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Abstract

Background: The males of many Bactrocera species (Diptera: Tephritidae) respond strongly to plant-derived

chemicals (male lures) and can be divided into cue lure/raspberry ketone (CL/RK) responders, methyl eugenol (ME)
responders and non-responders. Representing a non-responders, Bactrocera minax display unique olfactory sensory
characteristics compared with other Bactrocera species. The chemical senses of insects mediate behaviors that are
associated with survival and reproduction. Here, we report the generation of transcriptomes from antennae and the
rectal glands of both male and female adults of B. minax using lllumina sequencing technology, and annotated
gene families potentially responsible for chemosensory.

Results: We developed four transcriptomes from different tissues of B. minax and identified a set of candidate genes
potentially responsible for chemosensory by analyzing the transcriptomic data. The candidates included 40 unigenes
coding for odorant receptors (ORs), 30 for ionotropic receptors (IRs), 17 for gustatory receptors (GRs), three for sensory
neuron membrane proteins (SNMPs), 33 for odorant-binding proteins (OBPs), four for chemosensory proteins (CSPs).
Sex- and tissue-specific expression profiles for candidate chemosensory genes were analyzed via transcriptomic data
analyses, and expression profiles of all ORs and antennal IRs were investigated by real-time quantitative PCR (RT-gPCR).
Phylogenetic analyses were also conducted on gene families and paralogs from other insect species together.

Conclusions: A large number of chemosensory genes were identified from transcriptomic data. Identification of these
candidate genes and their expression profiles in various tissues provide useful information for future studies towards

revealing their function in B. minax.
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Background

Olfaction is of vital significance for survival and
reproduction of insects, and associated with mediating insect
behaviors, such as host-identification, predator-avoidance,
mating, and oviposition [1]. Environmental chemicals elicit
physiological and behavioural responses by means of olfac-
tory signal transduction, in which chemical signals are con-
verted to electrical signals that can be interpreted by the
olfactory nervous system [2, 3]. The initial step in odor
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detection starts with the binding of odour molecules to the
odorant receptors that are bound to dendrites of olfactory
receptor neurons (ORNs) in antennae [4, 5]. The whole
process requires several families of chemosensory genes, in-
cluding genes coding for odorant receptors (ORs),
ionotropic receptors (IRs), gustatory receptor (GRs), sensory
neuron membrane proteins (SNMPs), odorant-binding pro-
teins (OBPs) and chemosensory proteins (CSPs) [6, 7]. In-
sect OBPs bind and transport odorant molecules across the
aqueous lymph, then release the odorants and activate ORs
in the dendrites of ORNs [1]. CSPs are homologous to OBPs
[8] and are believed to have functions similar to that of
OBPs [9, 10]. Insect ORs are heterodimers composed of at
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least two proteins, a highly conserved OR co-receptor
(ORco) acting as an ion channel, and a specific OR subunits
(ORx) that determines ligand specificity [11, 12]. An OR/
ORco complex functions as a ligand-gated ion channel and
is activated by odorant molecule. A chemical signal is then
transformed into an electric signal that is transmitted to a
higher-ordered neural center [2, 3]. IRs are a family of vari-
ous ionotropic glutamate receptors. IRs exist as heteromeric
complexes with one co-receptor IR (such as IR25a, IR8a or
IR76b) in association with one or more ligand-specific IRs
within a single ORN [13, 14]. The “antennal IRs” sub-family
that is predominately or specifically expressed in antennae,
was initially defined as another olfactory receptor [15]. How-
ever, recent functional studies indicate that antennal IRs have
diverse functions (beyond chemosensation functions), includ-
ing odour detection such as ammonia and amines [16], poly-
amines [17], acids [14, 18], sex pheromones [19], as well as
gustation [20-23], thermosensation [24, 25] and hygrosen-
sation [26]. GRs are another G-protein coupled receptor
family that are distantly related to ORs, and are broadly
expressed in the antennae, mouthparts, wings and oviposi-
tor of the insects, which are generally tuned for tasting (bit-
ter and sweet) [27-32] and carbon dioxide detection [33,
34]. SNMPs are transmembrane proteins and belong to the
CD36 receptor family [35, 36]. The Drosophila melanoga-
ster SNMP subtype SNMP1 is involved in pheromone re-
ception, and is located in the dendritic membrane of
pheromone-sensitive neurons, and triggers ligand delivery
to a pheromone receptor [37-39].

The Chinese citrus fly, Bactrocera minax (Enderlein)
(Diptera: Tephritidae), is one of the most devastating pests
of citrus, and is distributed in the temperate areas of Asia
including Nepal, India, Bhutan, and China [40, 41]. The
males of many Bactrocera species (Diptera: Tephritidae) re-
spond strongly to plant-derived chemicals (male lures) and
broadly categorized into three groups of species based on
the characteristics of their chemosensory: cue lure/rasp-
berry ketone responders (CL/RK), methyl eugenol (ME) re-
sponders and non-responders [42, 43]. B. minax belongs to
the last category, a non-responder. In terms of host range,
B. minax is oligophagous, feeding on cultivated and wild
species of citrus. During the long course of coevolution
with its host plants, the olfaction system of B. minax is
likely different from the CL/RK and ME responders, or pol-
yphagous counterparts such as B. dorsalis. At the peripheral
olfactory signaling, diversifying chemoreceptor gene fam-
ilies may allow the detection and differentiation of a wide
array of host volatiles, therefore polyphagous insects could
possess a diverse set of chemosensory receptors relative oli-
gophagous [5, 44—46]. At present, little is known about the
genes and molecular events involved in chemosensory in
this representative Bactrocera species.

The objective of this study is to identify genes poten-
tially involved in chemosensory following a transcriptomic
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approach. We generated transcriptomes from dissected
antennae and rectal glands from both male and female
adults. Rectal glands are involved in potential sex phero-
mone production in Bactrocera species [47, 48]. More-
over, members of the chemosensory multigene families
are expressed in pheromone glands in Lepidoptera where
they are involved in pheromone product process [49-53].
We used this approach to identify a set of candidate che-
mosensory genes comprising ORs, IRs, GRs, SNMPs,
OBPs and CSPs. We constructed a comprehensive and
comparative phylogenetic trees to examine the character-
istics of B. minax chemosensory genes and their relation-
ship to that of other insects. In addition, the sex- and
tissue-specific expression profiles of chemosensory genes
were determined via fragments per kilobase per million
reads (FPKM) and real-time quantitative PCR (RT-qPCR).
Our results should provide a basis for future studies to re-
veal olfactory receptive mechanisms for the olfactory sys-
tem of B. minax.

Results

Transcriptome assembly

A total of 53.4, 53.4, 52.8 and 51.1 million raw reads were
obtained by sequencing the libraries derived from dis-
sected female antennae, male antennae, female rectal
glands and male rectal glands, respectively. After trimming
adaptor sequences, eliminating low quality reads, and re-
moving contaminant sequences, 51.8, 51.8, 51.2 and 49.6
millions of clean reads were retained from these four tran-
scriptomes, respectively. Combined trinity assembly of the
clean reads generated 120,803 unigenes with a mean
length of 717 bp, an N50 of 1306 bp, and an N90 of 267
bp. The number of unigenes longer than 1 Kb was 34,832,
which was listed at Additional file 1: Table S1.

Functional annotation of assembled unigenes

Annotation was conducted by BLASTx and BLASTn
programs with e-value cut-off 107°. A total of 36,287
(30.03%) unigenes were annotated by searching against
at least one of the databases. Specifically, 26,043
(21.55%) unigenes were annotated by blasting against
the NCBI-non-redundant protein sequence (Nr) data-
base, 18,005 (14.90%) unigenes against the NCBI-non-
redundant nucleotide (Nt) database, 22,269 (18.43%)
based on PFAM, 11,209 (9.27%) based on the Clusters of
Orthologous Groups (KOG/COG) database, 16,147
(13.36%) by searching against the SwissPort database, 22,
505 (18.62%) based on Gene Ontology (GO), and 9942
(8.22%) based on Kyoto Encyclopedia of Genes and
Genomes (KEGQ) (Additional file 2: Table S2).

Species with the highest proportion of similar genes were
B. dorsalis (26.1%) followed by B. cucurbitae (21.9%), B. oleae
(12.1%), Ceratitis capitata (4.3%) and Rhagoletis zephyria
(3.4%) (Additional file 3: Figure S1A). GO analysis was used
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to categorize annotated genes into three functional categor-
ies: ‘biological process’, ‘cellular component’, and ‘molecular
function’. In ‘biological process’, subcategories ‘cellular’, ‘sin-
gle-organism’ and ‘metabolic’ contained the majority of the
unigenes. In ‘cellular component’, the subcategories ‘cell’ and
‘cell part organelle’ contained the majority unigenes. In ‘mo-
lecular function’, the subcategories ‘binding’ and ‘catalytic ac-
tivity’ were with the largest numbers of unigenes (Additional
file 3: Figure S1B). Functional categories and pathways based
on a KEGG analysis are given in Additional file 3: Figure
S1C. The categories ‘signal transduction’, ‘translation’, ‘trans-
port” and ‘catabolism’ were on the top among the 32 categor-
ies in terms of the number of unigenes.

Candidate odorant receptors
In this study, 40 putative OR unigenes were identified
from sequencing the B. minax tissue-specific libraries.
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The proteins encoded by these OR unigenes belong to
the receptor superfamily with 7 transmembrane domain
receptors (the 7-transmembrane receptors superfamily).
Among the transcripts corresponding to these OR uni-
genes, 37 encode full-length proteins with 306 to 417
amino acid residues with 4—8 transmembrane domains
(TMDs). Other partial unigenes encoded proteins exhi-
biting overlapping regions with low sequence identity
(Additional file 4: Table S3). One of the OR putative
protein shares 99% identity to a co-receptor from B.
cucurbitae (XP_011183998.1) and was named as Bmi-
nORco. Other identified ORs from B. minax were also
similar to reported ORs from Bactrocera species, with at
least 60% amino acid sequence identity.

A maximum likelihood tree was created using IQ-
TREE (version 2.1.7) with best-fitting substitution-
model. The phylogenetic tree was generated using our
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Fig. 1 Phylogenetic tree of candidate Bactrocera minax ORs and homologs from other Dipterans. The distance tree was rooted by the

Bactrocera minax
Drosophila melanogaster
Ceratitis capitata
Bactrocera dorsalis
Musca domestica

Expansion of OR67d

\ ORco

Expansion of OR7a

conservative ORco gene orthologues. Bootstrap values are shown. The ORco clade, OR67d clade, OR43a clade and OR7a clade are shown.
Sequences from species in this phylogeny include Bactrocera minax (Bmin, hot pink), Drosophila melanogaster (Dmel, bule), Ceratitis capitate
(Ccap, spring green), Bactrocera dorsalis (Bdor, purple), and Musca domestica (Mdom, black)
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identified putative OR proteins along with a data set con-
taining representative ORs from four other Dipterans; D.
melanogaster, C. capitate, B. dorsalis and Musca domes-
tica (Fig. 1). The vast majority of BminORs were clustered
with orthologues from other species. A clade containing
OR7a homologs and DmelOR7a, was greatly expanded in
B. minax as well as in B. dorsalis. Eight BminORs (Bmi-
nOR7a.1, OR7a.2, OR7a.3, OR7a4, OR7a5, OR7a.6A,
OR7a.6B and OR7a.7) were clustered with DmelOR7a.
Moderate expansion of clades containing OR43a and
OR67d was also observed in B. minax. Four BminORs
(BminOR43a.1, OR43a.2, OR43a.3 and OR43a.4) were
clustered with DmelOR43a from Drosophila, and four
BminORs (BminOR67d.1, OR67d.2, OR67d.3 and
OR67d.4) were clustered with DmelOR67d.

Candidate ionotropic receptors
Thirty putative iGIuR/IR unigenes were identified from
the B. minax samples. Of the iGIuR/IR transcripts
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corresponding to these unigenes, 19 encoded full-
length proteins with at least 503 amino acid residues.
Amino acid sequences encoded by these transcripts
share high sequence similarity to ligand-gated cation
channels with three full or partial TMDs (M1, M2
and M3) and a ligand-binding domain (S1 and S2)
(Additional file 4: Table S3), which was characteristic
of insect iGluRs/IRs [15].

Distinct clades were observed in a phylogenetic tree
generated with our identified sequences and paralogs
from other species including D. melanogaster, C. stygia
and C. capitate IRs (Fig. 2). Identified candidate antennal
IRs (14) were clustered with previously reported “anten-
nal” orthologues BminIR8a, IR25a, IR21a, IR40a, IR41a,
IR64a, IR75a.1, IR75a.2, IR75d, IR76a, IR76b, IR84a,
IR92a and IR93a; and were well separated from those
non-NMDA iGluRs, NMDA iGluRs and divergent IRs
clades. Interestingly, a usually conserved “antennal”
orthologue, IR68a, was absent from B. minax. Instead,
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two IR75a orthologues (BminIR75a.1 and IR75a.2) was
found from B. minax.

Candidate gustatory receptors

Seventeen GR candidates were identified from B. minax,
and all of them encode full-length proteins with 4—8 TMDs
(Additional file 4: Table S3). Functions of GRs identified
from B. minax could be inferred from their phylogenetic re-
lationship with GRs previously well characterized from other
dipteran species (Fig. 3). BminGR21a, GR22 and GR63a
were clustered with carbon dioxide GRs (DmelGR21a and
DmelGR63a) [33, 34]. BminGR43a was clustered with the
Drosophila fructose receptor DmelGR43a [54]. Three other
GRs (BminGR64b, GR61e and GR64f) were clustered with
Drosophila sugar receptors (DmelGR64b, GR6le and
GR641), respectively [29-31, 55, 56].

Candidate sensory neuron membrane proteins

Three unigenes were found to encode full-lengthSNMPs
with two TMDs were identified named BminSNMP1a,
BminSNMP1b and BminSNMP2 (Additional file 4:
Table S3). BminSNMPla and BminSNMP1b were
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clustered with the Drosophila SNMP1, a protein re-
quired for correct pheromone detection [37, 38, 57, 58],
while BmelSNMP2 clustered with other insect SNMP2
orthologues (Fig. 4).

Candidate odorant-binding proteins

A total of 33 OBP unigene were identified from the B.
minax transcriptomes and all the identified unigenes en-
code full-length proteins. Except two (BminOBP50e and
BminOBP57c), all predicted proteins have a signal pep-
tide sequence (Additional file 4: Table S3). Among them,
23 Classic OBPs have six conserved cysteine residues,
four Minus-C OBPs (BminOBP8a, OBP99c.1, OBP99c.2
and OBP 99d) have only four cysteine residues (C2 and
C5), whereas four Plus-C OBPs (BminOBP49, OBP50b,
OBP50e and OBP58c) have 4—-6 more cysteine residues
in addition to the six conserved cystteines. Bmi-
nOBP83cd and OBP83ef were predicted to be Dimer
OBPs with two six-cysteine signatures (Additional file 5:
Figure S2). Phylogenetic tree of the identified OBPs with
orthologs from other dipterans assigned B. minax OBPs
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to Plus-C, Minus-C and Dimer groups, and the
remaining were assigned to the Classic groups (Fig. 5).

Candidate chemosensory proteins

Four unigenes encoding CSPs were identified from the B.
minax transcriptomes and all of them encode full-length
proteins (Additional file 4: Table S3). Predicted proteins
contain four highly conserved cysteine residues and a signal
peptide (Additional file 6: Figure S3). A phylogenetic analysis
assigned each of the identified CSPs into four distinct clades
together with homologs from other dipterans (Fig. 6).

FPKM and differentially expressed genes

Transcript abundance of the identified ORs, IRs, GRs,
SNMPs, OBPs and CSPs was initially estimated based on
their FRKM values (Additional file 7: Table S4). Tran-
script abundance of ORs, IRs and GRs was relatively low
in antennae compared with that of SNMPs, OBPs and
CSPs. Among putative BminORs, the co-receptor
(ORco) exhibited the highest level of transcript abun-
dance (female: 380.43 and male: 390), compared with
other ORs, which ranged from 0.39 to 106. The RPKM
values for putative BminIRs ranged from 5.36 to 133.
BminIR93a exhibited the highest transcript abundance,
followed by BminIR25a, BminIR8a and BminIR76b. The
overall expression levels of putative GRs were relatively
low. Among them, BminGR21a had significantly higher
transcript abundance than that of other BminGRs.

Among the identified BminOBPs, BminOBP28a.2
showed the highest transcript abundance, followed by
BminOBP83b and BminOBP83a. For the identified
SNMPs and CSPs, BminSNMP1la and BminCSP2 exhib-
ited the highest transcript abundance.

Figure 7 provides more details on gene expression of all
the identified genes among different tissues and sexes
using a heat plot. Of the 40 ORs, 38 exhibited high tran-
script abundance in antennae from both sexes. The
remaining two ORs (BminOR7a.6B and OR92a) showed
higher transcript abundance in rectal glands than in an-
tennae in both males and females. For IRs, all antennal
IRs were specifically expressed in antennae. For GRs,
BminGR64b and GR97a exhibited higher transcript abun-
dance in rectal glands, whereas others showed higher
abundance in antennae. For SNMPs, BminSNMP1la and
SNMP1b exhibited higher abundance in antennae. For
OBPs, 19 Classic OBPs and one Plus-C (BminOBP49a)
exhibited higher abundance in antennae than that in rectal
glands. For CSPs, BminCSP2, CSP3 and CSP4 showed
higher abundance in antennae. In terms of sexes, none of
the GRs, SNMPs, OBPs and CSPs showed a drastic differ-
ence in transcript abundance between females and males.

Real-time quantitative PCR analysis

Selected genes were further analyzed via RT-qPCR in
different tissues. Transcript levels of all 40 ORs and 14
antennal IRs were successfully detected through RT-
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qPCR (Figs. 8 and 9). RT-qPCR revealed that a large
number of ORs were antenna-predominant except for
BminOR7a.6B, and OR92a, which exhibited higher tran-
script abundance in rectal glands. Among antenna-
predominant ORs, all ORs but three (BminOR7a.2,
OR42a and OR43a.1) were equally expressed in both
males and females, and BminOR7a.2 was more abundant
in males, while BminOR42a and OR43a.l was more
abundant in females. For the antennal IRs, all were spe-
cifically expressed in antennae, and no significant differ-
ences in transcript abundances were observed between
males and females. Overall the RT-qPCR data mirror a
similar trend with the corresponding FPKM values
(Additional file 7: Table S4).

Discussion

Based on olfactory responses to plant attractants, Bactro-
cera species can be categorized into CL/RK-, ME - and
non-responders. B. minax is a non-responder based on
previous reports. Biologically, B. minax is an oligophagous
insect that oviposits only into the fruit of Citrus species.
This is different from most of Bactrocera species such as
B. dorsalis. The difference in oviposition behavior may re-
flect difference in olfactory sensation specificity with B.
minax. Prior to this study, the chemosensory gene families
had been identified from other Bactrocera species that are
highly polyphagous [59-61]. Here, we present the results
of genetic and phylogenetic analyses of putative chemo-
sensory genes in an oligophagous Bactrocera species to
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Fig. 8 Relative transcript levels of all putative ORs in the different tissues, using RT-gPCR. Abbreviations: FA, female antennae; MA, male antennae;
FG, female rectal glands; MG; male rectal glands; MT, male foreleg tarsi; FT, female foreleg tarsi; MP, male proboscises; FP, female proboscises; MW,
male wings; FW, female wings. The relative expression level is indicated as mean = SE (n = 3). Standard error is represented by the error bar, and
different letters indicate significant differences between tissues (p < 0.05, ANOVA, HSD)

examine the similarities and differences of molecular com-
ponents in chemosensory pathways. We further analyzed
the expression profiles of identified chemosensory genes
in an olfactory (antennae) and a non-olfactory tissue (rec-
tal glands) to identify olfaction-specific genes for future
functional studies.

The numbers of putative OR transcripts identified in
B. minax (40 in the antennae) were close to the number
(43) identified in B. dorsalis antennae [60]. This suggests
that Bactrocera ORs shows conservation in gene num-
bers. Even the overall numbers of genes are comparable,
there are specific differences in gene compositions
among Bactrocera species. Compared to homologous
ORs previously reported for B. dorsalis, there were lower
number in B. minax, i.e., OR67c, OR85d, OR63a, OR59a
(Fig. 1). This suggests a possible link between olfactory
perception and host adaptation, B. minax have relatively
narrow host ranges, which limited to several Citrus spe-
cies. Notably, there is a great expansion of ORs with
similarity to the aggregation/egg-laying decisions-linked

receptor (OR7a) [62], which is putatively responsible to
the pheromone benzaldehyde (OR43a) [63], and the
pheromone cis-vaccenyl acetate receptor (OR67d) [64].
This may imply that the gene expansion is likely to en-
hance their food and pheromone-odor perception. Alter-
natively, it may require a set of homologous ORs to detect
specific odorants or a combination of similar odorants.
More members of the OR67d family have been observed
in B. minax, which may suggest the importance of enhan-
cing their pheromone perception for mating. BminOR42a
and OR43a.1 were expressed predominantly in females,
suggesting that these two ORs may be involved in recogni-
tion of plant volatiles for oviposition. On the other hand,
BminOR7a.2 was predominantly expressed in the anten-
nae of males, and may be involved in female pheromone
perception. Sex-biased expression of these ORS appears
specific to B. minax since no sex-biased expression of
counterparts was observed in B. dorsalis ORs [65].
Additionally, our results found that BminOR92 have up-
regulated in expression in the rectal glands, which differ
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from most of the ORs up-regulated in the antennae of in-
sect, and may have different physiological functions, such
as sex pheromone production.

Members in the IR family identified here are relatively
conserved, especially with respect to those antennal IR
receptors. The number of antennal IR genes expressed
in B. minax antennae (14) is similar to that in D. mela-
nogaster (14) and other Dipterans. Our phylogenetic
analysis indicated that 14 antennal IRs in B. minax have
orthologs from other Dipterans. According to functional
studies of antennal IRs in D. melanogaster, IR92a has a
narrow tuning function for sensitivity to ammonia and
amines [16]. A combination of IR76b/IR41a is for poly-
amine sensing [17], IR75a/IR8a for acetic acid sensing
[66], DmellR84a/8a for promoting male courtship via
phenylacetaldehyde and phenylacetic acid [19], IR64a/
IR8a for acids sensing [14, 18], IR21a/IR25a for cool
temperatures sensing [25], a complex of IR93a with
IR25a and IR40a/IR68a for moisture detection [24, 26].
The IRs orthologs in B. minax might play the same role
in sensory functions. In addition to these IRs similar to
known Drosophila antennal IRs, we also identified IR75d
in B. minax antennae, its orthologs in other species have
not been functionally verified.

Although transcript abundance of BminGRs is low in
analyzed tissues, the identified unigenes in B. minax all
encode full-length proteins, indicating our transcrip-
tomes were in high-quality. One B. minax GR,
BminGR22, a homolog of GR21a that mediates CO, rec-
ognition, was also highly expressed in antennae. It is not
clear if BminGR22 may also play a role in recognizing
some fruit cues even though its high expression in an-
tennae suggests biological significance in antennal sens-
ing. Further functional analyses are required to identify
its physiological roles. In addition, four B. minax GRs,
BminGR43a, GR64b, GR64e and GR64f, were separately
clustered with a fructose-detecting GR and several other
sugar-detecting GRs from Drosophila, indicating that
they may perform similar functions.

In D. melanogaster, SNMP1 subfamily is antenna-
specific and associated with pheromone-sensitive ORNs,
and is essential for the perception of the pheromone cis-
vaccenyl acetate. In contrast, the general mechanism for
SNMP2 functions remain unclear. In the present study,
three BminSNMPs were identified in B. minax. Among
these, two SNMP1 homologs (BminSNMP1la and 1b) ex-
hibited a clear antenna-predominant expression, sug-
gesting that BminSNMPla and BminSNMP1b may be
associated with pheromone reception.

Two antenna-specific OBPs (BminOBP83a and
OBP83b) were clustered with the OBP83a orthologs
form D. melanogaster, C. capitate, and B. dorsalis, which
were exclusively expressed in antennae, and were re-
ported to play crucial roles in olfactory perception, such
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as pheromone components perception in C. capitate
[67], and attractant detection in B. dorsalis [68]. Further-
more, BminOBP83a and OBP83b exhibited the second-
and third-highest transcript abundance in antennae
among the OBP family members, suggesting that it may
be associated with odorant perception.

In the antennae of B. minax, we identified 4 CSPs with
similarity to homologues from B. dorsalis and D. mela-
nogaster. BminCSP2 was antenna-specific, suggesting
that it may play a role in chemoreception associated
with antifeedants [69]. Further investigations are needed
to reveal the specific functions of BminCSP2.

Conclusions

In conclusion, we identified an extensive set of candidate
genes that may be related to odorant perception in B.
minax by analyzing transcriptomic sequence data. As
the first step towards understanding gene functions, we
conducted a comprehensive and comparative phylogen-
etic analysis and examined OR and antennal IR gene
transcription patterns. Further analysis is needed to ex-
plore the function of these genes using integrated func-
tional studies.

Methods

Ethics statement

The Chinese citrus fly, B. minax larvae collections were
made with the direct permission of the owners of the or-
chards [Yichang district (30.6943° N, 111.2807° E) of
Hubei province] and B. minax culture was maintained in
our laboratory as mentioned below. We reaffirm that
none of the B. minax collections were from National
Parks or protected wilderness areas. Besides, B. minax
are definitely not an endangered species.

Insect rearing and tissue collection

Fallen oranges infested with B. minax larvae were col-
lected from citrus orchards in Yichang district, Hubei
province, China, in late October 2016. In laboratory,
hundreds of larvae were allowed to pupate into sand
with subsequent adult emergence into big mesh cages
supplied with 5% sugar water and brewer’s yeast. The
rearing conditions were as follows: temperature 25 + 1°C,
relative humidity 70 + 10%, and photoperiod 14 h light:
10 h dark. The antennae (300 pairs of each sex) and rec-
tal glands (50 of each sex) were separately excised from
5-day-old adults, and immediately frozen and stored in
liquid nitrogen until use.

cDNA library construction and transcriptome analysis

Total RNA of female antennae above was separately ex-
tracted using TRIzol reagent (Invitrogen, Carlsbad, CA,
USA) following the manufacturer’s instructions. RNA in-
tegrity was determined with an Agilent Bioanalyzer 2100
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system (Agilent Technologies Inc., CA, USA). RNA con-
centration and purity was measured on a Nanodrop ND-
2000 spectrophotometer (NanoDrop Technologies Inc.,
Wilmington, DE). Three micrograms of total RNA per
sample was used for cDNA library construction. cDNA
library was prepared using Illumina’s sample preparation
instructions (Illumina, San Diego, CA). The library was
then sequenced on the Illumina HiSeq2500 platform
(Ilumina, San Diego, CA, United States) to obtain
paired-end reads (150 bp).

Raw reads were processed to remove unknown (poly-N)
or low-quality and adaptor sequences using Trimmomatic
to obtain the clean data [70]. Trinity de novo program
(Version: r20140413p1) with default parameters was used
to assemble the clean reads. Redundant sequences were
removed to obtain unigenes by means of selecting longest
transcript contigs.

Functional annotation

The assembled unigenes were annotated by BLAST-
searching databases with (e-value cut-off <le-5). Data-
bases used for annotation include the non-redundant pro-
tein sequence (Nr), non-redundant nucleotide (Nt), Pfam,
Clusters of Orthologous Groups (KOG/COG), Swiss-Prot,
Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) databases.

Identification of chemosensory genes

To identify candidate chemosensory genes (ORs, IRs,
GRs, SNMPs, OBPs and CSPs), the available sequences
of ORs, IRs, GRs, SNMPs, OBPs and CSPs proteins from
other insect species were used as queries. Related se-
quences were obtained by searching NCBI databases
with keywords “odorant receptor AND insecta”, “iono-
tropic receptor OR ionotropic glutamate receptor AND
insecta”, “gustatory receptor AND insecta”, “sensory
neuron membrane protein AND insecta”, “odorant-bind-
ing protein AND insecta” and “chemosensory proteins
AND insecta”). The retrieved queries were used to blast
against our transcriptomes using tBLASTn with e-value
cut-off <le- 5. Subsequently, all identified candidate uni-
genes were manually checked by BLASTx searches
against NCBI Nr database (e-value <le-5). The ORFs
(Open reading frames) of candidate chemosensory genes
were predicted in the ORF finder tool at the NCBI
(https://www.ncbi.nlm.nih.gov/orffinder/). Protein do-
mains (e.g. transmembrane domains, signal peptides,
secondary structures, etc.) were predicted by queries
against InterPro using the InterProScan Geneious soft-
ware plugin by running batches of analyses (e.g.
HMMPanther, SignalPHMM, HMMPfam, TMHMM,
HMMSmart, Superfamily, etc.). B. minax transcripts
deemed orthologous (based on sequence similarity) to D.
melanogaster sequences were given the same name
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(e.g. DmellR15a, BminIR15a, DmelORco, BminORCco).
Multiple copies of a putative D. melanogaster orthologue
were given the same name followed by a point and num-
ber (e.g. BminOR43a.1, BminOR43a.2, BminOR43a.3,
and BminOR43a.4).

Differential gene expression

The expression levels of these unigenes were calculated using
FPKM method [71], which calculated by RSEM (Version:
v1.3.0) with default parameters [72]. Differential gene expres-
sion in samples was measured using the DEGseq R package
(Version: 1.12.0). DEGseq provides statistical routines for
determining differential digital gene expression. P-value was
adjusted using g-value with q < 0.05 & |log2(foldchange)| > 1
as the threshold for significantly differentially expressed
genes. Heatmaps of gene expression for different chemosen-
sory genes among female antennae, male antennae, female
rectal glands and male rectal glands were generated by R
version 3.4.1.

Phylogenetic analysis

The amino acid sequences of predicted ORs, IRs, GRs,
SNMPs, OBPs and CSPs from B. minax were aligned to-
gether with proteins from Dipterans with ClustalW
method [73], and Maximum-likelihood trees were con-
structed in IQ-TREE (version 2.1.7) using best-fitting
substitution-model [74]. Branch support was assessed
with 1000 bootstrap replicates. Phylogenetic trees were
visualized with FigTree (http://tree.bio.ed.ac.uk/soft-
ware/figtree). OR sequences were obtained from D. mel-
anogaster, B. dorsalis, Calliphora stygia and M.
domestica. The IR data set contained IR sequences from
D. melanogaster, C. stygia, and C. capitate. The GR data
set contained GR sequences from D. melanogaster, B. dor-
salis, and C. stygia. The OBP data set contained OBP se-
quences from D. melanogaster, B. dorsalis, Anastrepha
fraterculus, A. obliqua and C. capitate. The SNMP data
set contained SNMP sequences from D. melanogaster, B.
dorsalis, M. domestica and Anopheles gambiae. For the
CSP data set, we selected CSP sequences from D. melano-
gaster, B. dorsalis, M. domestica and Glossina morsitans
morsitans. These sequences used for constructing phylo-
genetic trees are listed in Additional file 8: Table S5.

Expression analysis by real-time quantitative PCR

The expression profiles of all 40 ORs and 14 antennal
IRs were analyzed using RT-qPCR. Total RNA isolated
from antennae (300 pairs of each sex), rectal glands (50
of each sex), foreleg tarsi (300 pairs of each sex), probos-
cises (50 of each sex) and wings (50 of each sex), and
c¢DNA was synthesized using PrimeScrip RT Master Mix
kit (Takara, China). RT-qPCR experiments including
negative controls (without cDNA template) were per-
formed on a Light Cycler 480 System (Roche Applied
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Science) using a mixture of 10 ul 2x SYBR Green PCR
Master Mix, with the reaction programs: 95°C for 15
min, followed by 40 cycles of 95 °C for 10s and 60 °C for
32s. Then, the PCR products were heated to 95°C for
155, cooled to 60 °C for 1 min, heated to 95°C for 30s
and cooled to 60 °C for 15s to measure the dissociation
curves. Each sample had three biological replicates and
each replicate had three technical duplicates. Relative
transcript abundance was determined using the 244"
method [75]. To normalize the gene expression studies,
two reference genes, a-tubulin (Bmina-TUB) and
glyceraldehyde-3-phosphate dehydrogenase 2 (Bmin-
GAPDH2) were selected in our transcriptomes [76, 77].
Gene-specific primers were designed using Primer3
(http://primer3.ut.ee/) and are listed in Additional file 9:
Table S6. Comparative analyses for each gene among
various samples were analyzed with a one-way nested
analysis of variance (ANOVA), followed by Tukey’s hon-
estly significance difference (HSD) tests implemented in
Prism 7.0 (GraphPad Software, CA). All values are pre-
sented as the mean + SE.

Additional files

Additional file 1: Table S1. Overview of the sequencing and assembly
process. (XLSX 9 kb)

Additional file 2: Table S2. Functional annotation of the unigenes in
different databases. (XLSX 10 kb)

Additional file 3: Figure S1. Results of BLASTx matches of Bactrocera
minax transcriptome unigenes, Gene ontology classification and KEGG
pathway annotation. A: insect species in which homologous genes were
matched. B: Gene ontology classifications of B. minax unigenes. C: KEGG
pathway annotation of B. minax unigenes. (TIF 2126 kb)

Additional file 4: Table S3. Candidate chemosensory genes in
Bactrocera minax. Candidate ORs (sheet 1), IRs (sheet 2), GRs (sheet 3),
SNMPs (sheet 4), OBPs (sheet 5), CSPs (sheet 6) and with gene name,
predicted protein sequences, and the annotation in NCBI-Nr database,
predicted protein domains and expression abundance. (XLSX 68 kb)

Additional file 5: Figure S2. Amino acid alignments of Bactrocera
minax OBPs. Cysteines are indicated by red frames. The cysteines position
are marked at the base. (TIF 5058 kb)

Additional file 6: Figure S3. Amino acid alignments of Bactrocera
minax CSPs. Cysteines are indicated by red frames. The cysteines position
are marked at the base. (TIF 395 kb)

Additional file 7: Table S4. FPKM value of candidate chemosensory
genes in Bactrocera minax. (XLSX 22 kb)

Additional file 8: Table S5. GenBank accession numbers of
chemosensory genes used in phylogenetic analyses. (XLSX 231 kb)

Additional file 9: Table S6. Primers of candidate ORs and antennal IRs
in Bactrocera minax used for RT-qPCR. (XLSX 13 kb)
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