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Abstract

annotation databases.

Background: Trait ontology (TO) analysis is a powerful system for functional annotation and enrichment analysis of
genes. However, given the complexity of the molecular mechanisms underlying phenomes, only a few hundred
gene-to-TO relationships in plants have been elucidated to date, limiting the pace of research in this “big data” era.

Results: Here, we curated all the available trait associated sites (TAS) information from 79 association mapping
studies of maize (Zea mays L.) and rice (Oryza sativa L) lines with diverse genetic backgrounds and built a large-
scale TAS-derived TO system for functional annotation of genes in various crops. Our TO system contains
information for up to 18,042 genes (6345 in maize at the 25k level and 11,697 in rice at the 50 k level), including
gene-to-TO relationships, which covers over one fifth of the annotated gene sets for maize and rice. A comparison
of Gene Ontology (GO) vs. TO analysis demonstrated that the TAS-derived TO system is an efficient alternative tool
for gene functional annotation and enrichment analysis. We therefore combined information from the TO, GO,
metabolic pathway, and co-expression network databases and constructed the TAS system, which is publicly
available at http://tas.hzau.edu.cn. TAS provides a user-friendly interface for functional annotation of genes,
enrichment analysis, genome-wide extraction of trait-associated genes, and crosschecking of different functional

Conclusions: TAS bridges the gap between genomic and phenomic information in crops. This easy-to-use tool will
be useful for geneticists, biologists, and breeders in the agricultural community, as it facilitates the dissection of
molecular mechanisms conferring agronomic traits in an easy, genome-wide manner.
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Background

Due to the overwhelming success of high-throughput mo-
lecular techniques such as microarray analysis and next-
generation sequencing, increasing numbers of genes are
continuously being identified and studied, increasing the
need for functional annotation. Gene ontology (GO) is a
biological classification system that employs a common
vocabulary of gene and protein functions across species
[1]. The GO system was constructed based on the as-
sumption that a large fraction of the genes specifying core
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biological functions are shared by all eukaryotes [1]. GO
provides multifaceted functional descriptions of biological
processes, molecular functions, and cellular components
for a large quantity of genes [2]. GO analysis has become
the most widely used system for functional annotation of
genes. Many GO databases have been created for animals
and plants that are primarily based on orthologous rela-
tionships with genes in the GO databases for yeast, Dros-
ophila melanogaster (fruit fly), and mice [2]. For example,
AgriGO is an outstanding GO toolkit that is widely used
by the agronomic community [3-5].

Because GO terms were established based on analysis
of core biochemical pathways and do not illustrate
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regulatory relationships, the GO terms utilized in plants
are sometimes confusing and ambiguous, especially for
plant geneticists, biologists, and breeders. Therefore,
many new ontological classification systems have been
developed. MetaCyc, a metabolic pathway database, was
constructed to illustrate relationships among genes in
various pathways [6]. Such metabolic pathway databases
have been used to annotate microbial genomes and have
been expanded for use in higher plants [7-9]. In
addition, Plant Ontology (PO), a hierarchical ontology,
was designed to specifically describe plant growth, devel-
opmental stages, and plant morphology [10]. PO uses
the same data model as GO but contains more pheno-
typic information [10-17]. Like PO, Trait Ontology
(TO) was developed based on the morphological charac-
teristics of different organisms using a consistent vo-
cabulary [18-21].

For both animals and plants, TO annotations utilize the
Entity-Quality (EQ) model, which ensures consistency
across different species [22—-26]. Oellrich focused on mu-
tant phenotypes associated with genes of known sequence
in Arabidopsis, maize, Medicago, rice, soybean, and to-
mato to construct a shared TO dataset, which could be
used for cross-species querying and semantic similarity
analyses [27]. TO is the most comprehensive system avail-
able to date that annotates the traits of various plant spe-
cies using a single, universal vocabulary [27]. However,
due to its complexity, only a fraction of genes has thus far
been annotated and assigned TO terms, which has ham-
pered the use of this system.

Association mapping, including genome-wide associ-
ation analysis (GWAS) and candidate gene resequencing
followed by association mapping, is a reliable method
for ascertaining the statistical relationships between
genes and phenotypes [28, 29]. Over the past 20 years,
association mapping has matured rapidly and has been
used to identify tens of thousands of gene-to-trait rela-
tionships in plants [30-32]. By combining large-scale
phenotyping of natural populations with information
from high-density markers and sophisticated statistical
genetic models, GWAS and candidate gene association
mapping have proven to be powerful methods for identi-
fying candidate causal genes [32]. The integration of as-
sociation mapping results from different studies,
including analyses of plants with different genetic back-
grounds, could provide ample evidence for gene-to-trait
relationships at the genome-wide scale [33, 34]. There-
fore, the development and rapid progress of association
analysis in plants have made it an unprecedented re-
source for constructing TO systems.

With the rapid progress in techniques for high-
throughput mRNA sequencing, a large set of plant tran-
scriptome profiles can now be obtained [35-39]. In-
creasing numbers of co-expression networks are being
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constructed and have proven to be conserved, which in-
dicates biological significance [40, 41]. Co-expression
networks are emerging as efficient tools for deciphering
the potential functional roles of genes along with the
GO, TO, and PlantCyc metabolic pathway systems. The
relationships between the GO, co-expression networks,
PlantCyc metabolic, and TO databases can be described
as follows: the GO and PlantCyc metabolic databases
contain the most basic functional and regulatory infor-
mation about genes. Co-expression networks extend this
information to describe the complex roles of genes at
the transcriptomic level based on GO and PlantCyc ana-
lyses. TO contains the most phenotypic information
among the databases. Based on the relationships be-
tween the four tools, the potential molecular mecha-
nisms of genes affecting a specific phenotype can be
uncovered.

Integrating the diverse information obtained from GO,
TO, PlantCyc, and co-expression networks would pro-
vide a unique opportunity to decipher multiple func-
tional aspects of a gene of interest. The Gramene
database contains combined, multifaceted biological
data, including genomic, transcriptomic, proteomic, phe-
nomic, and metabolic information across tens of plant
species, providing a comprehensive bioinformatics plat-
form in plants [18, 19]. However, to perform functional
annotation and enrichment analysis of genes, public re-
search information must be accurately curated, orga-
nized, and integrated in terms of GO, TO, PlantCyc
pathways, and co-expression networks. In the current
study, we collected information from as many associ-
ation mapping studies as possible in maize and rice, cu-
rated the gene-to-TO relationships based on the
association mapping results, and constructed a large-
scale TO database across different linkage disequilibrium
decay (LD) distances. A comparison of TO vs. GO en-
richment analysis showed that Trait Associated Site
(TAS)-derived TO represents a powerful alternative tool
for functional annotation and enrichment analysis. Our
comprehensive functional annotation and enrichment
platform, which is based on the integration of the TO,
GO, PlantCyc, and co-expression networks databases,
bridges the gap between genomic and phenomic infor-
mation in crops.

Results

A comprehensive trait ontology (TO) system in crops
Trait ontology (TO, Fig. la) analysis is an efficient
method for investigating the relationships between genes
and traits. TO classifies plant traits into nine trait
groups, including yield, stress, sterility or fertility, stature
or vigor, quality, plant morphology, plant growth and de-
velopment, biochemical, and other miscellaneous traits
and organizes them into hierarchical layers from top
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Fig. 1 Large-scale TAS-derived TO database derived from association mapping studies in maize and rice. a Hierarchical structure of TO terms.
Number in parentheses represents the number of derived TO terms. b Number of TO terms in each TO category. € Number of TO terms classified
in maize and rice. d Overlap of TO terms between maize and rice. (e) and (f) Number of gene and gene-to-TO relationships identified at different
LD distances in maize and rice, respectively

(level 1) to bottom (level 6) (Fig. 1b; Additional file 1).
To date, 864 TO terms have been defined in plants [15,
18-21]. To construct a genome-wide TO database, we
collected the results of 79 association-mapping studies in
rice and maize, providing genetic evidence for the rela-
tionships between genomes and phenomes in crops (Add-
itional file 2). Curation of these association mapping
results showed that 136 and 168 TO terms have been

defined in maize and rice, respectively (Fig. 1c). Of the
136 maize TO terms, over half were detected in rice, even
though maize and rice differ in morphology (Fig. 1d).
According to the association-mapping model, different
linkage disequilibrium (LD) decay distances correspond
to different mapping resolutions, suggesting that differ-
ent gene-to-TO relationships would be obtained at dif-
ferent LD cutoffs. In maize, 4018 unique genes were
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found to be associated with the 136 TO terms, which
represent 21,231 gene-to-TO relationships across differ-
ent association-mapping studies, assuming an LD dis-
tance of 10kb (Fig. le). The number of maize genes
reached 6345, corresponding to 35,410 gene-to-TO rela-
tionships, given an LD distance of 25 kb. Since the LD in
the rice association-mapping panel decays over much
longer distances [32], the LD cutoff used for the con-
struction of the TO database in rice was higher. A total
of 6562 rice genes were associated with the 168 TO
terms under an LD cutoff of 25 kb, which represents 40,
448 gene-to-TO relationships (Fig. 1f). However, the
gene-to-TO number reached 76,889 at an LD cutoff of
50 kb. Overall, we curated over 100,000 gene-to-TO rela-
tionships in maize and rice (Additional files 3 and 4),
representing the largest TO system available for crops.

Comparison of TO vs. GO shows that TAS-derived TO is
an effective alternative tool for functional annotation and
enrichment analysis of genes

We previously conducted RNA-seq of the top-most
leaves of near isogenic maize lines carrying a recessive
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mutation in a plant height gene and their wild-type
counterpart and identified 146 differentially expressed
genes (DEGs) [42]. These DEGs are thought to be in-
volved in plant development. To test the robustness
of TO, we used these DEGs as input for TO and GO
enrichment analyses. A substantial number (30/146)
of DEGs were related to 42 TO terms, while 103
were associated with 258 GO terms (Additional file 5)
. Of these functional terms, three TO categories were
significantly enriched among these DEGs, and a
higher number of GO terms were enriched (Fig. 2a;
P<0.01). Additionally, major functional roles (stress
response and plant growth) were consistently identi-
fied in both analyses. However, TO provided more
specific functional annotation than GO. For example,
TO analysis specifically indicated that plant height
and whole plant morphology traits were associated
with these 146 input DEGs, whereas GO analysis only
provided some conceptual functional annotations,
such as cell tip growth, photosynthesis, and light re-
action, although the GO annotations made biological
sense (Additional file 5).
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We also used 20 well-known rice genes reported to
control kernel size to test the robustness of our TAS-
derived TO system for estimating the rate of false nega-
tives [43]. Six of the 20 well-known rice kernel size
genes were associated with 23 TO terms, and a compar-
able proportion of these genes were related to 34 GO
terms (Additional file 6). As expected, these genes were
significantly enriched in TO terms including grain
length, fruit length, fruit morphology trait, and other
traits related to kernel size (Fig. 2b; P<0.01). On the
other hand, conventional GO analysis of these genes
showed significant enrichment for GO terms
microtubule-based movement, phosphoprotein phos-
phatase activity, and others; these results make some
biological sense but are not sufficiently specific. Analyses
of both maize and rice indicated that TAS-derived TO
enrichment has a false negative rate comparable to that
of GO analysis but provides more detailed and intuitive
functional annotation information.

To test the false-positive rate (FPR) of TAS-derived
TO, we conducted 1000 simulations of randomly se-
lected gene sets of variable size via TO and GO enrich-
ment analyses. In maize, the average FPR of 1000
simulations of randomly selected gene sets via GO ana-
lysis was approximately 4% and remained stable across
different gene numbers. The average FPR for TAS-
derived TO in maize was close to that of GO when the
gene numbers were 20, 40, 60, or 80 but dropped off
rapidly, to close to 1%, when the gene number increased
to 1000 (Fig. 2¢). Interestingly, except for the simulations
using 20 genes, in which the FPRs for TO and GO were
similar, the FPRs for all simulations in rice were signifi-
cantly lower for TO than for GO (Fig. 2d). These find-
ings suggest that TO enrichment has a comparable or
lower FPR than GO. Therefore, our TAS-derived TO
system represents a powerful tool for functional annota-
tion and enrichment analysis of genes in maize and rice.

TAS-derived TO is an excellent tool for the systematic
dissection of molecular mechanisms underlying
agronomic traits

We collected and curated all results of association mapping
studies of phenotypic variation in maize and rice using the
TO scheme, providing an unprecedented opportunity to
systematically dissect the possible molecular mechanisms
associated with various agronomic traits. Taking plant
height as an example, we integrated information for 625
functional genes and found that they were associated with
plant height variation in maize (Additional file 7). Based on
the top 10% of the genes most significantly associated with
this trait from each association mapping study, we identi-
fied 135 functional genes, which are distributed across all
10 maize chromosomes (Fig. 3a). GO enrichment analysis
showed that the plant height-related genes were associated
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with the categories ‘response to stimulus’ and ‘organelle
organization’ (Fig. 3b). Transcriptome profiling indicated
that most of these plant height-related genes are located in
the same co-expression network (Fig. 3c). Plant metabolic
pathway analysis also indicated that most plant height-
related genes are involved in IAA biosynthesis, xylose deg-
radation, and other metabolic pathways (Fig. 3d). As ex-
pected, 18% of these top 10% of plant height-related genes
encode enzymes in the IAA biosynthesis pathway, which is
in agreement with previous results (Fig. 3d) [44]. It is worth
noting that 18% of plant-height-associated genes are in-
volved in betanidin degradation, providing new targets for
research focusing on plant height. Similarly, genes from the
divinyl ether biosynthesis, glycerol degradation, diphos-
phate biosynthesis, and cyanide detoxification pathways
were significantly enriched among our TO plant height
terms, suggesting that highly complex molecular mecha-
nisms underlie plant height variation in crops. Together,
these results suggest that these genes might function in a
concerted manner at both the biochemical and transcrip-
tomic levels. Using our TAS-derived TO database, it is easy
to extract all candidate functional genes associated with a
specific trait, providing a genome-wide overview of the mo-
lecular mechanisms underlying plant traits.

The TAS-derived TO system is also a good resource
for dissecting the molecular mechanisms underlying
plant development. Here, we used laser microdissection
RNA-seq data from 2-week-old maize B73 seedlings to
determine the transcriptome of internode cells, which
contributes to the development of axillary meristems
and plant height [45, 46]. Shannon entropy analysis
across different tissues/stages uncovered 44 internode-
specific genes [41, 47] TO analysis using these 44 genes
showed that they are enriched in the TO term ‘inflores-
cence branch arrangement, as expected (Fig. 4a) [45, 46].
These 44 internode-specific genes were enriched in simi-
lar functional categories in the GO and plant metabolic
pathway databases, which is suggestive of functional
identity (Fig. 4b; 4c). Moreover, co-expression network
analysis indicated that some of these internode-specific
genes were co-expressed within four co-expression mod-
ules and shared co-expression relationships among dif-
ferent modules, which is suggestive of potential
coordinated transcriptome patterns for these internode-
specific genes (Fig. 4d). Together, these results indicate
that our TAS-derived TO system provides biologically
meaningful insights into gene function and cellular or
developmental processes.

TAS is an integrative toolkit for functional annotation and
enrichment analysis of genes in crop species

To provide a systematic gene annotation and enrich-
ment analysis platform, we integrated the curated TAS-
derived TO database with the PlantCyc database, GO
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database, and co-expression network data and con-
structed TAS, an integrative toolkit for functional
genomics in maize and rice (http://tas.hzau.edu.cn/).
In addition to information for thousands of genes and
tens of thousands of gene-to-TO relationships, TAS
contains information for 4054 genes in 422 metabolic
pathways and 2700 genes in 336 metabolic pathways
in maize and rice, respectively (Fig. 5a). Over 24,000
genes in both maize and rice have GO annotations
and were integrated into the TAS database (Fig. 5b).
TAS also lists over 32,000 maize genes that are co-
expressed in 189 co-expression modules and 23,171
co-expressed rice genes in 187 co-expression modules,
both of which were constructed based on transcrip-
tome profiling across different tissues/stages of refer-
ence inbred lines or cultivars (Fig. 5c). TAS has a
user-friendly interface that plant geneticists, biologists,

and breeders can use to search and annotate the
functional roles of query genes (Fig. 6).

Importantly, the TAS platform also provides a compre-
hensive analysis toolkit, enabling enrichment analysis
and cross-comparison across TO, GO, PlantCyc, and co-
expression network results (Fig. 7a-d), enhanced graph-
ical presentation of functional annotation and enrich-
ment analysis of genes, and other features, such as
downloading, an updating service, and so on. TAS has
the following features: 1) a user-friendly data extraction
interface, allowing researchers to extract all annotated
gene-to-TO, gene-to-GO, and gene-to-PC (PlantCyc)
terms using queried genes of interest and to retrieve all
related genes for a queried agronomic trait; 2) Tools for
enrichment analysis, allowing users to query genes of
interest for associations with specific agronomic traits,
fundamental biological functions, and biological
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metabolic pathways. Users can input gene lists into the
TAS platform and submit the enrichment analysis query,
which will return all-in-one enrichment results for TO,
GO, PC, and co-expression network modules; all of
these results can be cross-compared; 3) Enhanced graph-
ical presentation of all enrichment results. Researchers
can download the entire original TO, GO, PC, and co-
expression networks in bulk or retrieve the raw results
of each analysis in Excel format for further analysis.

Discussion

In this era of big data, our understanding of the func-
tional roles of genes lags far behind the generation of
high-throughput sequencing and phenomics data. The
hierarchical design of the ontology of the GO, PO, and
TO databases provides an efficient way to assess the
multifaceted functional roles of genes of interest. In this

study, we integrated all publicly available association
mapping data from maize and rice and built a large-
scale TO database for crops. Furthermore, we created an
integrative bioinformatics platform that combines GO,
TO, PlantCyc (metabolic pathway), and co-expression
network information, enabling comprehensive functional
annotation and enrichment analysis. This platform pro-
vides a user-friendly interface for searching and analyz-
ing the functional roles of genes, bridging the gap
between genomic and phenomic information in crops.
Most TO terms have been established largely based on
association mapping results across different genetic pop-
ulations. Association mapping has long been used to
identify candidate genes and has proven to be an effect-
ive way to detect the relationships between genes and
traits [32, 48]. However, the results of such analyses fre-
quently lack experimental validation. Notably (except for



Pan et al. BMC Genomics (2019) 20:443 Page 8 of 13
p

a - b o cC g

=3 S 8- .

I S 8 © Unique

AR o) D

- Total

o
n 8_ 7] n
g © 2 s e
[0 O o [0]
(o] o O o O
5 o 5 2 5 9
= S e = S
23 N 8 8 =4
£ K €E o g ¥

=}
S S 3 3 3]
/ / % o 2 ~
= ~
ol 7 o 7 % od e i
Maize Rice Maize Rice Maize Rice

Fig. 5 Number of genes from the PlantCyc, GO, and co-expression databases integrated in TAS. (a)-(c) Number of unique genes and their
relationships from the PlantCyc, GO, and co-expression databases, respectively

.

well-studied model organisms such as Arabidopsis, yeast,
and fruit fly), GO, PO, and metabolic annotations have
mainly been generated by bioinformatic prediction [49].
Given the rapid decay of LD in maize and rice [30, 32],
the resolution of association mapping analysis can some-
times reach a single or very few genes, improving the re-
liability of TO terms. However, in some genomic

regions, LD decay occurs at a considerably slower rate,
increasing the probability of obtaining multiple false
positives. Therefore, it is essential to critically analyze
the results with an understanding of the genomic re-
gions under consideration. In addition, the ability to ob-
tain association mapping data from plants with diverse
genetic backgrounds and to perform hand-curation of
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Fig. 6 The user-friendly TAS interface. Through this interface, one can submit a search query of a subset of genes, and the TAS system can

extract all of the TAS-derived TO, GO, PC, and co-expression information and perform enrichment analyses
. J
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each TO term and cross-checking between TO, GO,
metabolic pathway, and co-expression networks provide
users with ample information about the likely functions
of the genes of interest.

The current TAS-derived TO system covers one-
quarter of the annotated gene sets in maize and rice.
Since maize and rice are the most important staple food
crops in the world, large worldwide research communi-
ties have been carrying out numerous association map-
ping studies of both crops every year since 2010. The
TO database is designed to facilitate the continued inte-
gration of new association mapping results and can eas-
ily be expanded to incorporate information from
additional plant species. Since over half of the TO terms
are consistent across different species, our TAS platform
will add ortholog alignment information to expand the
TO terms for each species based on comparative
genomics.

Unlike many other bioinformatic platforms, TAS pro-
vides an integrative gene functional annotation and en-
richment database with data analysis toolkits. With the
continuing accumulation of functional gene annotations,
TAS will become an increasingly powerful platform for
facilitating research into the molecular mechanisms con-
ferring agronomic traits in an easy, genome-wide
manner.

Conclusions

In this big data era, massive amounts of biological
data can now be obtained simultaneously. However, it
is becoming increasingly challenging to interpret these
available data. We devised a new alternative method
for annotating gene functions and functional enrich-
ment for a large set of genes by integrating Trait
Ontology design with the results of association map-
ping studies. Comparative analyses showed that our
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TAS-derived TO system is an effective alternative
method compared to GO analysis. By combining TO
with association mapping results, we can Dbetter
understand the relationships between phenomes and
genomes in a wide range of species. Our method for
functional annotation and enrichment analysis of
genes can easily be utilized for other plants, expand-
ing our knowledge of plant species far beyond maize
and rice.

Methods

Trait ontology annotation and classification

Trait ontology (TO) was devised to further under-
stand the molecular processes occurring in organisms.
The phenotypes of six plant species (including maize
and rice) were previously compared and unified into
a consistent vocabulary of trait descriptions with well-
known functionally validated genes, phenotypes, and
genomic database information [27]. Here, the Entity-
Quality (EQ) method was used to assure phenotypic
consistency between species. Entity refers to organ-
isms, species, and traits, while Quality refers to how
the trait variation is described, such as big/small, in-
creased/decreased temperature, round, reduced length,
and so on. Gene function refers to the annotated
gene function. The EQ method can be used to trans-
form these descriptions into numerical values. The
following formula serves as an example:

EQ = Entity (Organisms + Species + Trait )
+Quality (trait value or character + gene function)

The EQ method is sufficient for defining phenotypes
and could be used to improve the consistency of pheno-
typic descriptions. A correlation matrix was constructed
for different species and phenotypes. Based on a similar-
ity matrix, the information content 7 (f) of an ontology
class ¢ was defined based on the probability P(X =) that
a phenotype is characterized by t:

I=-log(P(X =1¢))

P (X =t) is the phenotypic value, which was calculated
for the phenotype matrix. For two phenotypes, P and R,
P represents the ontology classes Cl (P) =P1...Pn and R
represents the ontology classes Cl (R)=RI1...Rm. The
similarity patterns of phenotypes P and R could be ob-
tained using the following formula [50]:

> xeci®incipy! (X)

sim (P,R) =
ZyeCl(R)UCZ(P)I (¥)

The phenotypes were classified into different trait
terms based on the similarity phenotypic values. In
total, based on the relationships between genes and
plant traits, the consistent trait annotations were
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divided into different hierarchical groups, which were
classified by subset (Additional file 1) [27, 51]. The
trait ontology annotation and trait identity (TO: ID)
values were collected from the official TO website.
Nine primary TO terms and six hierarchical groups
of trait annotation and IDs were implemented in our
study.

Data mining of published association mapping studies in
maize and rice

Genome-wide association analysis is a method for dis-
secting the relationships between genes and pheno-
typic variations in crops. All published association-
mapping studies in maize and rice were queried by
searching NCBI PubMed using the key words “maize”,
“rice”, and “association mapping’. The 30 different
types of association results from the literature were
sorted, including the trait name, physical marker loci,
population size, population type, minor-allele fre-
quency, marker size, physical version, reference name,
significant p-value, nearest gene name, gene function
annotation, gene GO information, final physical loca-
tions of markers (maize for V3 and rice for MSU7.0),
mutation location information, TO term anchored in-
formation, and so on. The method used to obtain the
TO term anchored information is described in the
next section. The mutation location was extracted
using “snpEff” software. The final physical locations of
markers were obtained using BLAST software. The
functional annotations of genes were obtained using
InterProScan, and the gene GO information was
downloaded from the agriGO V2 website [5]. The
remaining functional annotation information was ob-
tained using Perl and R scripts.

Construction of TAS-derived trait ontology terms in crops
The traits described in the literature were organized into
consistent trait tables based on semantic similarity, trait
descriptions in the literature, and trait annotation tables.
The maize and rice traits described in the literature are
listed in Additional file 2. Finally, genes with significant
association mapping signals were assigned to different
TO terms (Additional files 3 and 4). Different species
have variable LD distances when 7 equals 0.1 across dif-
ferent population sizes and types. For maize, significant
association signals within the flanking 10kb (assuming
LD =10kb) and 25kb (assuming LD =25kb) regions of
genes were extracted for the identification of trait-
associated genes. Two different TAS groups of genes
were constructed based on their different levels of LD.
Rice has a relatively slow LD rate. Therefore, two differ-
ent TAS groups were constructed for LD of 25kb and
LD of 50 kb in rice.
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Trait ontology enrichment analysis

A hypergeometric test was employed for TAS-derived
TO enrichment analysis in both maize and rice. The
input file was the table of gene associations at 10 kb
and 25kb for maize and 25k and 50k for rice pro-
vided on our website. Briefly, assuming a list of “P”
genes tested for maize and rice, given that “M” input
genes exist in the database, for a certain TO:ID, there
are “k” genes that are associated and “M-k” genes
that are not associated. The database has a total
number of N genes, and only n genes were associated
with this TO:ID. Whether the input genes were asso-
ciated with this TO term could be calculated using a
hypergeometric test, following Fisher’s exact test
probability formula:

p(X:k):M
)

The value of p was determined using the formula:
M N-M
) 2\ i n-i
p=1-y ~~2 _ 7
i=0 N
n

Terms with a p-value <0.05 were defined as being
enriched.

Gene ontology enrichment analysis

Gene and GO term information was downloaded from
the agriGO website [5]. GO and gene information for
maize was downloaded from Zea mays locus ID v3.30
(Gramene Release 50), and that for rice was downloaded
from MSU7.0 gene ID (TIGR; The Institute of Genomic
Research Database-TDB). The method for the GO en-
richment hypergeometric test was similar to that de-
scribed above (Trait Ontology enrichment analysis).

PlantCyc enrichment analysis

The maize and rice Cyc data were downloaded from the
PlantCyc website using MaizeCyc version 2.2 and Rice-
Cyc version 3.3. Both gene and pathway information was
extracted. The Maize and RiceCyc enrichment analyses
were performed using the formula described for TO en-
richment analysis.

Co-expression analysis

Maize and rice gene co-expression data were obtained
from a previous study [41]. For maize, RNA-seq data for
64 different tissues/stages were used to profile gene ex-
pression values based on the maize reference genome V3
[52]. The expression levels were normalized prior to the
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construction of co-expression networks for maize and
rice [41]. For any pair of genes, the correlation coeffi-
cient was calculated using the formula:

N

> (%) (a7)

N—
N

Z (yi_y)Z
R=1

—

r =

> (x-x)?

N
N—1

The correlation values were then transformed via
Fisher transformation [53]:

1
In tr

1
Z ==
2 1-r

Finally, the mcl Markov cluster algorithm was used to
divide each co-expression network into cluster modules.
The formula was as follows:

(rr M)pq _ k(MPQ)

Z (Miq)r

i=1

, where r represents the power coefficient [54], k is the
gene number, p is the column number of the M matrix,
and q is the row number of the M matrix. A default r
value of 1 was used, and a power coefficient > 1 was used
to define the modules. For rice, RNA-seq data from 45
different tissues/stages were used to profile the gene ex-
pression values based on genomic information in
MSU7.0 [55]. A similar method was used to construct
the rice co-expression network.

False negative and false positive tests of our TAS-derived

TO system

To test the robustness of our TAS-derived TO system,
two sets of DEGs were used: genes specifically expressed
in 2-week-old internode cells, and DEGs between a
near-isogenic line (NIL) of a plant height QTL and its
wild-type counterpart. RNA-seq data were available for
plants in the DE3 and BY815 backgrounds [42]. Second,
well-known yield-related rice genes were used as queries
[43]. Additionally, GO and TO enrichment results were
tested using different numbers of randomly selected
genes: 10kb and 25 kb intervals were tested for maize,
and 25kb and 50kb intervals were tested for rice. A
number of randomly selected sets of 20, 40, 60, 80, 100,
200, 500, and 1000 genes were used as input for the GO
and TO enrichment tests. The significant GO and TO
numbers, total GO and TO total number, and rates of
significant GO and TO term enrichment were summa-
rized and compared.
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Additional files

Additional file 1: Table S1. Relationship of different level traits.
Level1~7 represent different TO layers from top to bottom. (XLSX 48 kb)

Additional file 2: Table S2.Reference information of GWAS. (XLSX 13 kb)

Additional file 3: Table S3. 10k and 25k TO datasets in maize.
(XLSX 1535 kb)

Additional file 4: Table S4. 25k and 50 k TO datasets in rice. (XLSX
3149 kb)

Additional file 5: Table S5. Enrichment of TO and GO with DEGs of
plant height in maize. The column of “queryitem” represents the number
of input genes with the same enrichment term, and the column of
"querytotal” represents the total number of input genes. The column of
"bgitem” indicates the number of background genes with the same
enrichment term, and the column of “bgtotal” indicates the total number
of background genes. Pvalue represents the significance level of
enrichment. (XLSX 27 kb)

Additional file 6: Table S6. Enrichment of TO and GO with kernel-size
genes in rice. The meaning of each column is consistent to that of Table
S5. (XLSX 12 kb)

Additional file 7: Table S7. Trait searched by key word “plant height”.
The columns of “Marker_name, chr_ref, Marker_location, Pvalue, indel/
snp, MAF" show the information of associated marker with the
phenotypic variation. Pvalue indicates the significance level of the
association, MAF represents the minor allele frequency of the marker. The
columns of "Pop_type, Pop_size, Marker_set, and Model” show the
detailed information of association mapping study, such as the marker
number for GWAS (Marker_set), and the genetic model used for the
association (Model). The columns of “genome_version, Final_version, Chr,
Position, chr_gene, start, Gene_refGene, New_gene, Annotation” show
the genomic location of the associated marker, the nearby gene, and the
annotation of functional nearby gene. The columns of “ID_ref, Ref, note,
and Ref_name” present the related reference information. (XLSX 128 kb)
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