intracellular localization across all tools. These were
assigned negative weights for each tool suggesting an
intracellular localization, which should be avoided as
potential PVCs. A complete list of weights assigned, and
the scoring scheme is presented in Table 2 and described
in the Methods.
Tools comprising the antigenicity prediction features

were all assigned positive weights relative to the propor-
tion of antigenic regions within a protein and boosted if
the presence of curated epitopes within the sequence
was observed. Most of these tools operate by splitting an
input protein sequence into individual peptides and ana-
lyzing them individually as potential epitopes; all pro-
teins tend to have at least some antigenic regions. As a
result, weights relative to percent of antigenic regions
were assigned. Lastly, adverse features are those that
should be avoided when choosing any PVC, such as re-
peat regions or similarity to host or commensal organ-
ism proteins. ReVac identified repeats within the B.
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Table 1 Examples of control proteins used to develop the scoring scheme, and a summary of the outputs from each of ReVac’s
components

General Information

No ReVac Score Score
Breakdown

Organism Gram Stain Type

1 14.853 15.253–0.400 Bordetella
pertussis

– Antigen

2 13.709 13.709–0.000 Non-typable
Hemophilus
influenzae

– Antigen

3 9.049 9.049–0.000 Moraxella
catarrhallis

– Antigen

4 8.192 8.192–0.000 Streptococcus
agalactiae A909

+ Antigen

5 6.791 6.791–0.000 Streptococcus
pneumoniae

+ Antigen

6 6.32 6.520–0.200 Neisseria
meningitidis
LNP21362

– Antigen

7 5.768 7.768–2.000 Streptococcus
pneumoniae

+ Non
Antigen

8 2.475 5.542–3.066 Clostridium
perfringens str.
13

+ Non
Antigen

Surface Exposure Predictions

No. PSORTB
Localization

LipoProtein Transmembrane
Helices

Signal Peptide SPAAN
adhesin
ratio

HMM mapping
to surface
exposed
database

Annotation/GO
Terms

1 OuterMembrane SignalPeptidase
I

None MNMSLSRIVKAAPLRRTTLAMALGALGAAPAAHA None Positive outer
membrane
autotransporter
barrel|GO:
0009405,GO:
0015474,GO:
0045203,GO:
0046819

2 OuterMembrane SignalPeptidase
II

None MNKFVKSLLVAGSVAALAACSSSNNDA None Positive peptidoglycan-
associated
lipoprotein|GO:
0009279

3 None SignalPeptidase
II

None MQFSKSIPLFFLFSIPFLA None Positive Bacterial
extracellular
solute-binding
protein

4 Cellwall SignalPeptidase
I

1 None 0.782535 Positive hypothetical
protein

5 Extracellular Intracellular None None None None Thiol-activated
cytolysin family
protein|GO:
0015485,GO:
0009405

6 Periplasmic SignalPeptidase
II

None MFKRSVIAMACIFALSACG None None Transferrin
binding family
protein|GO:
0016020

7 None Intracellular None None None None Capsular
polysaccharide
synthesis family
protein
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pertussis pertactin transporter and the N. meningitidis
heparin binding proteins. Such repeats suggest that these
antigens may undergo slipped strand mispairing result-
ing in phase variation of the proteins, a negative feature
of vaccine antigens [6]. Antigens with sequence repeats
in either promoter or protein coding regions are there-
fore negatively penalized. Additionally, negative scores
are given to antigens with features of similarity to host
and commensal proteins, to avoid the negative effects of
cross reactivity of an immunizing vaccine antigen. When
both features were absent, ReVac attributes positive
weights to the score to increase the ranks of the PVCs
away from ones having these features.
As not all the tools implemented in ReVac could be

run for our control dataset, such as those related to pro-
tein conservation across their many respective species
and genomes, a lower score cutoff of 8 was chosen for
these datasets. Using this threshold, 74 of the 136 Gram-
positive antigens had a score of at least 8 with no non-

antigens in the subset. 182 of 428 Gram-negative anti-
gens had a score of at least 8 with 2 non-antigens in the
subset (Table 1 and Additional file 4). It should be noted
that given the breadth of species and the large number
of validated antigens and non-antigens included in our
control datasets, the scoring scheme we developed
should be readily applicable to many bacterial pathogens.
The scoring scheme can be applied iteratively to any
number of new genomes being added to databases. We
anticipate that the number of new genomes of interest
will grow much faster than the experimental validation
of new candidates that should be added to the control
dataset. It is conceivable that many of the new can-
didates will harbor features similar to those already
curated in our dataset and therefore will not change the
scoring mechanism. However, when sufficient amounts
of truly novel candidates become available in the future,
an update to the scoring scheme could be released after
some additional manual intervention. The simplest,

Table 1 Examples of control proteins used to develop the scoring scheme, and a summary of the outputs from each of ReVac’s
components (Continued)

8 None Intracellular None None None None shikimate
dehydrogenase
ec::1.1.1.25|GO:
0004764,GO:
0009423

Antigenicity Predictionsa

No. Antigenicity B cell epitopes MHC I binding MHC II binding MHC
binding +
Antigen
Processing

Immunogenicity
within MHC
complex

Alignment to
curated
epitopes

1 45.05% 15.16% 94.07% 100.00% 61.10% 13.08% 26.92%

2 30.72% 5.23% 96.73% 94.12% 79.08% 17.65% 99.35%

3 44.02% 16.03% 94.57% 100.00% 69.57% 23.91% None

4 50.40% 38.97% 83.10% 90.46% 43.34% 1.79% None

5 43.74% 13.80% 95.33% 98.94% 73.04% 12.10% 22.08%

6 30.33% 15.16% 81.56% 86.68% 46.93% 1.84% None

7 48.94% 4.61% 96.81% 100% 81.91% 30.85% None

8 34.32% 7.75% 96.31% 98.89% 77.49% 16.61% None

Adverse Features

No. Autoimmunity
with humans

Repeat regions
genes & copy
number

Repeat regions
proteins & copy
number

1 None None |APAGGAVPGG
2||PQP 3|

2 None None None

3 None None None

4 None None None

5 None None None

6 None None |ARFRRS 2|

7 None None None

8 3.32% None None
aPercents are relative to the length of the amino acid sequence
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systematic way of identifying the need for a new release
will be to determine when a critical number of import-
ant validated candidates fail to be ranked near the top of
the ReVac output.

Application of ReVac to non-typeable Haemophilus
influenzae (NTHi)
ReVac was run on 270 NTHi genomes, derived from
sputum isolates obtained from a 20-year prospective
study of adults with chronic obstructive pulmonary dis-
ease (COPD) [11, 26]. This dataset comprised 477,769
predicted protein encoding genes. Of these, 4477 pro-
teins had scores that were not penalized more than 10%
of their total score and grouped into ortholog clusters
based on a consensus from 4 orthology prediction
methods (See Methods). Each ortholog’s average score
was calculated, as well as its range within its ortholog
cluster. Clusters were then filtered based on the pres-
ence of at least 80% of proteins present in the lowly pe-
nalized 4477 dataset. This yielded 29 ortholog clusters
which were high scoring, i.e. greater than 10, that in-
cluded both core and dispensable genes of NTHi. Sur-
veying this list, provides a highly prioritized selection of
orthologs for consideration, and downstream experimen-
tal verification of vaccine candidacy potential. Candi-
dates were prioritized based on a candidate cluster being
highly conserved within the species (usually > 90%), and
at least 80% of the proteins in the cluster being high
scoring (to allow for some allelic variation), with a
narrow score distribution. Based on these results, some
of our top candidates include a Hemopexin transporter
protein, involved in extracellular transport of hemo-
pexin, and the outer membrane lipoprotein P4 (Table 3).
The NTHi dataset of the analysis is provided in
Additional file 2.

Application of ReVac to Moraxella catarrhalis
The Moraxella catarrhalis dataset consisted of 69 ge-
nomes, 49 were obtained from NCBI and 20 were newly

sequenced by our group. The latter were obtained from
sputum isolates, from patients with COPD [11, 26, 27].
This dataset comprised 130,179 predicted protein encod-
ing genes. Of these, 3995 met the maximum 10% penal-
ization filter, and again filtered based on 80% presence
in a cluster. Analyses resulted in 64 high scoring ortho-
log clusters (greater than 10) of core and dispensable
genes of M. catarrhalis. Based on these results, top candi-
dates identified were an iron transporter protein, a Gram-
negative porin protein and 2 conserved-hypothetical pro-
teins previously unstudied (Table 3). The M. catarrhalis
dataset of the analysis is provided in Additional file 3.

ReVac benchmarking and runtime
ReVac was run on 4 major datasets, namely, 2 control
datasets of Gram-positive and Gram-negative antigens,
to optimize the scoring algorithm for specific compo-
nents, and our test datasets of M. catarrhalis and NTHi,
to prioritize potential vaccine candidates. Two smaller
datasets of mycoplasma proteins were also run as test
data. For benchmarking purposes, proteins were batched
into groups of 1000 and 5000 sequences and were run
through ReVac’s most time-consuming commands to
generate an estimate of CPU (Central Processing Unit)
hours (Fig. 3a). These were run on an isolated, dedicated
server with 2 CPUs (CPU model: Intel(R) Xeon(R) CPU
E5–2690 v3 @ 2.60GHz, 256GB RAM), each with 12
cores with hyperthreading (approximately 48 virtual
cores). An overall estimate was also made of ReVac’s run-
time in hours for our test datasets, with actual runtime for
the entire duration of a run, on multiple servers on a com-
pute grid without CPU usage restrictions and competition
with other, unrelated compute jobs potentially submitted
to the same servers by other users (Fig. 3b) [10, 11, 28].

Discussion
ReVac was developed to identify bacterial PVCs by
evaluating multiple features based on ideal PVCs charac-
teristics and homology to known PVCs. A major aim of

Table 3 Top candidates selected from ReVac’s output for NTHi and M. catarrhalis (M.W/pI represent molecular weights and
isoelectric points)

Example locus tag Amino acid length M.W./pI Annotation Gene

NTHi

84P48H1_01193 562 62.24/9.43 Hemopexin transporter hxuB

84P8H1_00650 274 30.48/8.97 Lipoprotein E precursor Hel (P4)

M. catarrhalis

ADC73_RS07905 405 44.01/9.47 Hypothetical protein (porin family) None

E9Y_00353 537 60.40/8.95 Protein of unknown function (DUF560) None

M137P16B1_1805 344 38.37/8.95 Gram-negative porin protein None

AO373_1452a 331 36.16/9.9 Ferric iron ABC transporter iron-binding protein None

All the above candidates were surface exposed, predicted antigenic, conserved core proteins with low autoimmunity and no repeat regions. Further information
about these candidates are available in Additional files 2 and 3 respectively. aPresent in M. canis

D’Mello et al. BMC Genomics          (2019) 20:981 Page 12 of 21



ReVac’s development was to add multilayered-redundant
analyses for most of the protein feature predictions used
in parallel, in order to provide additional independent
confidence in the respective feature predictions. The
various tools employed encompass categories of essential
features of PVCs; subcellular localization, antigenicity
and immunogenicity, conservation and function, and
genomic islands. ReVac builds on previously published
reverse vaccinology pipelines and includes several major
improvements: 1) the analyses of multiple genomes for a
given species enabling assessment of conservation of
PVCs (core genome) or, for instance, unique dispensable
genome PVCs of hyper-virulent strains. 2) the evaluation
of SSRs in both coding and upstream regions to assess
phase variable expression of PVCs based on the presence
of this nucleotide sequence feature (enabled by the use
of multiple genomes). 3) the parallel analysis and sum-
mary total of the features for each protein of the input
genomes, with positive scores for desirable features
versus negative scores for undesirable features, reducing
the false negative elimination of candidates. And 4) flexi-
bility to prioritize or de-prioritize any feature based on
organism-specific considerations of a vaccine development
project, for example. The parallel scoring system allows
resolution of a PVC ranked highly or poorly due to mul-
tiple features rather than just a few.
Reverse vaccinology pipelines, such as ReVac, are

beneficial for the prioritization of PVCs for vaccine de-
velopment against bacteria prior to experimentation.
Providing short lists of ideal candidates to assay in vitro
and in animal models is desirable and is especially
powerful where animal models may not be well estab-
lished. The human restricted pathogens Moraxella cat-
arrhalis and non-typeable Haemophilus influenzae are

examples of such bacteria with underdeveloped animal
models [29]. The added innovative ability of ReVac to
assess conservation and phase variability from multiple
genomes is critical for these genetically diverse human
pathogens [10, 11].
To provide an estimate of genetic variation among the

M. catarrhalis genomes, we used MASH [30] to gener-
ate a pairwise genome distance matrix and associated
phylogenetic trees (Figs. 4 and 5). We observed the for-
mation of 4 distinct clades. Two of these clades were
known to be separated based on sero-susceptibility of
those strains (blue and green). Upon surveying the meta-
data of the genomes, we discovered that one of the other
two clades clustered based on their date of isolation
(orange) and the most distant was another species,
M. canis, which was misannotated as M. catarrhalis in
NCBI (National Center for Biotechnology Information).
We attempted to identify similar relationships between
strains in our NTHi genomes, however, there appears to
be no correlation between the strains apart from cluster-
ing based on multilocus sequence types (MLST) as previ-
ously reported [11]. There was no clear genetic clustering
based on clinical source of the strain, geography, duration
of persistence, exacerbation vs. colonization, or year of
isolation, of these strains. Upon investigation of some of
our M. catarrhalis candidates we observed that some can-
didates, at the protein level, could recapitulate the same
separation among clades as the whole genome tree (Fig. 4c
and d). It is possible that these proteins are core drivers of
inter-strain variation as not all protein clusters could
replicate the whole genome tree.
Based on overall vaccine candidates from both NTHi

and M. catarrhalis datasets, certain types of high scoring
proteins are more prioritized over others. Hemolysins and

Fig. 3 a An estimation of ReVac’s CPU time focused on its rate-limiting steps using batches of 1000 and 5000 proteins. Multiple runs (one for
each time point on the figure) were submitted in succession on a single host, using increasing amounts of dedicated cores, each running the
same batch of the respective 1000 (solid line) or 5000 proteins (dashed line). The total numbers of proteins analyzed using 1 and 48 cores are
provided as labels for comparison to (b). b Real-life CPU time estimates derived from the entire ReVac workflow running on 150–300 compute
clusters through Ergatis, each utilizing a single host in most cases
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TonB receptor proteins are identified as quality candidates
in both species, however they are not included in our top
candidates as they were not core proteins. Other types
include various transporter proteins, outer membrane
proteins and porins. This result is in part due to the outer
membrane-surface exposed nature of these classes of pro-
teins. However, ReVac’s comprehensive assessment of im-
munogenic epitope identification and cross-referencing of
proteins against commensal organism’s genomes supports
that there are dissimilar sequences of these proteins in the
pathogen and its related commensal. Whether these
proteins might be strong candidates in other species, will
likely depend on their conservation across those species.
The presence of redundant proteins to these will diminish
their impact as vaccine candidates outside the two species

considered here. Presence of similar types of proteins
identified as vaccine candidates is interesting as both these
species occupy similar niches in the host. In total, ReVac
identified a set of surface exposed proteins in two exclu-
sively human respiratory tract pathogens. The features of
these proteins as pathogen-specific PVCs, provides strong
rationale to experimentally validate the efficacy of the
novel vaccine antigens against the pathogens.

Conclusion
The identification of core vaccine candidates provides a
path for vaccine development against prokaryotic patho-
gens. Use of essential-core genome components in vac-
cines reduces the impact of any selective pressure, which
may be imposed on a pathogen through vaccine use.

Fig. 4 a Whole genome tree of the 69M. catarrhalis genomes used in ReVac. The four clades seen are labeled as, blue-indicating a sero-resistant
clade, green-indicating a sero-sensitive clade, orange-indicating older isolates of M catarrhalis dating to 1932, and red-indicating misannotated
M. canis genomes from NCBI. b Whole genome tree of 128 currently available M. catarrhalis genomes on NCBI, maintains the same topology as 4A.
c A protein alignment tree of one of ReVac’s top candidates, which separates sero-sensitive and sero-resistant clades, but is absent in the other two
clades (also present in the respective clades of (b)). d A protein alignment tree of the candidate iron transporter that replicates the whole genome
tree topology
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This phenomenon has been observed in the case of
Group A Streptococcus, where several potentially effect-
ive vaccine candidates are not a part of the core genome
[31]. Selection of these non-core candidates could result
in non-vaccine strains dominating a now vacant niche.
Another strength of ReVac’s prioritization of candidates
on a cluster level, is that it allows for identification of
clade-specific vaccine candidates. This approach could
be powerful in situations where a species may be a com-
mensal organism, but certain variants are pathogenic,
such as in the case of E. coli [32]. A reverse vaccinology
analysis at a whole pan-genome level will be able to
identify and distinguish these candidates from core
candidates.
All vaccine candidates are antigens, but not all anti-

gens are effective vaccine candidates for various reasons.
ReVac therefore prioritizes antigenic PVCs using predic-
tions from multiple antigenicity and immunogenicity
tools which are becoming more prominent as effective
tools for identification of potentially novel epitope

regions [33]. For example, certain antigens may induce
more effective adaptive immune responses than others.
It should be noted that ReVac is not an antigen pre-
dictor, but a workflow that ranks proteins by their vac-
cine candidacy potential. Follow-up in vitro and in vivo
characterization will therefore be required to assess the
validity of these PVCs as antigens. ReVac’s primary
mandate is to help identify, as well as reduce the number
of candidates that will have to be tested by providing the
user with a ranked list of PVCs.
Here we have presented ReVac, a reverse vaccinology

pipeline for the identification of bacterial protein PVCs
from the input of one or more annotated bacterial ge-
nomes. ReVac’s implementation of a parallel scoring
scheme of all proteins in the organisms’ proteome and
summary scores minimizes elimination of false negative
antigens due to potential errors in the prediction tools
implemented. False positive identification of antigens is
reduced by assigning lower scores to proteins associated
with non-antigens, and with similarity to human host

Fig. 5 Whole genome tree of the 270 NTHi genomes used in ReVac
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proteins as well as commensal organisms’ proteins. These
multiple genome assessments performed in ReVac evalu-
ate the conservation of PVCs and those subject to phase
variable expression in a given population of bacterial
strains to further reduce false positives. The compilation
of these features integrated into ReVac’s pipeline was
tested on sets of positive and negative control antigens to
optimize the scoring algorithm. We used ReVac to identify
PVCs for the human-restricted pathogens M. catarrhalis
and NTHi. We identified both known and novel PVCs for
each bacterium, supporting the efficacy of ReVac to iden-
tify experimentally proven PVCs. Furthermore, the identi-
fication of previously uncharacterized proteins as PVCs
shows the benefit of ReVac to identify novel protein tar-
gets to investigate in future studies. ReVac can be used to
identify PVCs of current bacterial pathogens where vac-
cines are not currently developed, and can also be used to
quickly identify PVCs of emerging pathogens as sequences
become available.

Methods
ReVac and all its tools were built and integrated together
using the open-source Ergatis workflow management
system (available at http://ergatis.sourceforge.net) [14].
Ergatis allows the user to monitor bioinformatic pipe-
lines, such as ReVac, through its user interface, and al-
lows the parallelization of several analyses on distributed
computer clusters [14]. Individual tools can be installed
as Ergatis components and their analyses then paralle-
lized, for any bioinformatic pipeline. For these reasons,
Ergatis was chosen as a streamlined way of performing
all ReVac’s computationally intensive multi-genome
analyses while allowing for easy access to output data
and monitoring.
Here, we provide a description of all the tools incorpo-

rated in the ReVac pipeline, including those involved in
file format conversions. The complete scoring weight
scheme for each component is described in Methods.
The rationale for assigning different weights to specific
components was derived from the results of ReVac runs
on our control datasets of known antigens and non-
antigens acquired from various antigen databases from
multiple bacterial species (Additional file 1 and Fig. 1).
Components are grouped into broad categories (Table
2), as follows:

1) Subcellular Localization
a. PSORTb 3.0 [13] – A bacterial protein

subcellular localization (SCL) predictor geared
for all prokaryotes, including archaea and
bacteria with typical and atypical membrane/cell
wall topologies [13]. PSORTb 3.0 assigns a
protein one of seven possible SCLs, namely,
Extracellular, Cell Wall, Outer Membrane,

Periplasmic, Cytoplasmic Membrane,
Cytoplasmic & Unknown. We ran PSORTb 3.0
on control datasets, 69M. catarrhalis and 270
NTHi genomes using default parameters with
an overall cut off set at a value of 7.5 for the
overall prediction score. Proteins that were
predicted to localize at multiple sites were also
included if their cumulative score was above 7.5.
We used the long output-type option provided
by PSORTb and predictions are provided in the
summary table. Each protein was given a + 1
towards its overall score if it wholly or partially
localized to the outer membrane, cell wall or
was predicted to be extracellular. If the protein
was predicted to localize only to the cytoplasm
or cytoplasmic membrane it was given a − 1. A
prediction of Periplasmic was not scored as pro-
teins from control datasets showed that some
outer membrane proteins were often miscalled
as periplasmic.

b. LipoP [25] – A hidden Markov model (HMM)-
based tool to predict lipoprotein signal peptides
in Gram-negative Eubacteria, able to distinguish
between lipoproteins Signal peptidase II (SPase)-
cleaved proteins, SPaseI-cleaved proteins, cyto-
plasmic proteins, and transmembrane proteins
[25]. Although it was developed for Gram-
negatives, it has shown effective performance on
the prediction of Gram-positive bacterial lipo-
proteins [25]. We ran LipoP using default
parameters with a cutoff of − 3. Each protein
was given a + 1 towards its overall score if it
was predicted to be a signal peptidase or had
transmembrane helices.

c. TMHMM 2.0 [34] – A membrane protein
topology prediction method, based on an HMM
[34]. It predicts the number of transmembrane
helices present in a protein sequence. TMHMM
was run using default parameters and predicted
number of helices are displayed in the summary
table. Each protein was given + 0.5 if it had a
single helix. It is not scored for 2 helices and
penalized for more than 2 helices (− 0.2 for 3
and − 2 for 4 or more), as such proteins are
harder to purify and less likely to be accessible
on the cell surface. If the protein was predicted
partially cytoplasmic or in the cytoplasmic
membrane, it was penalized an additional − 2.

d. SignalP 4.1 [35] – A program developed for the
prediction of signal peptides from amino acid
sequences that are targeted to the secretory
pathway [35]. We ran SignalP using the ‘best’
option for prediction allowing a truncated
length of 70 for the peptides. We also disabled
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its graphical output as we were only interested
in presence/absence of signal peptides. Its raw
output provides coordinates of a protein’s signal
peptide, which we then used to map back the
actual signal peptide sequence for the summary
table. Each protein was given a + 1 if it had a
signal peptide.

e. SPAAN [36] – An artificial neural network
developed to predict the probability of a protein
being an adhesin. Adhesins are surface exposed
proteins which mediate the adhesion of
microbial pathogens to host cells [36]. We ran
SPAAN using a cutoff of 7. Each protein was
given a + 1 if it was a predicted adhesin.

f. HMMPFAM 3.0 [37] – A HMMER 3.0, HMM
based tool, which queries a given amino acid
sequence against multiple relevant subsets of
TIGRFAM and PFAM databases [38, 39] namely,
surface exposed, signal proteins, secreted
proteins, and bacteriocins. This database of
motifs was developed from the TIGRfam v15.0
and Pfam v31.0 databases, manually filtered based
on keywords in their descriptions, which were
relevant to surface exposure. We used default
noise threshold cutoffs for all our HMM runs.
Each protein was given a + 0.5 for any positive
hit against motifs in this database.

2) Antigenicity & Immunogenicity
a. Antigenic (http://www.bioinformatics.nl/cgi-bin/

emboss/antigenic) – An EMBOSS package
utilizing the method of Kolaskar and
Tongaonkar to predict antigenic determinants
in proteins [40]. This tool outputs the antigenic
peptide regions within a protein. We used a
minimum peptide length of 9. Overlapping
peptides are merged into larger regions to
calculate overall percent coverage of the whole
protein. The total number of antigenic peptides
and their percent coverage of the protein are
presented in the summary table. Each protein is
given + 0.5 for having antigenic regions and an
additional score of the ratio of its antigenic
regions over its amino acid length.

b. MHC Class I [16] – An MHC I binding
prediction tool acquired from the Immune
Epitope Database & Analysis Resource (IEDB),
containing 8 different peptide binding prediction
methods. Of the 8, we have applied the
consensus method for our analysis, using default
parameters, applied across all 78 human MHC I
alleles available for this method. The raw
outputs assign a rank for each peptide of length
9, from a protein, with a sliding window of a
single amino acid. The 99th percentile peptide

sequences across all 78 alleles are selected,
sorted based on coordinates within a protein,
and then tiled together to produce a consensus
MHC I binding region. The total number of
binding peptides, the number of alleles they
bind, their total consensus region, and their
percent coverage, are presented in the summary
table. Each protein is given a score of the ratio
of its binding regions over its amino acid length,
if its binding regions cover 80–95% of the
protein. If that ratio is greater than 95% it is
given a + 1. The weight is also boosted by the
ratio of binding peptides of length 9, over the
total number of peptides possible for a given
protein with a sliding window of 1. The
rationale for this being that when a protein is
processed for MHC loading, the more peptides
that can bind to, from all that could be
generated, the better the overall binding of the
protein.

c. MHC Class II [16] – Also acquired from IEDB,
this tool comprises of 5 methods for MHC
peptide binding prediction. Here again, we have
chosen the consensus method, using default
parameters, across all 63 human MHC II alleles
available. Like the MHC Class I component, the
raw outputs assign a rank for each peptide of
length 15, from a protein, with a sliding window
of a single amino acid. Here, the 95th percentile
is selected as MHC class II binding is less
efficient due to the MHC II molecules being
open at the ends of peptide the binding region.
The post processing of the raw outputs is
handled the same as in MHC Class I. Each
protein is scored like the scheme followed in
MHC Class I.

d. NetCTLpan [16] – Another MHC I binding
predictor acquired from IEDB included in our
analysis. This tool makes its predictions by also
considering the precursory steps involved in
MHC peptide binding, such as proteasome
cleavage and TAP (Transporter associated with
antigen processing). Analysis was conducted
across 12 MHC allele super-types available in
this package, using a peptide length of 9 with
default parameters for thresholds, TAP & cleav-
age weightage. The post processing of the raw
outputs is handled the same as in MHC Class I.
Each protein is scored like the scheme followed
in MHC Class I.

e. B Cell Pred [16] – A linear B cell epitope
predictor also procured from IEDB. It scores
amino acid residues using 6 different scale-based
methods. We have applied all 6 methods in our
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analysis and only those peptide sequences which
are predicted to be epitopes across all methods
are considered. Analysis was conducted using
default cutoffs and parameters across all 6
methods using a peptide length of 7. As in the
case of MHC I, peptide epitopes from all 6
methods are tiled together to form consensus
predicted B-cell epitope regions. Each protein is
given a score of the ratio of its binding regions
over its amino acid length. Here again it is
boosted by the ratio of binding peptides of
length 7, over the total number of peptides pos-
sible for a given protein with a sliding window
of 1.

f. Immunogenicity [16] – A Class I
Immunogenicity tool from IEDB, that uses
amino acid properties as well as their position
within the peptide to predict the
immunogenicity of a peptide-MHC (pMHC)
complex. The peptides predicted to be effective
MHC I binders from MHC Class I & NetCTL-
pan (the 99th percentile) are passed as inputs
here and run using default parameters. Each
protein is scored similar to the scheme followed
in MHC Class I, but scores for 20% coverage or
more, as not all MHC bound peptides induce an
immune response.

g. BLAT [15, 16] – Using the BLAST-like Local
Alignment Tool, amino acid sequences are com-
pared to a database of experimentally curated
epitope sequences acquired from IEDB. Using
the BLAST output type and default parameters,
protein regions mapping to curated epitopes are
again tiled to get consensus epitope regions and
their percent coverage. Each protein is given a
score of the ratio of its homologous regions over
its amino acid length. If that ratio is greater than
70% it is given another + 1. Here if the protein
is positive for surface exposure in any 3 among
PSORTb, LipoP, SignalP and IEDB, it is given
a + 2 as this pattern was observed frequently in
positive control datasets.

3) Conservation & Function
a. Jaccard Clusters of Orthologous Genes (COG)

Analysis [41] – A two-phase protein clustering
algorithm, used to generate protein paralog and
ortholog clusters. It parses an all-v-all BLAST
[42] output of whole genomes, after which a
Jaccard similarity coefficient is calculated for
every pair of proteins. Then it performs a bidir-
ectional best hit analysis on the paralog clusters
generated by the first phase of the algorithm, ra-
ther than on individual proteins to call its ortho-
logs [41]. Each protein belonging to a COG that

is present in 90% of the genomes provided re-
ceives + 1 (in at least one of the conservation
methods).

b. PanOCT [43] – A tool for pan-genomic analysis
of closely related prokaryotic species or strains
using conserved gene neighborhood information
to separate recently diverged paralogs into
orthologous clusters [43]. We elected to use
90% conservation as our cut-off and ran the
analysis at default parameters. The PanOCT
component was adapted to use a list of GFF
files, a multi-FASTA file of all amino acid se-
quences and an all-v-all BLAST file run using
the -m8 output option, to generate its config file
and then perform clustering. Each protein be-
longing to a COG that is present in 90% of the
genomes provided receives + 1 (in at least one
of the conservation methods).

c. OrthoMCL [19] – This program implements a
scalable method for constructing orthologous
groups using a Markov Cluster algorithm to group
(putative) orthologs and paralogs [19]. Analysis
makes use of a MySQL database to which data is
stored during the clustering process, using an
all-v-all m8 BLAST file and a multi-FASTA of all
proteins, run at default parameters. Each protein
belonging to a COG that is present in 90% of the
genomes provided receives + 1 (in at least one of
the conservation methods).

d. LS-BSR [44] – Large Scale Blast Score Ratio
(LS-BSR) compares the genetic content of
hundreds to thousands of bacterial genomes and
returns a matrix that describes the relatedness of
all coding sequences (CDSs) in all genomes
surveyed [44]. LS-BSR was run at default para-
meters, using a list file of strain specific DNA
sequences of predicted genes to produce a BSR
matrix of proteins that cluster with each other.
Default cutoff is 0.7 but we elected to use 0.6 as
some proteins which clustered together in other
tools as core, were barely missing the default
cutoff. Each protein belonging to a COG that is
present in 90% of the genomes provided, receives
+ 1 (in at least one of the conservation methods).
Here, if a given protein is shown to cluster in 90%
of the genomes across multiple methods (de-
scribed above), it is given an additional + 0.1 for
each of those clustering methods.

e. Attributor – An in-house developed python
script which refreshes annotations for a FASTA
file of amino acid sequences, and assigns GO
terms wherever applicable. It accepts inputs
from TMHMM, LipoP, RAPSearch2 and
HMMPFAM to call a specific annotation for a
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given protein. Each protein that has a GO term
belonging to our database of surface exposed
GO terms, is scored + 1 for each GO term, and
− 1 for each GO term falling in our non-surface
exposed GO term database, if none were identi-
fied in our surface exposed GO terms. Both GO
term databases were constructed from the pro-
karyotic subset of GO terms, and then manually
filtered for relevant surface exposed GO annota-
tions, as well as Attributor GO term predictions
for experimentally curated surface and non-
surface exposed proteins acquired from the
ePSORTB database. Here we also looked to
rescue PSORTb predictions calling periplasmic,
when proteins are surface exposed based on
attributor, and scoring an additional + 2.

4) Exclusion Features
a. Autoimmunity [22] – Autoimmunity is a Perl

script taken form NERVE [22] and adapted to
run on Ergatis. It uses BLAST to compare each
amino acid sequence as a query against the
human proteome, allowing for 3 substitutions
and 1 mismatch, over a minimum peptide
length of 9. Raw outputs are again tiled together
to give consensus regions of autoimmunity
against Human proteins. Each protein that
doesn’t map to the human proteome is given
a + 1. Any protein that has a positive hit is
penalized by 2 times the ratio of its homologous
regions over its amino acid length. If that ratio
is greater than 20% it is penalized another − 2.

b. Autoimmunity Commensals [22] – This
component is an adaptation of the one above
that runs against a non-redundant database of a
commensal organism of choice. In our case,
since we were looking at NTHi & M. catarrha-
lis, the most closely related species selected were
H. haemolyticus and M. bovis, respectively. The
database of non-redundant protein amino acid
sequences was made from 13 strains of H. hae-
molyticus acquired from NCBI and then clus-
tered using OrthoMCL, for NTHi. However,
only one strain of M. bovis was available on
NCBI. Each protein is scored the same as
autoimmunity.

c. SSR_Finder [45] – SSR_finder is a script
developed by Siena et al. [45] which looks for
Simple Sequence Repeats, up to 10 base pairs
in length, in DNA coding sequences and 500
bp upstream of the gene. SSRs have been
shown to contribute to phase variation of
proteins allowing generation of different
protein isoforms and mediating on/off
translational switching through frameshifts

[45]. It scans through a list of multi contig
DNA fasta files for such SSRs. Each gene is
given a + 1 for absence of an SSR. Presence
of a repeat is penalized − 0.5 for each. An
additional − 0.25 is received if the repeat is in
promoter region, − 0.5 if the repeat has the
potential to cause a frame shift, as well as
− 0.01 times the total length of the repeat.

d. SSR_Finder_Protein [45] – The above script was
adapted to run on protein sequences looking for
repeats, up to 20 amino acids in length, which
would allow conformational changes in the
protein. Each protein is penalized − 0.2 for each
protein repeat, up to a maximum penalty of − 1.

5) Genomic Islands
a. IslandPath [46] – IslandPath is a tool developed

for the detection of genes of potential horizontal
transfer origin known as Genomic Islands, in
prokaryotes [46]. Islandpath accepts NCBI
Protein Table (ptt) files of the proteome as well
as protein & coding sequence FASTA files with
their coordinates to identify possible genomic
islands. Each protein present within a genomic
island is penalized − 0.5.

6) Foundation Components
Input data that is passed through ReVac, requires a
multitude of formats as per the component being
invoked, as well as supplementary data from other
predictive components. ReVac uses the following
foundation components, which are provided as a
part of the Ergatis workflow [14].
a. Genbank2bsml – Accepts standard GenBank file

formats (.gbk) for conversion to Bioinformatic
Sequence Markup Language (BSML), which is
an Ergatis standard file format for data in
addition to the more common FASTA files.

b. Bsml2fasta – Accepts the BSML inputs from
Genbank2bsml for conversion to FASTA files.
This component allows for the generation of
single sequence FASTA files or a larger multi-
sequence file, providing the option of generating
numerical sequence IDs for each sequence as
well filtering files to contain either solely
nucleotide or amino acid sequences.

c. Split_multifasta – Splits the multi-sequence file(s)
generated by Bsml2fasta into smaller files containing
a user-defined number of sequences, for distribution
onto the grid for the later components.

d. Bsml2ptt – Allows conversion of the BSML files
into a tab delimited ptt file. Currently only
utilized in the IslandPath component.

e. Extract_CDS_Features – An in-house developed
script to parse Genbank files and extract all fea-
tures relevant to any coding sequences present.
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These include contig ID, coordinates, amino
acid length, estimated molecular weight,
isoelectric point, gene name, and annotation.

f. Formatdb/Xdformat – These components
format and index whole proteome FASTA files
for all-v-all BLAST searches.

g. NCBI-BLASTP/WU-BLASTP – Different
components require different types of BLAST
outputs; hence both are available for use in ReVac.

h. RAPSearch2 [47] – A new upgraded protein
similarity search tool for next generation
sequencing data, which scans the latest UniRef
and UniProt databases for use in Attributor.

The current ReVac workflow package available on github
(https://github.com/admelloGithub/ReVac-package) is de-
signed to work through the Ergatis management system,
after all required tools and dependencies are installed.

Phylogenetic tree construction
We used MASH [30] using default settings to acquire
pairwise distance matrices for our whole genome trees.
These we then converted into Newick tree files using
the Neighbor-Joining method in MEGA7 [48] and
unrooted tree figures were constructed in R studio using
the APE package [49]. For our protein ortholog trees,
the amino acid FASTA sequences were acquired from
the ReVac’s orthology components outputs and aligned
using ClustalW in MEGA7 with default parameters, and
Newick tree files generated using the Neighbor-Joining
method, for use in R studio with the Ape package.
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