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Abstract

Background: Due to the recent domestication of peanut from a single tetraploidization event, relatively little genetic
diversity underlies the extensive morphological and agronomic diversity in peanut cultivars today. To broaden the genetic
variation in future breeding programs, it is necessary to characterize germplasm accessions for new sources of variation
and to leverage the power of genome-wide association studies (GWAS) to discover markers associated with traits of
interest. We report an analysis of linkage disequilibrium (LD), population structure, and genetic diversity, and examine the
ability of GWA to infer marker-trait associations in the U.S. peanut mini core collection genotyped with a 58 K SNP array.

Results: LD persists over long distances in the collection, decaying to r* = half decay distance at 3.78 Mb. Structure within
the collection is best explained when separated into four or five groups (K=4 and K=5). At K=4 and 5, accessions
loosely clustered according to market type and subspecies, though with numerous exceptions. Out of 107 accessions, 43
clustered in correspondence to the main market type subgroup whereas 34 did not. The remaining 30 accessions had
either missing taxonomic classification or were classified as mixed. Phylogenetic network analysis also clustered accessions
into approximately five groups based on their genotypes, with loose correspondence to subspecies and market type.
Genome wide association analysis was performed on these lines for 12 seed composition and quality traits. Significant
marker associations were identified for arachidic and behenic fatty acid compositions, which despite having low
bioavailability in peanut, have been reported to raise cholesterol levels in humans. Other traits such as blanchability
showed consistent associations in multiple tests, with plausible candidate genes.

Conclusions: Based on GWA, population structure as well as additional simulation results, we find that the primary
limitations of this collection for GWAS are a small collection size, significant remaining structure/genetic similarity and
long LD blocks that limit the resolution of association mapping. These results can be used to improve GWAS in peanut
in future studies — for example, by increasing the size and reducing structure in the collections used for GWAS.
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Background

Peanut is one of the most important oilseed crops in the
world, with many desirable traits: it is high-protein and
nutrient-dense, is edible without preparation, and is easily
grown by small-holder farmers as well as under
mechanization. Peanut has a desirable lipid profile, with oil
that is higher in unsaturated fatty acids than saturated fatty
acids; as such, it may provide numerous health benefits, in-
cluding lowering LDL cholesterol [1]. Breeding for im-
proved seed composition and quality therefore forms an
integral part of most breeding and improvement programs.

Peanut belongs in the Arachis genus in the Fabaceae
family. The genus has nine taxonomic sections based on
morphological, geographical and cross-incompatibility
characteristics across all of its 80 species. Most of the
species are diploids (2n = 2x = 20) with four known an-
euploids (2n = 2x = 18) and five tetraploids (2n = 4x = 40)
including the cultivated form [2—-4]. Cultivated peanut is
broadly classified under two subspecies: fastigiata and
hypogaea, depending on the presence or absence of
flowers on the main axis [5]. There are four main market
types of peanuts grown in the USA - Runner, Virginia,
Spanish and Valencia types. Runner types are the most
widely grown, primarily for processing into peanut but-
ter. Market type classification is based on distinct seed
size and flavor [6], which are difficult traits to accurately
assess and distinguish. This study evaluates, in part, the
genotypic basis for these phenotypic classifications.

The sequencing of the diploid progenitors of tetraploid
peanut [7], (which is available through GenBank and Pea-
nutBase [8]), has made it possible to develop robust geno-
typing platforms such as single nucleotide polymorphism
(SNP) arrays for use in peanut breeding and genetics. The
use of SNPs in peanut genomics and breeding comes with
complexities associated with it being an allotetraploid with
two highly similar subgenomes [7]. This makes it difficult
to accurately call and predict SNP positions and distin-
guish true homologous SNPs (variants at a locus on one
chromosome) from homeologous ones (variants at the
corresponding loci of the chromosomes derived through
polyploidy) [9, 10]. Although accurately calling and pre-
dicting SNP locations and positions in tetraploid peanut
has been difficult [11, 12], an Affymetrix SNP array with
58,000 SNP positions has been developed and successfully
deployed to study genetic diversity — for example, to
examine relatedness in an ICRISAT diversity panel, and to
resolve signatures of selection and tetrasomic recombin-
ation in a set of elite U.S. runner cultivars [13, 14]. Such
advances have made it possible to deploy genomic ap-
proaches such as GWA to enhance and facilitate the dis-
covery of quantitative trait loci (QTLs) and reliable
markers for accelerated crop improvement.

Crop germplasm resources provide a valuable source for
new allelic combinations for use in crop improvement
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programs. Peanut has a narrow genetic base due in part to
its highly self-pollinating nature and its recent origin as a
tetraploid. Peanut is believed to have been a result of a
single hybridization event between two ancestor diploid
species followed by a spontaneous doubling of chromo-
somes [7]. This difference in ploidy limits genetic ex-
change between tetraploid peanut and its wild diploid
relatives in the Arachis genus. The use of a few elite
breeding lines as founders in many breeding programs
further compounds this problem [15, 16]. The effective in-
corporation of crop germplasm resources in breeding pro-
grams can remedy this by broadening the genetic base of
future cultivars. The USDA germplasm collection has over
9000 Arachis hypogaea accessions and over 800 other Ara-
chis species accessions [15, 16]. The large number of acces-
sions makes it hard to utilize these resources in
improvement programs thus, a core collection of 831 ac-
cessions was created to facilitate effective utilization and
management [17]. A subset of the core was further selected
to produce a mini core collection of 112 accessions, chosen
to maximize genetic diversity [17, 18]. Collections such as
the core and mini core sets, which have experienced several
rounds of historical recombination, are more suitable for
association mapping compared to F2 populations that gen-
erally have LD that extends over long distances.

Association mapping relies on markers close to the
causative loci being in high LD with a QTL, but drop-
ping off quickly with increasing distance such that only
markers close to the QTL show a significant association
with the phenotype of interest. The extent of LD and its
decay with genetic distance are useful parameters for de-
termining the number of markers needed to successfully
map a QTL, and the resolution with which the trait can
be successfully mapped. LD is population specific, and
its decay in a population over time is influenced by the
recombination rate between loci and the number of gen-
erations of recombination. Estimates of LD and the ex-
tent of decay with distance, for any population, will be
affected by factors such as non-random mating, selec-
tion, mutation, migration or admixture, genetic drift and
the effective population size [19]. The extent of LD can
be estimated using statistical parameters, D’ and 7 [20],
with 7* being the squared value of the correlation coeffi-
cient of the allelic states of two given polymorphic loci.
The r* parameter is the most commonly used because it
gives a direct measure of the proportion of variance at
the trait locus that can be predicted from the marker. At
7 < ~ 0.2, we expect LD to have been completely eroded,
as it tends towards equilibrium. This is a commonly
used criterion across literature, together with LD decay
at 7* = half decay distance [21, 22].

Several factors besides LD affect the ability to identify
marker-trait associations, including stratification, admix-
ture, or cryptic relatedness within populations. Cryptic
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relatedness is the result of a close kinship relationship
among otherwise unrelated individuals from a collection,
and is hard to account for during association analysis
[23]. Association results are confounded by false associa-
tions that arise due to the underlying structure of the
population rather than a trait-associated locus [24-27].
Model-based methods of studying population stratifica-
tion like FastStructure [28], are useful in inferring struc-
ture, as well as for relating the inference to known
biology or genetic terms through the incorporation of
additional information such as geographic location, spe-
cies group etc. [29].

In this study, genomic characteristics of the U.S. peanut
mini core collection were investigated, including LD,
structure, and the ability to infer marker-trait associations
in this collection. The objectives are: 1) to investigate the
nature and extent of LD and how it relates to different
chromosomes, subgenomes, minor allelic frequency
(MAF) and subspecies groups; 2) to estimate genetic di-
versity and population structure within the U.S. peanut
mini core collection and 3) to determine how these factors
affect genome-wide association analysis in peanut.

Results

One hundred seven diverse accessions from the U.S.
peanut mini core collection were genotyped using a 58 K
Affymetrix SNP array together with six commercial stan-
dards. A total of 13,527 highly polymorphic SNP
markers were selected for downstream analyses. The col-
lection was evaluated in the field (Citra, Florida, 2013—
2015) and harvested seeds assayed for biochemical com-
position. To evaluate for ease of removing the seed coat
from the seed (blanchability), accessions were planted
across three environments (Australia 2013, U.S. 2013,
Australia 2014) and harvested seeds were evaluated.

Genome-wide distribution of SNPs

SNP counts were approximately proportionally dis-
tributed across the 20 chromosomes. There were on
average, 676 polymorphic SNPs per chromosome,
and SNPs were enriched toward chromosome ends
(Fig. 1a). The average distance between SNPs is 175
kb, but the SNP-to-SNP distribution is skewed: 20%
of the marker-to-marker distances are less than 1kb,
and 39% are less than 10kb. Larger regions without
SNP coverage are generally in the large pericentro-
meric regions, where repetitive DNA makes it diffi-
cult to identify unique flanking regions around
SNPs. Chromosomes 1, 10 and 11 had the lowest
proportion of SNPs with 3% whereas chromosomes 2
and 12 had the highest proportion, with 8% of all
polymorphic SNPs followed closely by chromosome
4 with 7% (Fig. la; Additional file 8: Table S2).
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Evaluation of SNP characteristics

Fourteen SNP markers, representing 0.001% of all 13,527
polymorphic markers, had high heterozygosity values ran-
ging from 0.5 to 0.7 and of these, only three had positive
inbreeding coefficients (f). Further, 2% (268) of the
markers had heterozygosity levels ranging from 0.1 to 0.4
with average f of 0.8 (ranging from 0.0 to 0.9). Most of the
SNPs had an inbreeding coefficient of one except for a few
highly heterozygous markers that had negative inbreeding
coefficients. Nine accessions showed very high levels of
heterozygosity, ranging from 10 to 28% among the 13,572
selected markers (Additional file 8: Table S1). Minor allele
frequency of polymorphic SNPs ranged from 0.004 to 0.5
with an estimated average of 0.13. The polymorphic infor-
mation content (PIC) ranged from 0.0088 to 0.66 with an
average of 0.19.

Genetic diversity estimates

The average pairwise divergence among genotypes (1), at
the 13,527 SNP locations, was 0.18799. This represents
the nucleotide diversity per assayed SNP in the mini core.
The expected number of polymorphic sites per nucleotide
(), which estimates the mutation rate in the collection,
was 0.18813 with 13,527 segregating sites. Tajima’s D,
which estimates the normalized measure of difference be-
tween the observed (1) and expected (8) nucleotide diver-
sity was — 0.00252 (Additional file 8: Table S3).

SNP haplotypes

Despite the recent evolution in peanut (hybridization
followed by polyploidization), haplotype blocks identified
in the mini core collection are generally not significantly
larger than 200 kb in size. Depending on the sliding win-
dow size adopted, the number of haplotype blocks iden-
tified ranged from 575 blocks at 2 Mb to 590 haplotype
blocks at 50 Mb window size. Increasing the sliding win-
dow size from 2 Mb to 50 Mb or larger did not have sig-
nificant effect on the number of haplotype blocks
identified. We note, however, that SNP densities and dis-
tributions are a limiting factor in determining both pre-
cise haplotype boundaries and GWA associations.
Although the average density is relatively high compared
to many older conventional marker assays (at 1 SNP per
175kb), the density is nevertheless quite uneven, with
large pericentromeric regions not covered by SNPs (the
largest gaps being ~7Mb in the pericentromeres of
chromosomes 16 and 18). Associations in those regions
may therefore aggregate the effects of several genes, and
association peaks may be located at a considerable dis-
tance from a causal genomic element.

A total of 575 haplotype blocks were identified using a
sliding window of 2 Mb along each chromosome. Block
size varied widely, ranging from 0.002 kb to 199,905 kb
with an average of 28.89 kb. The number of SNPs per
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Fig. 1 Genome-wide SNP and haplotype block distribution. a Distribution of SNPs identified in the minicore collection. b Distribution of
haplotype blocks along each chromosome. Horizontal dashed lines represent pericentromeric start and end positions inferred from
genetic-by-physical plots
J

block ranged from two to 32 with an average of four
SNPs per block. Large haplotype blocks were mostly lo-
cated within the large pericentromeric regions, which is
expected since these regions have low recombination
rates in general (Fig. 1b). Approximate pericentromeric
start and end coordinates were inferred from genetic-by-
physical plots (Additional file 8: Table S4).

Inferring population structure and admixture proportions
Because inferences made on small collection sizes are
particularly sensitive to minor alleles as compared to
those based on larger sizes, three different MAF cutoffs
were investigated. The number of genetically distinct

subpopulations (K) was evaluated for each possible K
ranging from 1 to 10 along with admixture levels for
each accession for data filtered at MAF>0.05 > 0.1
and > 0.2. Subspecies, botanical variety and market type
identifications [30, 31] for each genotype were included
in the analysis to try and relate clustering pattern based
on genetic sequences to known phenotypic classifica-
tions (Fig. 2; Additional file 1: Figure S1).

The most appropriate K used to explain structure in
the data ranged from 4 to 8 depending on MAF. At
MAF >0.05, K=4 and K=5 seems to best explain the
structure in the collection. At K =5, the 107 mini core
accessions clustered approximately according to Market
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hypogaea

saloadsgng

type — though with notable exceptions. For example,
while 43 out of 107 accessions clustered in correspond-
ence to the main market type subgroup, 34 of 107 did
not correspond with the main group, and 30 accessions
had either missing data or were classified as mixed.
Clusters 1 and 2 had mixed membership with almost
equal proportions of both subspecies whereas clusters 3
and 4 consisted predominantly of fastigiata and hypo-
gaea subspecies respectively. The fifth cluster consisted
exclusively of accessions from hypogaea subspecies (Fig.
2). A Fisher exact test showed significance that the ob-
served clustering pattern at K =5 corresponds with sub-
species and market type grouping with p-values =7.1 x
8 and 7.2 x 10™ ® respectively.

Phylogenetic cluster analysis

A phylogenetic network was constructed with 6300 SNPs
filtered for MAF > 0.05. The comparison of the clusters and
market classes showed significant admixture. The reticula-
tion pattern suggests a complex network relationship
amongst the 107 accessions plus 6 cultivars — likely reflect-
ing common breeding histories along the diversification
paths of these accessions and some degree of hybridization
among the accessions (Fig. 3).

Accessions clustered together in five main groups,
with some correspondence to subspecies and market
class, but with numerous exceptions (Fig. 3). The
top right nodes in Fig. 3 consisted predominantly of
Valencia type accessions from fastigiata subspecies
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and a few Spanish and mixed types whereas the top
left nodes consisted mostly of Spanish type acces-
sions that were classified as hypogaea subspecies
with only a few fastigiata subspecies, even though
Spanish types are classically fastigiata subspecies var.
vulgaris. The bottom right nodes were predomin-
antly hypogea with a few fastigiata whereas the bot-
tom left consisted mostly of fastigiata and a few
hypogea subspecies. The nodes in the mid-section
constituted the fifth group with all the commercial
cultivars except Tamnut OL 06 [32] (Fig. 3). A
Fisher exact test showed significance that the ob-
served clustering pattern based on genotypes corre-
sponds approximately with subspecies and market
type grouping, with p-values =5.8 x 10" ' and 1.8 x
107 ¢ respectively.

Linkage disequilibrium and minor allele frequency

To study the effect of minor alleles on the nature of
LD and the extent of its decay, three different MAF
threshold cutoff levels (0.05, 0.1 and 0.2) were tested.
Mean LD among all SNPs was calculated across the
entire genome over different map distances. The SNPs
were pooled over all chromosomes in each sub-
genome to compute genome-wide mean LD for each
distance bin.

Mean LD estimates generally declined with increasing
bin distance and LD was significantly affected by MAE,
especially over longer distance bins (>7.28 kb), where
mean LD declines to approximately half its original
value (Fig. 4a). For MAF>0.05, mean LD estimates
ranged from 7 =0.87 (0-0.1kb) to *=0.236 (distance
>62,100 Mb). Mean LD is high (*>0.82) at short
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distance bins (< 0.5 kb) and declines with increasing bin
distance. It drops to r*=0.44, which is approximately
half the original value, at bin distance 78.7 kb — 127 kb
(Table 1; Additional file 8: Table S5).

LD decay with distance

The LD statistic #* was used to estimate LD between
pairwise comparisons of markers with sliding window
size of 50 markers for each of the 20 chromosomes
filtered for MAF greater than 0.05, 0.1, and 0.2. LD
decay distance increases with MAF, the increase is
very significant at MAF > 0.2 (Fig. 4; Additional file 8:
Table S6). At MAF=>0.05, LD decays to r*=half
decay distance at 3.78 Mb. The rate of decay varies
for each chromosome. LD persists the longest in
chromosome 4 (9.67 Mb) and chromosome 20 (6.75
Mb). The decay distance is shortest in chromosome
12 (1.41 Mb) and chromosome 13 (1.54 Mb). Chromo-
somes 4 and 14 have high LD, as do chromosomes
10 and 20 (Table 2; Additional file 2: Figure S2; Add-
itional file 3: Figure S3a).
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Linkage disequilibrium and population structure

To study the effect of population structure on the nature
and extent of LD, the mean LD and average LD decay
distance were estimated separately for each of the two
subspecies fastigiata and hypogaea, using 6300 SNP
markers filtered for MAF > 0.05. Subspecies classifica-
tions are based on similar studies [30, 31] shown in de-
tail in Additional file 8: Table SA.

On average, mean LD estimates varied significantly be-
tween the two subspecies. Estimates are higher in hypo-
gaea than in the fastigiata subspecies. Unlike the
hypogaea subspecies, mean LD values are not signifi-
cantly different between the fastigiata subspecies and
the estimates from the larger pool of 113 accessions plus
cultivars. The decay distance is significantly longer in
hypogaea subspecies (average decay distance = 13.52 Mb)
than in fastigiata (average decay distance =3.41 Mb).
There was no significant difference between the extent
of decay between fastigiata subspecies and the larger
collection - average decay distance in the 113 collec-
tion =3.78 Mb (Additional file 3: Figure S3; Additional
file 8: Table S7).
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MAF thresholds for r* = half decay distance. LD decay distance is given in mega base pairs
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Table 1 Mean LD estimates among all SNPs with MAF = 0.05 at different physical distances across the genome

Distance (kb) n mean r? SDr Distance (kb) n mean r? SD
0-0.10 301 0.870 0.268 78.8-127.0 1600 0440 0.388
0.10-0.16 141 0.827 0318 127.0-204.0 1903 0.367 0.366
0.16-0.26 225 0.826 0314 204.0-329.0 3005 0.348 0.352
0.26-0.42 278 0.828 0321 329.0-530.0 3630 0.245 0.283
0.42-0.67 348 0.793 0.340 530.0-853.0 4385 0.208 0.248
0.67-1.08 416 0.796 0.344 853.0-1370.0 7389 0.236 0.265
1.08-1.74 489 0.776 0.357 1370.0-2210.0 12,202 0218 0.243
1.74-2.81 427 0.743 0.369 2210.0-3560.0 17,026 0210 0.236
2.81-452 378 0.745 0.358 3560.0-5740.0 22,778 0210 0.235
452-7.28 331 0.669 0.398 5740.0-9240.0 25,869 0.206 0225
7.28-11.7 331 0.649 0406 9240.0-14,900.0 31,364 0.207 0.229
11.7-189 612 0.644 0.392 14,900.0-24,000.0 38,171 0.219 0.236
189-304 603 0.568 0408 24,000.0-38,600.0 45,340 0216 0.245
304-489 808 0.524 0404 38,600.0-621,000 43,255 0212 0.246
489-78.8 1027 0450 0.386 62,100-100,000 94,337 0236 0.254

n number of r* pairwise values, SD standard deviation, kb 1000 base physical distance

Genome-wide association analysis (GWA)

Table 2 Average LD decay distance estimated for each The SNP-basedgenotype-phenotype associations for fatty
chromosome and sub-genome acid composition are displayed in Manhattan plots of —log
Chromosome Minor Allele Frequency (p-values) and in Q-Q (quantile-quantile) plots of expected
Sub-genome A > 005 =01 >02 (under a Gaussian distribution) versus observed p-values
1 507 2582 7109 (Fig. 5; Additional file 4: Figure S4; Additional file 5: Figure
5 538 499 1714 S5; Additional file 6: Figure S6; Additional file 7: Figure S7).
3 180 <08 1894 Additionally, the Manhattan and Q-Q plots for total pro-
tein, total oil content and blanchability are shown in Add-
4 267 2799 1% itional file 7: Figure S7. The most probable associations
> 355 841 3432 detected in the GWA study are listed in Table 3; Additional
6 1.79 4.10 1797 file 8: Table S8, where, for the largest peaks, only the most
7 234 849 1682  significant SNPs are reported.
8 166 494 19.97 Arachidic and behenic saturated fatty acids showed
9 303 1731 —_— moderately strong associations in this study. Several
plausible candidate genes associated with fatty acid me-
10 >0 1396 67.16 tabolism were identified in these regions (Table 3). At
Average 377 1204 3822 the 5% adjusted Bonferroni threshold, eight markers
Sub-genome B showed significant association with behenic saturated
1 595 24.13 9831 fatty acid, and two showed associations with arachidic
D 141 403 ses  fatty acid. The marker AX-147251762; 3,275,121 bp on
= 154 403 258 chromosome 16 (B06) was found to associate with behe-
nic acid with p-value of 8.25E-11. This SNP is 356.1 kbp
1 418 18.74 7579 upstream of a fatty acid desaturase 2 gene, Araip.D6HPL
15 309 . 6211 (Araip.B06:3631192..3632515). There are 21 other gene
16 236 570 4867 models predicted within this region. Additionally, markers
17 326 9.86 91.70 AX-147247765; 90,017,134bp and AX-147248572; 127,
18 35 932 s706 /88,433 bp on chromosome 14 (B04), had significant asso-
19 77 1849 5259 ciations with respective p-values of 1.7E-11 and 1.6E-11.
Marker AX-147248572, is 53.67 kbp upstream of Ara-
20 675 1672 %13 ipR5WAR (Araip.B04:127839622..127842106), which is
Average 378 11.92 6529 predicted as a thioesterase superfamily protein.
Genome-wide Average 378 11.98 5175 The SNP AX-147237808 at 6,039,768 bp on Chromo-

Values reported for LD decay at r* half decay distance in mb some 11 (BOI) signiﬁcantly associated with arachidic acid
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Fig. 5 Association results for arachidic and behenic saturated fatty acids. a Histogram showing phenotypic distribution of arachidic, behenic fatty
acids and blanchability. The x-axis shows BLUP values over three replicates for fatty acids and BLUPs over three locations for blanchability. The y-
axis represents the number of individuals. b Manhattan and QQ plots for Arachidic and Behenic fatty acids. In the Manhattan plots, the blue
horizontal line represents a suggestive line defined at 3.71 x 10~ * and the red line represents an adjusted 5% multiple tests Bonferroni corrected
threshold cut off at 1.86x 107

with p-value of 3.52E-09. This marker is 75.96 kbp up-
stream of Araip.9YT86, a non-lysosomal ceramidase pre-
dicted gene. Four other genes are predicted within this
75.96 kbp region. SNP AX-147255620, at 37,296,448 bp on
chromosome 17 (B07), is associated with arachidic acid
with p-value409E-06. This marker is 66.12 kbp downstream
of a flavin-binding monooxygenase family protein (FMO3),
Araip.L66QB (Araip.B07:37228337..37230328).

Each of the top SNPs for the remaining weak, non-
significant marker- trait associations were examined

and additional candidate loci that could explain the
observed marker association were identified (Add-
itional file 8: Table S8).

Blanchability in the U.S. peanut mini core

Multiple tests were carried out for blanchability using
both GLM-PCA and MLM-PCA + Kinship models. Two
markers consistently showed strong, though not signifi-
cant associations at the adjusted Bonferroni corrected
cutoff threshold, for all the tests. Marker AX-147230936
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Table 3 Summary of significant associations and predicted candidate genes for arachidic and behenic fatty acids

Trait Marker Chr  Pos P-value Marker r* Candidate genes  Gene annotation

Arach-idic ~ AX-147237808 BO1 6,039,768 3.52E-09 051845424  Araip.ZQ4WS Non-lysosomal ceramidase
AX-147237808 BO1 6,039,768 3.52E-09 0.51845424 Araip.9YT86 Non-lysosomal ceramidase
AX-147255620  BO7 37,296,448 496E-06 0316757 Araip.L66QB Flavin-binding Monooxygenase family protein
AX-147255620 BO7 37,296,448 496E-06 0316757 Araip.L66QB ATP binding Microtubule motor family protein
AX-147220134  A04 74,357,243 1.80E-04  0.214561 - -

Behenic AX-147247765  B04 90,017,134 1.74E-11 038628 Araip.10024352 Palmitoyl protein thioesterase family protein
AX-147248572  B04  127,788433  164E-11 038871 Araip.10024375 Acetylglucos-aminyltransferase familyprotein
AX-147248572  BO4 127,788,433 1.64E-11 0.38871 Araip.10024487 Thioesterase superfamily protein
AX-147251762  BO6 3,275,121 8.25E-11 0.39006 Araip.1001739%4 Fatty acid desaturase 2
AX-147259171 B0O8 122074815  599E-06  0.23662 - -

AX-147209429  AO01 9,155,638 1.30E-10  0.3855 Aradu.10033983 Diacylglycerol Acyltransferase family
AX-147209429  A01 9,155,638 1.30E-10 03855 Aradu.10033986 Diacylglycerol Acyltransferase family

Abbreviations in the table: chr chromosome, pos Marker position

at 34,653,638 bp on chromosome 8 (A08) showed associ-
ation with a P-value of 2.14E-04 and marker AX-
147253931 at 131,362,404 bp on chromosome B06 with
a P-value of 2.74 E-04 (Additional file 7: Figure S7; Add-
itional file 8: Table S8).

The analysis was repeated using the GAPIT package in R
version 3.3.2 using MLM with PCA and Kinship. And
again, SNP AX-147253931 at 131,362,404 bp on chromo-
some 16 (B06) with a P-value of 1.56E-04 and SNP AX-
147247686 at 76,220,065 bp on chromosome 14 (B04) with
a P-value of 3.99E-04 showed strong, though not significant
association (Additional file 8: Table S8).

We found the genomic region spanning 130,111 kb to
131,362 kb on chromosome 16 (B06) to consistently as-
sociate with blanchability despite the lack of statistical
significance. This genomic region has 75 candidate
genes, three of which show elevated expression in the
seed pericarp: Araip.LS9BW and Araip.Q8ZS3, which
are chalcone synthases, and Araip.J6A49, which is an
ATP binding protein (Additional file 8: Table S8).

Discussion
Evaluation of SNP characteristics
Some markers consistently exhibit unusually high levels
of heterozygosity across many accessions that otherwise
appear homogenous. The excessively heterozygous
markers could be due to the probes detecting homeologs
and failing to distinguish between the two highly similar
sub-genome sequences. Homeologous sequences which
are a result of chromosome duplication events in mei-
osis I and polyploidy, generate interfering signals to
DNA bases being assayed which makes it hard to score
SNP markers in peanut and other polyploids [9].

Nine mini core accessions have high levels of heterozy-
gosity, ranging from 10 to 28%, and several other

accessions showed moderate, but greater than expected
levels of heterozygosity — these could be a result of recent
hybridizations - even though peanut is putatively highly
self-pollinating. Since the purified mini core population
was not generated via single seed descent method [5], the
individuals chosen for seed increase could have been
highly heterozygous from the start, and the heterozygosity
persisted during seed increase.

Outcrossing during seed increase could also explain some
of the high heterozygosity levels reported. Ambiguous SNP
calls mostly occurred in particular regions of the genome in
one or a few accessions, often interspersed with tetrasomic
calls (tetrasomic regions occur where sequence exchange
and homogenization has occurred between the subge-
nomes). These putatively-tetrasomic regions showed little
or no diversity, and therefore were excluded from the set of
13,527 informative markers analyzed.

Almost all the highly heterozygous markers had nega-
tive inbreeding coefficients, while most SNPs had an in-
breeding coefficient of one. The inbreeding coefficient
(f), measures the probability that two alleles at any locus
in an individual are identical by descent from the com-
mon ancestor(s) of the two parents. These results dem-
onstrate that the mini core accessions have little or no
evidence of inbreeding except for a few loci where f was
less than one.

Genetic diversity estimates

Tajima’s D distinguishes between randomly changing loci
and those evolving non-randomly as a result of direc-
tional selection, introgression, genetic bottleneck and/or
drift [33]. Generally, a negative value for Tajima’s D is in-
dicative of an excess of rare alleles within a collection.
The observed Tajima’s D value of - 0.00252 shows that
the mini core collection is evolving mostly neutrally al-
though filtering for less heterozygous markers could
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have left fewer than expected rare alleles in the collec-
tion. For the mini core collection, such a phenomenon
could probably have been due to the selection for diver-
sity in the U.S. peanut mini-core and may also reflect
population size expansion after a bottleneck — such as
following the origin of tetraploid peanut. A large propor-
tion of the markers had minor alleles with frequency less
than 5%. Small populations tend to have less allelic di-
versity compared to much larger populations [34]. Also,
although the mini core was selected to maximize the
genetic diversity in the peanut core and germplasm col-
lection, we found a high amount of genetic similarity
among the accessions which is unsurprising since peanut
has long been known to have low genetic diversity to
start with. Better SNP calling algorithms with the ability
to predict SNP positions and distinguish true homolo-
gous SNPs from homeologous ones could improve
marker behavior and consequently conclusions drawn
from SNP-based studies in peanut.

Population structure and phylogenetic analysis
Understanding population structure is useful for effectively
utilizing genotypes for breeding purposes. FastStructure is a
variational Bayesian framework for posterior inference that
assigns individuals in a sample to a subpopulation, or
jointly to two or more subpopulations for genotypes with
admixed sets of alleles at their loci. Structure analysis iden-
tified 4 to 5 subgroups, similar to other studies [30, 31].

Results also show high levels of admixture, which sup-
ports hybridization or outcrossing among the individ-
uals. Although it has been shown that minor alleles
affect population structure this is not apparent in the
U.S. peanut mini core [35]. This could be due to the
small population size under study (only 107 accessions
used in the structure analysis).

The evolutionary relationship(s) between nucleotide
sequences, genes and/or species is revealed through a
phylogenetic analysis and is often displayed in the form
of a bifurcating phylogenetic tree. However, in cases
where hybridization, recombination, gene duplication or
horizontal gene transfer is believed to have occurred, a
bifurcating tree structure is insufficient in displaying
such reticulate relationships. The complex clustering
pattern shown in the SplitsTree4 graph is consistent
with the high levels of admixture observed in the struc-
ture analysis. In both the structure and phylogenetic net-
work analyses, the clustering pattern is not consistently
explained by market type nor and subspecies classifica-
tions, although a Fisher exact test showed significance in
correspondence. This is similar to findings in previous
studies using SSR makers [30, 31, 36]. The numerous ex-
ceptions may indicate that traits associated with market
type are determined by small genomic regions, so that
the phylogenetic signal from those regions is swamped
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by other regions. It may also indicate that market type
traits are complex, subjective, and difficult to measure
even by experts in the field.

Another probable reason for the incoherent clustering
pattern of the genotypes by market class and sub species
groupings could be that both classifications were incon-
sistently scored lending strong genotypic evidence to the
need for reclassification as previously observed [37].
Classifying accessions according to market type is highly
subjective and the traits are difficult to accurately score
in the field. In any case, market type may not be well
predicted by genotype and thus phylogenetic clustering
is only loosely associated with market type.

Linkage disequilibrium in the U.S. peanut mini core

LD is quantified by comparing haplotype frequencies ob-
served in the data to their expected frequencies based on
independence. In the U.S. mini core collection, mean LD
estimates generally declined with increasing bin distance
as expected. Mean LD dropped from 0.87 to half /* of
044 at 78.7-127kb. LD estimates were significantly af-
fected by MAF, especially over longer bin distances. This
is contrary to findings in maize where MAF was shown to
significantly affect mean r* estimates, especially at short
distances between 0 to 10kb and the effect was not so
pronounced over longer bin distances [38].

Minor alleles shift 7* values down, leading to the under-
estimation of LD means and LD decay distances. This is
consistent with findings that showed that rare SNPs tend
to have lower pairwise values compared to more common
SNPs [39]. The dramatic difference in LD estimates with
varying MAF thresholds suggests that genome-wide esti-
mates of LD based on relatively few samples are very sen-
sitive to MAF compared to relatively larger number of
samples with over 21,000 SNPs or LD estimates in short
sequence stretches [40, 41]. It is widely recommended to
filter SNP data for MAF. The most commonly used
threshold of MAF > 0.05 gives moderate and more repre-
sentative 7* mean values and LD decay distances com-
pared to all the other thresholds investigated.

Average LD estimates persisted over long distances,
decaying to #*=half decay distance at 3.78 Mb in the
collection. Contributing factors could be that cultivated
peanut is a self-fertilizing species (resulting in slower
breakup of LD blocks), and likely went through an ex-
treme bottleneck at the time of tetraploidization. This
means that it is expected to have a mostly homozygous
genetic background with a relatively low number of de-
tectable recombination events between loci, thus the ob-
served low rates of LD decay across the genome [42, 43].
In the hypogaea subspecies, LD decays over a signifi-
cantly longer distance compared to the decay distance in
fastigiata subspecies.
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Our results show little or no difference in LD decay dis-
tance between fastigiata subspecies and the entire collec-
tion, which is contrary to results from a study using 392
SSR markers that reported LD to have persisted over 10
cM in the entire mini core collection and 20 cM in fasti-
giata subspecies [31]. However, LD has also been shown
to be higher in small sample sizes, with the trend being
more noticeable in LD measured across marker intervals
greater than 5 kb [38]. Therefore, we suggest caution when
interpreting these results, especially the marked disparity
in LD decay distance between the two subspecies fasti-
giata and hypogaea which was investigated using a subset
of 59 and 67 accessions, respectively. The extent of LD is
highly heterogenous across chromosome regions — gener-
ally long in genic regions and short in intergenic regions. A
low and non-uniform SNP density across each chromo-
some (especially after filtering for MAF > 5%), hampers the
ability to draw conclusions on the variable patterns of fine-
scale LD across the genome except for general trends since
SNP density is not the same in genic vs intergenic regions.

Altogether, these results show that LD persists over a
long distance in the U.S. mini core peanut collection
and that the nature of LD and the extent of its decay are
affected by minor alleles as well as population structure.
These large blocks of persistent LD with a low decay
rate make it hard to achieve high resolutions for fine
mapping, or for identifying marker-trait associations.
GWA relies on markers proximal to the causative loci
being in high LD with the QTL but this should quickly
drop for those markers further from the QTL otherwise
mapping resolution is limited. Low mapping resolution
can be overcome by genotyping at a higher marker dens-
ity or by using collections that have experienced suffi-
cient rounds of recombination within the desired region
to breakdown persistent LD blocks.

LD based association mapping

The mini core collection was phenotyped for several
biochemical traits but characteristics of the collection
and of the measured traits resulted in generally insignifi-
cant association values except for arachidic and behenic
fatty acid composition, which showed significant associa-
tions. Although present in very small quantities in pea-
nut, behenic and arachidic fatty acids have been shown
to raise cholesterol levels in humans [44].

Based on an adjusted 5% Bonferroni corrected cutoff
threshold of 1.86 x 10™°, two markers appear to associ-
ate significantly with arachidic acid and eight with behe-
nic acid. These markers offer good targets for further
validation and future studies based on their proximity to
candidate genes implicated in some form of fatty acid
metabolism. The SNP on B01 is near two predicted non-
lysosomal ceramidase proteins, Araip.ZQ4WS and Arai-
p.9YT86. Ceramidase has been shown to catalyze the
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hydrolysis of ceramide to sphingosine and fatty acid, and
possibly also the reverse reaction [45]. The SNP on
chromosome B07, is 66.12 kbp downstream of a flavin-
bindingmono-oxygenase family protein which has been
linked to polyunsaturated fatty acid metabolism and
lipid homeostasis [46].

For behenic acid, the SNP on chromosome B06 was
found to be 356.1 kbp upstream of Araip.D6HPL pre-
dicted as a fatty acid desaturase 2 gene (FAD2) with GO
terms for lipid metabolic process and oxidation-reduction
process. FAD2 enzymes catalyze the oxidation of oleic acid
to linoleic acid [47-49] thus increasing rancidity and off
flavors. Functional mutations in the ahFAD2 genes, was
shown to control the conversion of oleic acid to linoleic
acid during seed development and thus resulted in the tar-
geted breeding of “Hi-Oleic” peanuts with an improved
shelf-life [50, 51]. There are 21 other gene models pre-
dicted within this 356.1 kbp region.

Two other SNPs on chromosome B04 are in proximity
to two gene models with the predicted function of a pal-
mitoyl protein thioesterase family. Palmitoyl protein
thioesterases catalyze the removal of thioester-linked fatty
acyl groups like palmitates from modified cysteine resi-
dues [52]. These genes, Araip.2TH5] and Araip.R5W4R,
are associated with GO Terms; GO:0008474 for palmi-
toyl-(protein) hydrolase activity and GO:0002084 for pro-
tein depalmitoylation. Lastly, the marker on A0l was
found proximal to Aradu.6I2MF and Aradu.UR9Q8, pre-
dicted as diacylglycerol acyltransferase protein family. Di-
acylglycerol acyltransferase 2 has been shown to link
glucose utilization to fatty acid oxidation. It has been
shown to specifically facilitate the channeling of de novo
synthesized fatty acids into a rapidly mobilized pool of tri-
acylglycerol [53]. These genes are associated with GO:
0004144 for Diacylglycerol O-acyltransferase activity.

Associations for blanchability were not significant at
the applied adjusted Bonferroni threshold but the re-
gion on chromosome B06 had plausible candidate
genes with strong expression in the seed pericarp and
require additional evaluation. Chalcone synthase is
the first committed enzyme in the flavonoid biosyn-
thesis pathway which among other things is associ-
ated with pigmentation and plant defense mechanisms
against stress [54]. In peanut, blanchability is the ease
with which the seed coat is completely removed from
the seed prior to processing into various confection-
ery products. Most of the reported candidate genes
show tissue expression in the seed and pericarp ex-
cept for a few, like Aradu.UR9QS8, which is mostly
expressed in the peg, vegetative shoot tip and main-
stem leaf [55]. These results demonstrate the poten-
tial for GWA to discover candidate genes and reliable
markers associated with important traits for peanut,
despite using relatively few accessions.
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In addition to these traits, several other fatty acid com-
ponents, total oil and total protein were analyzed for asso-
ciations. The lack of significance in association for many
of the traits could be due to several factors, including mul-
tigenic or complex control of the traits, small sample size,
structure, and genetic similarity within the mini core ac-
cessions. The power of GWA to detect a true association
between a SNP and a trait of interest has been shown to
be limited by both the effect size and frequency of occur-
rence of the allelic variant(s) explaining the trait within
the population [42, 56, 57]. A small population size might
therefore lead to the detection of significant GWA signals
for traits, if such are, under the control of a single gene or
a small group of genes with large effect sizes. However,
this is still highly dependent on the characteristics of the
population like the nature and extent of LD, kinship and
structure [42, 58, 59].

From structure results, we were able to identify four to
five sub-populations, but GWA results were optimized at
two to four PCA levels depending on the trait. This is not
atypical as PCA estimates genetic background derived
from a set of independent genetic markers and uses these
to control for population stratification whereas methods
like FastStructure use a set of unlinked markers to estimate
ancestry probabilities for each individual and thus provides
more information about the level of stratification within a
collection of individuals [60]. Even after controlling for
structure, there are still other confounding factors that re-
main unaccounted for, as shown in deviations from the
main diagonal in the QQ-plots. Unrecognized population
structure or admixture confounds associations between ge-
notypes and phenotypes leading to false results [23].

Unlike with Arabidopsis and other highly self-fertilizing
species, where a small collection number was sufficient
for GWA to detect strong associations [42, 58, 59], our
collective results show that this is not plausible with pea-
nut due in part to genome complexities coupled with a
close kinship and relatedness amongst accessions and cul-
tivars. A similar study using 81 SSR markers reported no
associations except for the well characterized ahFAD2
markers and an association for linoleic acid [30]. It re-
quires a relatively large and carefully chosen collection of
accessions for GWAS to detect meaningful associations in
peanut, even for qualitatively inherited traits with large ef-
fects, in spite of its highly self-fertilizing nature.

Conclusions

This study offers insights into peanut diversity and pro-
vides valuable information to peanut breeders and genet-
icists toward variety improvement. The study provides
information about the relatively high degree of structure
in the U.S. peanut mini core collection and suggests that
structure will likely be a challenge for most association
studies in peanut — as will the generally-high LD, and
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complications due to paralogy of markers in this tetra-
ploid species. Nevertheless, this study did identify some
marker-trait associations, even considering the chal-
lenges of this collection and species. We found LD to
persist over long distances in the collection, decaying to
#* = half decay distance at 3.78 Mb. The nature of LD
and the extent of its decay varied widely across the gen-
ome and is affected by both minor allele frequency and
population structure. Structure within the collection is
best explained when separated into four or five groups
(K=4 and K=5) with high admixture proportions. In
general, our findings show that the U.S. peanut mini
core collection may not be well suited for GWAS due to
its limited population size, structure/genetic similarity,
and long LD blocks that limit the resolution of associ-
ation mapping. We identified candidate loci for traits
analyzed and suggest follow-up studies. Work is on-
going to genotype the larger core collection of ap-
proximately 831 accessions to facilitate the discovery
of reliable markers associated with traits of interests
and facilitate the discovery of new genes or allelic
variants controlling these traits.

Methods

Phenotypic evaluation in the U.S. peanut mini core

Seeds were obtained from the USDA Plant Genetic Re-
sources Conservation Unit (PGRCU) in Griffin, Georgia
and planted at the University of Florida Plant Science
Research station in Citra, Florida, using the standard
planting procedures at the PGRCU for peanut. In brief,
each accession was planted in a two-row plot 3m in
length with 75 cm row spacing. Each plot was spaced 3
m apart in the planting direction with a 1.5 m inter-row
spacing to minimize cross contamination. Seeds were
planted at a density of 50 seeds/row at a depth of 3.5
cm. The experiment was planted using an augmented
randomized block design with three blocks over three
growing seasons (2013, 2014 and 2015). The 107 mini-
core lines were replicated once in each block, along with
six commercial standards in each block. These included:
Bailey [61], Florida Fancy (PVP 200800231 Sep 2012),
Jupiter [62], Red River [63], Tamrun OL11 [64] and
Tamnut OL 06 [32].

Biochemical analysis

Three seeds of harvested mature peanuts were flash fro-
zen with liquid nitrogen, ground to a fine powder and
stored at — 20 °C prior to analysis. Biochemical data were
collected on total protein content, total oil content, and
fatty acid composition. Protein content in seed was cal-
culated using total nitrogen detection via Kjeldahl diges-
tion, and the standard conversion factor of 5.46 was
used for raw protein content calculation. Total oil was
calculated using an extraction procedure from Jean
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Thomas (unpublished). In brief, approximately 2 ml of
50-50 hexane tert-butyl ether was added to 0.2g of
ground tissue in a tube. The tube was vortexed, capped
and placed under a fume hood for 10h. The tube was
centrifuged and the supernatant carefully transferred
into a pre-weighed 16 x 125 mm tube (call this weight a)
. This process was repeated three times to yield approxi-
mately 6 ml of total supernatant in the pre-weighed tube.
The tube was then placed in an evaporating chamber in
a water bath heated at 40 °C and nitrogen gas was passed
into the chamber to purify the oil from the hexane tert-
butyl ether extractant. The tube, now containing purified
oil, was re-weighed (call this weight b). The weight of
the pre-weighed tube was subtracted from this weight to
give the weight of the extracted oil. The percent oil com-
position was calculated as: Y = (b-a) / (0.2*3).

To determine fatty acid composition, one drop of the ex-
tracted oil (approximately 0.025 g) was dissolved in 200 puL
of hexane. 200 uL of an esterification mixture containing
one-part sodium methoxide, four parts petroleum ether, and
two parts ethyl ether was added to the vial, and vortexed.
An additional 600 puL of hexane was added to the vial, vor-
texed, and allowed to sit for 30 min, at room temperature,
prior to analysis. An Agilent 7890 gas chromatographer unit
equipped with a flame ionization detector (FID) was used
for fatty acid determination. A 15m Agilent/J&W DB-
225narrow-bore column (0.25 mm) with a 60:1 split inset
was set to an internal temperature of 280 °C. A 1 pL injec-
tion volume was used and the carrier gas, helium, was set at
a flow rate of 1 mL/minute. The detector temperature was
set to 300 °C and total run time was set to 17 min per sam-
ple. The retention time in minutes for the fatty acids are as
follows: palmitic (1.619), stearic (2.465), oleic (2.638), linoleic
(2.878), arachidic (3.500), gadoleic (4.154), behenic (6.419)
and lignoceric (9.328). The resulting peak heights were re-
corded, and the height of individual peaks was divided by
the combined height of all peaks to calculate percentage of
total oil for each fatty acid component.

Blanchability in peanut is the ability to completely re-
move the seed coat from the seed. It was evaluated in the
peanut mini core in three environments (Australia 2013,
US.A 2013 and Australia 2014) as described previously
[65]. Blanching was found to be a highly heritable trait with
variation mainly explained by genotypic variance rather en-
vironmental variance [65]. An overall prediction of the ge-
notypes across the three locations was used to generate
best linear unbiased predictors (BLUPs) for each genotype.

Genotyping, SNP performance and quality

All seeds for this study were ordered from the purified
peanut mini core collection [5] maintained at USDA-
ARS Plant Genetic Resources Conservation Unit in
Griffin, GA. DNA was extracted directly from a single
seed per accession using an E.Z.N.A. Omega Bio-Tek kit
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(Doraville, GA). A single seed for each genotype (acces-
sion) was utilized to extract DNA. A small chip (~75
mg) distal from the embryo of each genotype, was cut
using a razor blade placed in a 2 mL tube along with two
tungsten carbide beads and P1 buffer from the kit. DNA
was extracted from the chip following the instructions
from the E.Z.N.A. DNA extraction kit.

Of the 58,000 SNP positions present in the Affymetrix
fixed array [13, 14], all SNP positions were evaluated
and 13,527 SNPs were selected for use in this study on
the basis of interpretability (ability to score alleles as
coming from the A or B subgenomes) and for poly-
morphism relative to the U.S. peanut mini core plus six
select commercial varieties.

Genetic diversity and haplotype blocks

SNP genotype data was used to study genetic diversity
and the genetic relationship among individuals of the
mini core collection. Allele frequencies, major and
minor gamete frequencies were calculated using the soft-
ware TASSEL version 5.2.39 using default settings [66].

The polymorphic information content (PIC), heterozy-
gosity, within-population inbreeding coefficient and gene
diversity was calculated using the software PowerMarker
version 3.25 using the default settings [67].

The average pairwise divergence among genotypes, which
represents the nucleotide diversity per bp, 1 (pi) and the ex-
pected number of polymorphic sites per nucleotide, 6
(theta), were estimated using the software program TASSEL
v5.2.39 using the default settings. The normalized measure
of difference between the observed (i) and expected (8) nu-
cleotide diversity, Tajima’s D, was also computed. Haplo-
types were determined using options “-dog --blocks no-
pheno-req” in PLINK v1.90b4.4 [68]. The maximum size of
blocks was set at the default level of 2 Mb.

Population structure

Population structure was determined using the software
program FastStructure, version 1.0 and the appropriate
number of model components that explain structure in the
dataset was determined by running a python script, choo-
seK.py [28]. Admixture proportions were visualized in R
statistical software program version 3.3.2 using the R pack-
age, Pophelper version 2.2.3 [69]. A phylogenetic network
was constructed using the SplitsTree4 software [70]. Mar-
ket type, botanical variety and subspecies classifications
were obtained from GRIN-Global (https://npgsweb.ars-
grin.gov) and previous publications [30, 31, 46].

Linkage disequilibrium and decay

SNP markers were filtered for a minimum count of 100
known alleles and minor allele frequency (MAF) of 0.05,
0.1, and 0.2. LD analysis was performed for each
chromosome, by computing 7 values for all pairwise
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marker comparisons using a sliding window size of 50
markers around the current site, in TASSEL v5.2.39.
Marker positions were then used to investigate LD decay
along each chromosome and across the entire genome.
Background LD was estimated as the 90th percentile of
the 7* value of marker-pairs on different chromosomes.
LD decay distance was determined by fitting a non -lin-
ear model using the Hill and Weir method, later modi-
fied by Remington et al., with 7> threshold set at 0.2 and
#* = half decay distance. To estimate the effect of popula-
tion structure on LD decay, LD decay within each sub-
species was analyzed.

Genome-wide association analysis

Genome-wide association (GWA) was performed using a
weighted mixed linear model (MLM) at optimum com-
pression level and variance components were estimated
once using P3D in TASSEL version 5.2.33 and in R using
the R package GAPIT [71, 72]. A kinship matrix was gen-
erated in TASSEL using Centered-Identity by State (Cen-
tered IBS) with two maximum alleles using 6300 SNP
markers filtered for MAF > 0.05. Population structure was
accounted for using Principal components calculated in
TASSEL and GWA was run using the model: Trait=
BLUPs + PC + Kinship + marker.

We applied a whole-genome significance cutoff based on
an adjusted Bonferroni test threshold at 1.86 x 10™° and a
suggestive line defined at 3.71 x 10~ * following a modified
Bonferroni correction method described by Li et al. 2012
[73]. Candidate genes were predicted using genomic inter-
vals of two non-significant SNPs flanking a significant SNP
associated with the trait of interest. The interval was quer-
ied against the peanut base genome browser https://pea-
nutbase.org [8] to identify genes that have known
functions associated with the trait.

Additional files

Additional file 1: Figure S1. Population structure in the mini core for
K=2to K=7. The Y-axis represents the probability of assigning an acces-
sion to a group and the X-axis accession names. (a) Different K groups or-
dered according to subspecies. (b) Groups ordered according to
botanical variety. (DOCX 9720 kb)

Additional file 2: Figure S2. LD decay using Loess fit (black) and non-
linear fit (blue) for each of the 20 chromosomes. R? values are plotted on
the Y-axis against physical distance in base pairs on the X-axis. Heatmaps
represent the density of r” across distance. (DOCX 8289 kb)

Additional file 3: Figure S3. LD decay pattern along each chromosome
and across each sub- species. (@) Summarized LD decay with distance for
each chromosome and a genome-wide average for each of the two pea-
nut sub-genomes. (b) LD decay in each of the two sub-species at differ-
ent physical distances. (DOCX 1186 kb)

Additional file 4: Figure S4. Histograms showing the phenotypic
distribution of seed composition and quality traits in the mini core
collection. The x-axis shows BLUP values over three replicates and the y-
axis represents the number of individuals with the respective values.
(DOCX 276 kb)
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Additional file 5: Figure S5. Manhattan and QQ - plots for Saturated
Fatty acid components. (DOCX 449 kb)

Additional file 6: Figure S6. Manhattan and QQ - plots for
Unsaturated Fatty acid components. (DOCX 427 kb)

Additional file 7: Figure S7. Manhattan and QQ - plots for Oleic-
linoleic ratio, total oil, total protein content and Blanchability.
(DOCX 377 kb)

Additional file 8: Tables S1. - S8. Sheets in the Table contain details of
the accessions used in the study, overall SNP summary, heterozygosity
among accessions, SNP distribution, nucleotide diversity, haplotypes,
Mean LD and LD decay estimates as well as detailed GWA results for all
the traits evaluated. (XLSX 1396 kb)
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