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Abstract

Background: Single-cell RNA-sequencing (scRNA-seq) is fast becoming a powerful tool for profiling genome-scale
transcriptomes of individual cells and capturing transcriptome-wide cell-to-cell variability. However, scRNA-seq
technologies suffer from high levels of technical noise and variability, hindering reliable quantification of lowly and
moderately expressed genes. Since most downstream analyses on scRNA-seq, such as cell type clustering and
differential expression analysis, rely on the gene-cell expression matrix, preprocessing of scRNA-seq data is a critical
preliminary step in the analysis of scRNA-seq data.

Results: We presented scNPF, an integrative scRNA-seq preprocessing framework assisted by network propagation and
network fusion, for recovering gene expression loss, correcting gene expression measurements, and learning similarities
between cells. scNPF leverages the context-specific topology inherent in the given data and the priori knowledge
derived from publicly available molecular gene-gene interaction networks to augment gene-gene relationships in a
data driven manner. We have demonstrated the great potential of scNPF in scRNA-seq preprocessing for accurately
recovering gene expression values and learning cell similarity networks. Comprehensive evaluation of scNPF across a
wide spectrum of scRNA-seq data sets showed that scNPF achieved comparable or higher performance than the
competing approaches according to various metrics of internal validation and clustering accuracy. We have made scNPF
an easy-to-use R package, which can be used as a versatile preprocessing plug-in for most existing scRNA-seq analysis
pipelines or tools.

Conclusions: scNPF is a universal tool for preprocessing of scRNA-seq data, which jointly incorporates the global
topology of priori interaction networks and the context-specific information encapsulated in the scRNA-seq data to
capture both shared and complementary knowledge from diverse data sources. scNPF could be used to recover gene
signatures and learn cell-to-cell similarities from emerging scRNA-seq data to facilitate downstream analyses such as
dimension reduction, cell type clustering, and visualization.

Keywords: Single cell RNA-sequencing, Dropout imputation, Similarity measurement, Cell type clustering, Network
propagation

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: xhuister@xmu.edu.cn
1Department of Automation, Xiamen University, Xiamen 361005, China
4Xiamen Research Institute of National Center of Healthcare Big Data,
Xiamen, China
Full list of author information is available at the end of the article

Ye et al. BMC Genomics          (2019) 20:347 
https://doi.org/10.1186/s12864-019-5747-5

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-019-5747-5&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:xhuister@xmu.edu.cn


Background
Single-cell RNA-sequencing (scRNA-seq) is fast becoming
an established and powerful tool for profiling genome-
scale transcriptome of individual cells and capturing
transcriptome-wide cell-to-cell variability [1]. With recent
technological advances in cost and throughput, it is now
possible to routinely generate a plethora of diverse
scRNA-seq data sets that can be used to cluster cells [2,
3], determine cell types and states [4, 5], reconstruct de-
velopmental trajectories and cell lineage progression [6,
7], and identify key genes involved in the cell fate decision
making [6]. scRNA-seq data potentially enables the profil-
ing of diverse and heterogeneous systems [8, 9], however,
scRNA-seq technologies suffer from high levels of tech-
nical and biological noise due to inefficient mRNA
capture. A key challenge underlying the analysis of
scRNA-seq data is the “dropout” phenomenon that a large
fraction of genes, typically 85–95%, are with zero or low
count due to intrinsic stochastic dynamics of gene expres-
sion and technical factors such as capture and sequencing
efficiency [10, 11]. Such dropout confounds the reliable
quantification of lowly or moderately expressed genes and
obscures relationships between highly expressed genes,
resulting in extremely sparse count data and hindering
downstream analyses.
Since almost all downstream analyses on scRNA-seq,

such as differential expression analysis, cell clustering, and
lineage reconstruction, rely on the gene-cell expression
matrix [12], the choice of preprocessing techniques is very
critical in the analysis of scRNA-seq data. One routine step
for preprocessing of scRNA-seq data is the correction of
the expression measurements due to dropout events to
mitigate the noise in scRNA-seq data. However, many stud-
ies on cell type identification, visualization, and lineage re-
construction do not explicitly model for dropout events but
simply remove genes with low abundance and cells with
low coverage prior to downstream analyses [13]. Despite of
the simplicity and straightforwardness, it is not an ideal so-
lution because that lowly expressed genes, such as tran-
scription factors and cell surface markers, may be of great
interest, and removing cells may propagate the biased sam-
pling of the original cell population [14]. High variability
and dropout events inherent in all current scRNA-seq plat-
forms impede the interpretation of the data. Therefore,
there is a growing need for developing new computation-
ally efficient methods to overcome these hurdles.
Several computation approaches have been proposed

for imputing missing values in scRNA-seq data. To our
knowledge, MAGIC [14] is the first publicly available
method for dropout imputation in scRNA-seq data. It is a
Markov affinity-based graph method based on the idea of
heat diffusion, which corrects signals of genes by sharing
information across similar cells. scImpute [15] estimates
dropout probability for each gene in each sample by a

mixture model and divides genes into two sets according
to their population-wide expression distributions. It then
adopts a linear regression model to impute dropout events
based on expression profiles of the most similar cells.
scImpute is able to distinguish dropout zeros from real
zeros. However, it assumes an overall dropout rate for
each gene, while the dropout rate of a gene may be varied
across cells due to factors such as RNA-seq protocols and
cell types [10]. Both MAGIC and scImpute rely on pooling
expression profiles of genes across similar cells. However,
this strategy may cause over smoothing and thus tends to
discard inherent cell-to-cell stochasticity that represents
meaningful biological variation in gene expression [16].
SAVER [16] estimates the true expression levels of genes
using a Bayesian approach that borrows information
across genes in the same cell. One advantage of SAVER
over MAGIC and scImpute is that it provides a measure
of uncertainty for the recovered values. Both MAGIC and
SAVER globally alter signals for all genes including those
not affected by dropouts, which may introduce new biases
into the data [15]. Several approaches try to reduce noise
by clustering and combining cells. For example, drImpute
[17] is an ensemble method based on consensus cluster-
ing, which performs clustering for multiple times and im-
putes zeroes by the average value of similar cells.
However, these methods lose the advantage and resolution
of single cells [14]. There are also some methods that
attempted to impute missing values through gene-gene re-
lationships [18] or by employing bulk RNA-seq data [19].
However, they focus only on imputing unobserved expres-
sion events while fail to correct lowly expressed genes
whose signals are also unreliably measured. Imputation
methods using bulk RNA-seq data fail to capture the
cell-to-cell gene expression heterogeneity, which may lead
to a high level of expression variation, even across cells of
the same type [20, 21] or the same cell line [22, 23]. More
importantly, most of these methods impute zeroes using
measured information in the same data, which may amp-
lify biases inherent in the data set [24]. Consequently,
similar cells become more similar after imputation be-
cause of the increased similarities in imputed genes re-
sulted from expression profiles of non-dropout genes.
Another promising approach to mitigate challenges of

high variability and dropout events inherent in current
scRNA-seq platforms is to analyze the scRNA-seq data in
the context of molecular networks. In an effort to compile
a comprehensive profile of biological modules underlying
cellular composition and function, large interaction net-
works, such as protein-protein interaction (PPI) networks
and metabolic pathways, continue to be systematically
established for many model species [25, 26]. Proper inte-
gration of these networks with the scRNA-seq data and/or
other high-throughput genomics data provides unprece-
dented resources for both biological and computational
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researchers to decipher the cell at a systems level. Topo-
logical structures of molecular networks have been
exploited for function prediction according to the “guilt by
association” principle, which assumes that genes that are
colocalized or share similar topological characteristics in
the interaction network tend to be functionally related [26,
27]. With the advance in high-throughput experimental
techniques, large-scale interaction networks encapsulate
rich sources of information, enabling approaches to infer
functional patterns of unknown proteins by propagating
knowledge from similar but better understood genes or
proteins [26, 28, 29]. Recently, the topology of molecular
networks was leveraged to infer gene expression measure-
ments for scRNA-seq data. Ronen at el. [24] presented a
network-diffusion based method called netSmooth for data
denoising and imputation, using prior knowledge from PPI
networks. This study demonstrated that the incorporation
of meaningful information from massive experiments in
the preprocessing of scRNA-seq data contributes to tem-
pering experimental data with high noise and variability.
Despite of the great merit of molecular or functional

interaction networks, their growing scale and complexity
pose new challenges to biologists. For example, PPI net-
works tend to have a high false-positive rate and/or
false-negative rate [30]. Second, PPI networks are typically
sparse and have skewed degree distribution, which places
a hurdle for algorithms dependent on neighbour informa-
tion [31, 32] or those designed for networks with relatively
uniform degree distributions [33]. Moreover, reference
molecular networks from public databases are not data
set- or sample- specific. Consequently, smoothing bio-
logical signals through gene interactions not present in
the given sampled single cells can cause the aggregation of
errors inherent in passenger measurements and the con-
tamination of specific pathway signals, resulting in poor
signal correction. Therefore, it is critical to distinguish
whether gene interactions are functional in the investi-
gated single cells or not. Fortunately, the ability to simul-
taneously profile thousands of genes and cells at single
cell resolution provides the possibility to obtain gene-gene
interactions from the scRNA-seq data, which enables
learning context-specific interaction patterns that are only
present in the given data set. Molecular networks from
public domains encapsulate our knowledge of how genes
and proteins interact in the cell universally, while the
topological landscape in the context of the given
scRNA-seq data expands our ability to explore the expres-
sion patterns in the relevant cells. Both data sources pro-
vide valuable information for inferring biological signals of
genes or proteins. However, unique connectivity patterns
of individual networks place new challenge on the systems
level integration of heterogeneous sources of information
to attain more precise inference. Given all that challenges,
it is imperative to develop integrative approaches that can

jointly combine priori interaction networks and the inves-
tigated sample-specific scRNA-seq data for scRNA-seq
preprocessing to facilitate comprehensive downstream
analyses, which can capture both shared and complemen-
tary information from diverse data sources.
We have presented scNPF, an integrative scRNA-seq

preprocessing framework assisted by network propagation
and network fusion. scNPF can be used as a general and
flexible preprocessing step prior to downstream analyses
of scRNA-seq data for recovering gene expression loss,
correcting gene expression measurements, and learning
similarities between cells. scNPF leverages the large sam-
ple size of scRNA-seq data to share information across
similar cells, and in the mean time, jointly incorporates
priori knowledge derived from molecular interaction net-
works, to impute gene expression for any given cell.
Unique to our method is the ability to take advantage of
not only the rich structures stored in biology networks
but also the context-specific information from the investi-
gated data to augment gene-gene relationships in a data
driven manner. We demonstrated the ability of scNPF to
amplify biological signals and derive similarity matrix
across a wide spectrum of scRNA-seq data sets from
various sequencing protocols. scNPF is a versatile prepro-
cessing tool that can be used as a plug-in architecture for
other standard tools for downstream analyses of
scRNA-seq data.

Results
Overview of the integrative framework
The basic scNPF framework consists of two modules
(Fig. 1), including scNPF-propagation for imputing drop-
outs and scNPF-fusion for fusing multiple smoothed ex-
pression matrices to learn a cell-cell similarity matrix. The
scNPF framework is highly integrative and flexible in that
the two modules are independent but interconnected.
scNPF-propagation involves a network propagation
process based on random walk with restart (RWR) on a
given gene-gene interaction network to obtain the distribu-
tion for each node (gene), which captures its relevance to
all other genes in the network. This process takes the glo-
bal connectivity patterns of the interaction network into
account for profiling the topological context of each gene.
More importantly, this module contains two modes of
propagation, including the priori mode that uses a publicly
available interaction network and the context mode that is
solely based on the given scRNA-seq data set. The output
of scNPF-propagation is a propagated gene-cell expression
matrix, which could be used as input for scNPF-fusion.
scNPF-fusion constructs a sample-similarity network for
each propagated expression matrix and then integrates dif-
ferent networks into a single cell-cell similarity network
based on a nonlinear combination method. The learned
similarity matrix from scNPF-fusion or the smoothed
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expression matrix from scNPF-propagation can be used as
inputs for other existing scRNA-seq pipelines or tools for
downstream analyses, such as cell type clustering, dimen-
sion reduction, and visualization.

Dropout imputation using scNPF
The scNPF-propagation module is capable of imputing
missing expression values and smoothing non-zero expres-
sion measurements to recover the true signal for each gene
in each cell. The output matrix of scNPF-propagation is of
the same format as the original gene-cell expression matrix.
Here we benchmarked scNPF-propagation on eight pub-
lished scRNA-seq data sets (Additional file 2: Table S1) and
compared scNPF-propagation with other popular imput-
ation tools including MAGIC [14], scImpute [15], and
SAVER [16]. Each method was applied to the raw expres-
sion matrix to obtain an imputed expression matrix. Here,
the context mode of scNPF-propagation was used for im-
putation, which imputes dropouts and adjusts expression
measurements solely based on the intrinsic structure of the
given data without using any priori interaction network.
To examine the dropout phenomenon, we plot the ex-

pression levels of two randomly selected cells from the
cortex fetal-quiescent cell type of the Darmanis data as an
example (Additional file 1: Figure S1). Even though the

two cells are from the same cell type, numerous genes are
only detectable in one cell. This problem is mitigated by
all imputation methods in that missing values of many
genes were imputed and the Pearson correlation between
the two cells increases (Additional file 1: Figure S1a). Sur-
prisingly, MAGIC achieves an extremely high correlation
(cor = 1) which may be due to additional spurious correl-
ation introduced by this method. Previous studies [15, 16]
pointed out that MAGIC may induce excess large counts
that are absent in the raw data, leading to the loss of the
biological variation between cells. Indeed, as can be seen
from the t-SNE (T-distributed Stochastic Neighbour Em-
bedding) [34] visualization (Additional file 1: Figure S1b)
and the violin plots showing expression profiles of three
marker genes among nine cell types (Additional file 1: Fig-
ure S2a), MAGIC tends to introduce artificial signals that
alter the cell and the gene expression distributions greatly.
Using scImpute, the Pearson correlation between the two
cells increases greatly from 0.4 to 0.72 (Additional file 1:
Figure S1a), while the t-SNE plot shows worse separation
of cells compared to other methods or the raw data (Add-
itional file 1: Figure S1b). Previously, a permutation study
also revealed that the correlation estimates for gene pairs
without biological correlation were potentially inflated by
MAGIC and scImpute [16]. SAVER does not have a clear

Fig. 1 Schematic diagram of the scNPF framework. scNPF consists of two modules, scNPF-propagation for imputing dropouts `and scNPF-fusion for
fusing multiple smoothed expression matrices to a cell-to-cell similarity matrix. Outputs from scNPF-propagation and scNPF-fusion can be used for
downstream analyses of scRNA-seq data, such as visualization, dimension reduction, clustering, and lineage reconstruction
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impact on the data, with a slight increase of correlation
(from 0.4 to 0.42). In contrast, scNPF obtained higher cor-
relation of the two cells than SAVER. Particularly, the 2D
structure from SAVER is quite similar to that from scNPF
(Additional file 1: Figure S1b), even though these two
methods utilize completely different strategies for imput-
ation. A comparison of expression profiles of three marker
genes between the raw data and the imputed data by dif-
ferent methods also demonstrates that the imputation by
scNPF and SAVER best reflects the gene expression signa-
tures of the raw data (Additional file 1: Figure S2a). As ex-
pected, the number of expressed genes is greatly increased
after imputation by all methods (Additional file 1: Figure
S2b). However, again, the gene number distribution by
MAGIC or scImpute is altered greatly compared to the
raw data while scNPF and SAVER preserve the distribu-
tion. These results demonstrate that scNPF can recover
the true gene expression signatures, and meanwhile, pre-
serve the underlying data structures.
Next we assessed imputation results of scNPF-propaga-

tion by investigating the accuracy of single cell clustering.
The cell clustering was carried out with SC3 [35], a popular
clustering procedure that has been shown to provide most
favourable results among various clustering methods. We
assessed the clustering accuracy on the recovered data sets
by four performance metrics including ARI (Adjusted Rand
Index), Jaccard, Purity, and NMI (Normalized Mutual In-
formation). All of these metrics range from 0 to 1, with a
larger value indicating a higher match between the cluster-
ing result and the ground truth. t-SNE was adopted for
visualization. According to the ARI index, for the eight data
sets attempted, scNPF outperforms all other individual
methods in five data sets (Xue, Muraro, Darmanis, Camp2,
and Baron); scNPF performs better than at least two

individual methods in all data sets except for the Pollen
data (Fig. 2). For the three data sets (Camp1, Yan, and
Pollen) where scNPF is not the best according to ARI, the
ARI score of scNPF is always the close match of the best.
For example, ARI scores from SAVER and scNPF on the
Camp1 data are comparable (0.783 from SAVER, 0.772
from scNPF), which are much higher than that from
MAGIC or scImpute. Similar results were obtained consid-
ering the other three metrics, including Jaccard, Purity, and
NMI (Additional file 1: Figure S3). Generally, scNPF
achieved higher or comparable performance than compet-
ing methods, whereas MAGIC and scImpute had a consist-
ently lower performance. This result demonstrates that
scNPF improves the cell type clustering by imputing drop-
out events in scRNA-seq data and also suggests the robust-
ness of the performance of scNPF across various data sets.
scNPF-propagation has one adjustable parameter rϵ(0,

1), denoting a restart rate of the random walker (see
Methods). r = 1 means no smoothing; a smaller r indicates
higher level of smoothing, which allows diffusing further in
the network. Previous studies have shown that the random
walk process is not sensitive to the actual choice of r over
a sizable range [24, 36, 37]. In this study, we set r at 0.5 for
all experiments. Here we also examined the effect of r by
performing scNPF-propagation on two data sets with
moderate and large sample size. SC3 clustering results on
the imputed matrices from scNPF-propagation demon-
strated that the performance is stable for different values
of r (Additional file 1: Figure S4).

Dropout imputation using scNPF with different gene-gene
interaction networks
Two modes are provided in scNPF-propagation for
smoothing expression values and imputing zeroes in the

Fig. 2 Benchmarking of scNPF-propagation on eight published scRNA-seq data sets.Clustering is performed by applying a consensus clustering method
called SC3 on the imputed expression matrices. SC3 clustering is repeated for 10 times. Each dot represents an individual SC3 clustering run and each bar
represents the median performance. ARI is employed to measure the concordance between inferred and true cluster labels. Detailed information of the
data sets is shown in Additional file 2: Table S1
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sparse scRNA-seq data. In addition to the context mode
used in the above experiment, the priori mode of scNPF is
capable of imputing missing values using publicly available
gene-gene interaction networks. Here three priori
gene-gene interaction networks including String, Human-
Net, and INet (see Methods) were utilized for scNPF-
propagation, respectively. As INet is an integration of four
different networks, it possesses a higher number of nodes
than String and HumanNet, and accordingly, a much lar-
ger number of edges (gene-gene interactions) are present
exclusively in INet (Additional file 1: Figure S5). Although
most nodes (genes) (14,497) are common in all the three
networks, only a small portion of edges (77,370) are
shared by them. First we investigated the change of spars-
ity of each imputed expression matrix after network
propagation with different modes and/or different gene-
gene networks. Take as an example the Darmanis data. A
total of 2560 genes were observed to be expressed in more
than half cells in the raw data set (Additional file 1: Figure
S6a). After imputation based on the context mode or the
priori mode with different interaction networks, the num-
ber of moderately expressed genes increased greatly. As
expected, the imputation result based on INet presents
most expressed genes (15,398) as this network is much
larger than other networks. In contrast, the imputed
matrix based on the context mode contains the lowest
number of expressed genes, which is due to that the
context-specific network constructed from the Darmanis
data is much smaller than other priori networks. Similar
trend was observed for the sparsity of different imputed
expression matrices (Additional file 1: Figure S6b), where
the imputed matrix based on the context mode is the
sparsest while the matrix based on INet is the densest.
The results based on HumanNet and String present com-
parable number of expressed genes or sparsity.
Next we examined the impact of scNPF-propagation

with different interaction networks on downstream SC3
clustering. First, we compared the performance using
the context mode and the priori mode on the eight
scRNA-seq data sets to examine the effect of propaga-
tion solely based on the given data set and propagation
using publicly available interaction networks. Generally,
scNPF yielded comparable results using different inter-
action networks across the majority of data sets (Fig. 3).
Even that imputed matrices based on different inter-
action networks present highly variable sparsity (Add-
itional file 1: Figure S6b, the Darmanis data), the cluster
analysis showed comparable performance among these
imputed matrices. This result indicates that although the
context-specific interaction network constructed from
the single cell data is much smaller than the priori net-
works obtained from public domains, imputation results
from both kinds of networks are effective for down-
stream cluster analysis regardless of the scale of the

network. Slight difference of the performance using dif-
ferent modes or different interaction networks was also
observed. Specifically, for the Yan data, the performance
of scNPF based on the context mode is lower than that
using the priori mode (Fig. 3). This may be because that
the relatively small sample size (90 cells) in the Yan data
(Additional file 2: Table S1) makes the constructed
context-specific gene-gene interaction network lack suf-
ficient information to perform effective network propa-
gation. In contrast, the performance for the Baron data
which contains > 1000 cells using the context mode is
higher than that using the priori mode (Fig. 3). Again,
this result indicates that the context mode is potentially
preferred for data with relatively large sample size, while
the priori mode may be a better choice for data with
small sample size. We note that even INet contains
much more nodes and edges than other priori networks
(Additional file 1: Figure S5), the performance based on
INet shows no advantage over other networks. Particu-
larly, for the Camp2 data, the ARI score based on the
String network is slightly higher than that using INet or
other networks (Fig. 3). It is probable that INet may con-
tain more redundant gene-gene interactions than other
networks, resulting in aggregation of errors during the
network propagation. Despite of the slight difference
among results using different networks, the performance
of scNPF is quite stable in terms of various metrics (Fig.
3 and Additional file 1: Figure S7), demonstrating the ro-
bustness of scNPF using distinct propagation modes or
different gene-gene interaction networks. As mentioned
in the above benchmarking analysis that compares the
context mode of scNPF with other imputation methods,
the performance of scNPF is not the best according to ARI
on three from the eight data sets (Camp1, Yan, and Pollen)
(Fig. 2). By contrast, switching from the context mode to
the priori mode with the String network, scNPF manifests
the highest ARI score among all imputation tools on these
three data sets (Camp1: SAVER = 0.783, scNPF-String =
0.787; Yan: scImpute = 0.774, scNPF-String = 0.803; Pollen:
SAVER = 0.958, scNPF-String = 0.958) (Fig. 3). Taken to-
gether, scNPF is highly flexible in choosing different propa-
gation modes and different interaction networks to adapt
to diverse scRNA-seq data sets.

Learning cell-cell similarities by scNPF
As a preprocessing tool, in addition to imputation, scNPF
can also learn a cell-cell similarity matrix using the
scNPF-fusion module. Free combinations of the raw ex-
pression matrices and/or the imputed expression matrices
can be used as input for scNPF-fusion. We first compared
the performance of the similarity metric learned from
scNPF with other similarity measures including RAFSIL (a
random forest based approach) [38], SIMLR (Single-cell
Interpretation via Multikernel Learning) [39], Euclidian
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distance, and Pearson correlation by analyzing eight pub-
lished scRNA-seq data sets. Here, scNPF takes the propa-
gated matrices from scNPF-propagation using the context
mode and the priori mode with the String network as in-
puts, and learns a matrix of similarities between cells by
network fusion. Take the Darmanis data as an example.
Apparently, the matrix with block structures learned from
scNPF showed higher agreement with gold-standard labels
than did other similarity measures (Fig. 4a). Block struc-
tures obtained by the correlation and Euclidian distance
are indistinguishable from the background signatures;
SIMLR generated far more blocks than the number of
reference cell types; block structures learned from RAFSIL

generally agree with the true structures except that the hy-
brid cells are indistinguishable. We also applied dimension
reduction on scNPF’s similarity matrix to visualize differ-
ences between cell populations. The 2D embedding gener-
ated by scNPF is more consistent with true labels than
other methods (Fig. 4b). Similar results were observed for
the Baron data (Additional file 1: Figure S8) on which
scNPF provides block structures with higher distinction
than other distance metrics. Overall, scNPF generates
more divergent clusters and individual clusters obtained by
scNPF are more compact than other distance measures.
In order to quantitatively measure the cell separation,

three metrics independent of clustering methods, including

Fig. 3 Benchmarking of scNPF-propagation on eight published scRNA-seq data sets using different propagation modes and/or priori networks.
Clustering is performed by applying SC3 on the imputed expression matrices. SC3 clustering is repeated for 10 times. Each dot represents an individual
SC3 clustering run and each bar represents the median performance. ARI is employed to measure the concordance between inferred and true cluster
labels. Detailed information of the data sets is shown in Additional file 2: Table S1

a

b

Fig. 4 Benchmark results of scNPF-fusion on the Darmanis data. a Heatmaps for similarities learned from the data by Euclidean distances, pairwise
Pearson correlations, SIMLR, scNPF-fusion, and RAFSIL. The scales in relative units denote the similarity. Cells with the same cell type (annotated by the
colored axes) are grouped together. b t-SNE visualization for similarity matrices learned from different similarity measures. Each point denotes a cell.
Smaller distance between two cells means higher similarity. True labels were not used as inputs for dimension reduction but were indicated in distinct
colors to validate the results. RAFSIL1 and RAFSIL2 denote the result from the RAFSIL tool with the embedded RAFSIL1 or RAFSIL2 method
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Connectivity, DBI (Davies-Bouldin Index), and Dunn, were
adopted to assess the cell separation (see Methods).
Smaller values of DBI and Connectivity or larger values of
Dunn mean better performance. According to the Dunn
index, scNPF performs significantly better than other
methods across all the eight data sets (Fig. 5a). For the
Connectivity and DBI index, scNPF, SIMLR, and RAFSIL
show comparable performance (Additional file 1: Figure
S9). For the Connectivity index, scNPF outperforms all
other individual similarity measures in four data sets (Add-
itional file 1: Figure S9a). Under the DBI, scNPF provides
the best result in three data sets and performs better than
at least two methods in seven data sets (Additional file 1:
Figure S9b). Even for those data sets where scNPF is not
the best according to DBI, the performance of scNPF is al-
ways the close match of the best. For example, the DBI
score from scNPF on the Camp1 data is 1.917, which is
very close to the best score (1.902 from RAFSIL1). Gener-
ally, scNPF achieved higher or comparable performance
than other methods, whereas Euclidean and Pearson cor-
relation had a consistently lower performance. This result
demonstrates the ability of scNPF-fusion in improving the
cell separation and the robustness of scNPF across numer-
ous data sets.
scNPF-fusion is a similarity framework which can also

be flexibly adapted to any clustering methods that take
similarities as inputs. Next we performed extensive com-
parisons of similarities learned from scNPF-fusion with
other four similarity metrics by applying k-means for cell
type clustering. According to the ARI score, clustering re-
sults demonstrate that similarities learned by scNPF and
RAFSIL significantly outperform similarities obtained
from Euclidean, Pearson correlation, and SIMLR (Fig. 5b).
Specifically, scNPF provides the best or the second best
ARI score for six from the eight data sets. Overall, scNPF
shows similar performance with RAFSIL, while scNPF
outperforms RAFSIL1 or RAFSIL2 in six from the eight
data sets. Particularly, for the Baron data, scNPF presents
much higher ARI score (0.835) than RAFSIL1 (0.446) or

RAFSIL2 (0.608). In addition, we note that for several data
sets (Muraro, Darmanis, Camp2, Baron, and Pollen), ARI
scores of individual k-means clustering runs from SIMLR
varied greatly, reflecting the poor robustness of SIMLR
with k-means clustering. Similar results were observed
using other three metrics including Jaccard, Purity, and
NMI (Additional file 1: Figure S10). In addition to
k-means, we also applied other clustering methods, in-
cluding hierarchical clustering (HC) [40], spectral cluster-
ing [41], and partitioning around medoids (PAM) [42], to
avoid potential bias of performance evaluation using dif-
ferent clustering methods. The performance of scNPF and
RAFSIL is robust regardless of clustering methods used,
whereas other three methods are more sensitive to
clustering methods applied (Additional file 1: Figures
S11-S13). For example, the performance of Euclidean and
Pearson correlation using hierarchical clustering (Add-
itional file 1: Figure S11) is much worse than that using
other clustering methods (Additional file 1: Figures S10,
S12, and S13). SIMLR with the spectral clustering (Add-
itional file 1: Figure S12) presents much lower perform-
ance than with other clustering methods (Additional file
1: Figures S10, S11, and S13). In contrast, the perfor-
mances of scNPF with different clustering methods are
stable and consistently high across diverse data sets. These
results demonstrate that the similarity matrix learned
from scNPF is superior to and more robust than other
similarity measures in clustering cell subpopulations.
The network fusion process in scNPF-fusion has three

main parameters that could be tuned (see Methods): (i) T,
the parameter controlling the number of iterations, usu-
ally between 10 and 20; (ii) β, a hyperparameter, usually
between 0.3~0.8; and (iii) K, the number of neighbours,
usually between 10 and 20. In this study, we set as default
K = 20, β = 0.5, and T = 10 for all experiments. Similar to
the parameter evaluation for scNPF-propagation (Add-
itional file 1: Figure S4), here we examined the effect of
these parameters by applying scNPF-fusion on the Darma-
nis and Baron data. Different combinations of these three

a b

Fig. 5 Performance comparison of the five similarity measurements on eight published scRNA-seq data sets. a The internal validation metric of Dunn was
employed to measure the cell separation. b ARI is employed to measure the concordance between inferred and true cluster labels. K-means clustering is
applied on the similarity matrices obtained from different methods. K-means clustering is repeated for 10 times. Each dot represents an individual K-means
clustering run and each bar represents the median performance. Detailed information of the data sets is shown in Additional file 2: Table S1
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parameters were tested. Results showed that scNPF-fusion
is robust to a variety of parameter settings (Additional file
1: Figure S14).

Learning cell-cell similarities by scNPF with different
combinations of gene-gene networks
scNPF-fusion is able to fuse the propagated expression
matrices obtained from different modes of scNPF-propaga-
tion, which allows to combine imputed data based on dif-
ferent interaction networks. Here we examined the impact
of combinations of different networks on downstream
clustering results. We defined six combinations of net-
works: combinations of any two priori networks from
String, HumanNet, and INet; combinations of the network
from the context mode and each of the individual priori
networks. For each network combination, a similarity
matrix is generated by scNPF-fusion. Take the Darmanis
data as an example. Heatmaps show that block structures
from similarities learned by scNPF-fusion with different
network combinations are similar and in high agreement
with gold-standard labels (Additional file 1: Figure S15a).
The t-SNE visualization also demonstrates that similar 2D
embeddings were generated with different network combi-
nations and all cell types are clearly distinguishable (Add-
itional file 1: Figure S15b).
According to the three internal validation metrics, the

quantitative results measuring the cell separation on all
eight data sets show little difference among these network
combinations (Fig. 6a and Additional file 1: Figure S16).
This result again demonstrates the robustness of scNPF
based on different network combinations. Next we com-
pared similarities learned from scNPF-fusion with different
network combinations by applying k-means for cell type
clustering. Generally, results are quite stable using different
network combinations for most data sets (Fig. 6b). Slight
difference was observed for the Camp1 data, where scores
of ARI or other three metrics (Additional file 1: Figure
S17) from network combinations including the context
mode are slightly higher than scores from combinations
without the context mode. This result indicates that even
though results using different network combinations are
comparable, incorporation of intrinsic structure learned
from the given data (i.e., the context mode) and the struc-
ture from priori interaction networks (i.e., the priori mode)
may generate better cell type clustering results than using
solely priori interaction networks.

Discussion
Due to the extreme sparsity and variability of scRNA-seq
data, preprocessing of scRNA-seq data is a critical prelim-
inary step prior to downstream analyses, such as dimen-
sion reduction, clustering, and spatio-temporal ordering
of cells. The low read coverage, limited number of sam-
pled cells combined with the technical biases and other

data set specific variations in scRNA-seq data pose great
challenges to single cell data analysis. Therefore, there is a
growing need for developing reliable preprocessing
methods to mitigate noise and dropouts in scRNA-seq
data. Here we presented scNPF, a network-based integra-
tive framework for preprocessing of scRNA-seq data by le-
veraging the context-specific topology inherent in the
given data and the network information from priori
gene-gene interaction networks. scNPF is a highly com-
pact and flexible framework with two independent but
connected modules, scNPF-propagation and scNPF-fu-
sion. scNPF-propagation is able to construct a context-
specific gene-gene interaction network from the given
scRNA-seq data and perform network propagation by tak-
ing into account the global topology of molecular net-
works from public domains or the inherent structure of
the investigated data. After propagation, dropout events in
the sparse expression matrix are imputed and expression
measurements especially lowly expressed ones are
smoothed. Another module, scNPF-fusion, learns highly
informative cell-cell similarities, considering diffusion pat-
terns jointly for all smoothed networks from scNPF-
propagation. Despite that output formats of these two
modules are different (gene-cell expression matrix from
scNPF-propagation; cell-cell similarity matrix from
scNPF-fusion), they are both generic format that could be
easily used by many other single cell tools. We have dem-
onstrated the great potential of scNPF in scRNA-seq data
preprocessing for accurately recovering gene expression
values and learning cell similarity networks, which is crit-
ical for effective downstream analyses. We comprehen-
sively evaluated the performance of scNPF using various
scRNA-seq data sets spanning a variety of experimental
technologies, cell types, tissues, etc. and compared it to
other competing approaches, including MAGIC [14],
scImpute [15], SAVER [16], RAFSIL [38], and SIMLR [39].
Results showed that scNPF achieved comparable or higher
performance than competing approaches according to
various metrics of internal validation or cluster accuracy.
scNPF is powerful in mitigating noise caused by low effi-
ciency, amplifying true biological relationships, and pre-
senting better cell type identity.
The preprocessing approaches in the proposed scNPF

framework have a number of desirable properties. First, by
employing strategies of network propagation and network
fusion, scNPF is able to take advantage of the fine-grained
topology of ever-increasing molecular networks, which is
particularly useful for well-annotated species with rich
biological knowledge. Second, even for poor-annotated
species with little knowledge of molecular network anno-
tations, a context mode is provided in scNPF which
constructs the sample-specific network solely based on
the given data and leverages the learned network topology
for correcting gene expression measurements. In this
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scenario, the propagation process is purely performed on
the input scRNA-seq data, without any priori biological
information involved. Third, scNPF-propagation imple-
ments an RWR-based universal framework that can freely
take the gene-gene interaction network from different
sources as the input. Particularly, the context-specific net-
work construction in scNPF-propagation is independent
of the RWR process, facilitating the incorporation of other
newly developed tools for accurately inferring gene-gene
networks. Fourth, scNPF is capable of combining context-
specific gene-gene relations inferred from the given
scRNA-seq data and interactions from priori molecular
networks, which can yield better results by exploiting the
advantages of the two distinct data sources (Fig. 6b and
Additional file 1: Figure S16). Additionally, although
scNPF-fusion is independent from scNPF-propagation, it
can be performed on the layer of scNPF-propagation to
learn similarity networks by jointly combining imputed
and/or original gene expression matrices from different
sources. As a universal preprocessing tool, scNPF can be
seamlessly incorporated into most existing pipelines or
standard tools for downstream analyses of scRNA-seq
data, such as normalization [43], dimension reduction
[44], clustering [45–47], differential expression analysis
[10], and visualization [34]. Meanwhile, existing tools in-
cluding those designed for dropout imputation [48–50]
and those for reducing technical noise [11, 51] can also be
easily incorporated into scNPF by applying the desired
procedures before scNPF-propagation or scNPF-fusion.
Recent advances in high-throughput techniques have

dramatically increased the availability of molecular inter-
action networks and stimulated the development of vari-
ous algorithms to incorporate topological properties of
these networks for elucidating cellular processes at the sys-
tems level. To the best of our knowledge, netSmooth [24]
is the first method to impute dropouts by using priori

molecular networks. However, it heavily relies on priori
biological networks from public domains, which has sev-
eral inherent limitations. One main challenge is the incom-
plete, sparse, and noisy nature of interaction networks [31,
32], consequently, the method is hindered by missing in-
teractions and false positives in the networks. Second, re-
lated genes with little annotation are likely absent in the
reference molecular networks obtained from public do-
mains [37]. Moreover, these priori networks are not
sample-specific, consequently, context-specific gene-gene
interactions that are only present in the investigated data
sets may be obscured by edges from the priori networks.
Additionally, propagating information through gene inter-
actions not present in the investigated cells may cause
erroneous aggregation of passenger signals, leading to poor
cell type stratification. Therefore, in addition to using
priori molecular networks, it is important to take into ac-
count other relevant information, such as gene associations
and expression patterns in the relevant cells. Fortunately,
the increasing compendium of scRNA-seq data at unpre-
cedented throughput and resolution enables us to extract
context-specific patterns from functionally well-annotated
genes to accurately recover gene expression signals of
lesser-known ones. The priori biological knowledge from
PPI networks in public domains and the context-specific
information of gene-gene interactions from the given data
set compensate each other, each of which encapsulates
complementary information about associations missing in
the other data source. Similar to many other network ap-
proaches [26], network propagation is the core component
in scNPF for smoothing and amplifying signals in the same
sub-network regions. Unlike the previous propagation-
based approach (netSmooth [24]) which is solely based on
priori known PPI networks, scNPF contains a context
mode which models the information flow in the given cells
to guide the direction of propagation in a context-specific

a b

Fig. 6 Performance comparison of similarities learned from scNPF-fusion with different network combinations on eight published scRNA-seq data sets.
a Internal validation metric of Dunn was employed to measure the cell separation. b ARI is employed to measure the concordance between inferred and
true cluster labels. K-means clustering is applied on the similarity matrices obtained from different methods. K-means clustering is repeated for 10 times.
Each dot represents an individual K-means clustering run and each bar represents the median performance. Detailed information of the data sets is shown
in Additional file 2: Table S1
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manner. Although the gene-gene network from the con-
text mode is much smaller than that from the priory mode
(Additional file 1: Figure S6), results of scNPF-propagation
based on both modes are comparable (Fig. 3 and Add-
itional file 1: Figure S7). This may be due to that
scNPF-propagation is performed in the context of a net-
work, thus even two paths of information flow from differ-
ent networks may have few genes or interactions in
common, they could lead to similar cumulative effect on
the same target gene. More importantly, scNPF enables
propagating information along both the priori network in
public domains and the context-specific network learned
from the given data, which can integrate available data
sources together from a gene network perspective to ag-
gregate and amplify gene expression signatures in the
highly sparse scRNA-seq data. Comprehensive results have
demonstrated that this new strategy used by scNPF could
improve performance of downstream analyses of
scRNA-seq data, such as dimension reduction and cell type
clustering (Fig. 2, Additional file 1: Figures S1 and S3).
The topological landscape of interaction networks from

public domains or that learned from the give scRNA-seq
data set provides a rich source of information for prepro-
cessing of scRNA-seq data, however, an open challenge is
how best to integrate multiple heterogeneous networks
with different connectivity patterns. Most previous work
focused on combining a collection of networks into a sin-
gle network, which is normally achieved by summarizing
the edges across different networks via algorithms like
Bayesian inference [52–54]. While such methods are
promising, a potential limitation is the substantial infor-
mation loss caused by projecting diverse data sets onto a
single network representation. Consequently, for instance,
context-specific interaction patterns that are exclusively
present in the network constructed from the given data
set may be obscured by edges from other public data
sources in the integrated network. To address this chal-
lenge, we proposed scNPF-fusion for scalable and robust
network integration, which can be employed for fusing
propagated results from individual networks. scNPF-fu-
sion constructs similarity networks of cells for each (raw
or propagated) gene expression matrix and then efficiently
fuses them into a single similarity network, which takes
advantage of the complementarities in diverse data
sources to fully profile the spectrum of the underlying
data. This integrated framework for joint learning hetero-
geneous networks can properly take advantage of the
complete set of all interactions and associations from the
priori network as well as the context-specific network
learned from the given data, thereby increasing robustness
to noise and enhancing accuracy for downstream analyses
(Figs. 4, 5 and Additional file 1: Figures S7-S13). With the
increased quantity and quality of the network data and
scRNA-seq data, analysis of scRNA-seq data from a

network perspective would provide deeper insight into the
systems-level understanding of cellular processes at the
single cell level.

Conclusions
scNPF is a universal tool for preprocessing of scRNA-seq
data, which jointly incorporates the global topology of
priori interaction networks and the context-specific infor-
mation encapsulated in the scRNA-seq data to capture
both shared and complementary knowledge from diverse
data sources. We have demonstrated the great potential of
scNPF in scRNA-seq preprocessing for accurately recover-
ing gene expression values and learning cell similarity net-
works across various scRNA-seq data sets. As an
easy-to-use R package, scNPF can be used as a versatile
preprocessing plug-in for most existing scRNA-seq ana-
lysis pipelines or tools to facilitate downstream analyses
such as dimension reduction, cell type clustering, and
visualization.

Methods
scRNA-seq data sets
We benchmarked scNPF-propagation on eight publicly
available scRNA-seq data sets from human (Additional file
2: Table S1), reflecting a wide spectrum of sequencing
protocols, sequencing depth, tissue origin, cell types, cell
number, and heterogeneity of single cells. Except for the
Xue data which was obtained from GEO (Gene Expres-
sion Omnibus) [55], other data sets in SingleCellExperi-
ment format were downloaded from a repository of
processed scRNA-seq data (https://hemberg-lab.github.io/
scRNA.seq.datasets/). To reduce the computing time, we
performed a conservative quality control (QC) process to
remove low-abundance genes as suggested in other stud-
ies [14–16]. Genes whose mean expression level is smaller
than a given cutoff (0.001 for the Muraro and Baron data
sets; 0.01 for other data sets) or genes that are expressed
in less than three cells were discarded.

scNPF-propagation for imputing dropouts and correcting
expression measurements
We adopted the network propagation approach based
on RWR to smooth expression values, which takes into
account both local and global topology of a given inter-
action network. Given a gene-gene interaction network
G = <V, E, B> with V as the set of genes and E as the
set of interactions. Each entry Bij in the transition prob-
ability matrix B stores the probability of a transition
from node i to node j. The starting point is a vector P0
of scores (amount of information) on genes representing
the gene expression profile of a given cell. After project-
ing the expression profile of a cell onto a molecular net-
work, network propagation is applied to smooth the
expression measurement across the network. Network
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propagation uses a process that simulates a random walk
with restart, which can be computed iteratively accord-
ing to the following function:

Ptþ1 ¼ rP0 þ 1−rð ÞPtW ð1Þ
P0 is a restart vector recording the initial expression

levels of genes in a given cell. W is a degree-normalized
adjacency matrix of the gene interaction network. W is
constructed by the adjacency matrix B and a diagonal
degree matrix D, which is defined as W = BD−1. r is the
trade-off between prior information and network diffu-
sion, governing the distance that a signal is allowed to
diffuse through the network during smoothing. The spe-
cific value of r has little effect on the results of network
propagation over a sizable range. In this study, r is set at
0.5 for all experiments.
At each time point t, the random walk either flows from

the current gene u to a randomly chosen neighbour v ∈V
or restarts at one gene in P0. The amount of information
at each node v ∈V depends on the sum of the information
at the adjacent nodes of v at time t − 1, in proportion to
the weights on the corresponding edges. When t is small,
Pt + 1 is close to the initial distribution P0. With the in-
crease of t, the information propagates away from the
prior distribution and reflects the network topology. The
propagation function is run iteratively with sufficient steps
until Pt + 1 converges to a steady-state P:

P ¼ r I− 1−rð ÞWð Þ−1P0 ð2Þ
After propagation, a smoothed expression profile is

obtained for the given cell. The network propagation
process is repeated for each cell in the gene-cell matrix
to generate a new propagated matrix which is a much
denser matrix with smoothed gene expression values.
Two modes of network propagation based on RWR, in-

cluding the priori mode and the context mode, were pro-
posed for imputing dropouts and smoothing expression
measurements. In the priori mode, publicly available mo-
lecular networks are used for network propagation. In this
study, three human gene interaction networks were ob-
tained from different databases. The gene association net-
work String (Search Tool for the Retrieval of Interacting
Genes/Proteins) database (v9.1) [54] integrates protein-
protein interactions from diverse sources, including com-
putationally predicted interactions, physical and functional
interactions. In the network, the weight of each link repre-
sents a combined score indicating the probabilistic confi-
dence of associations between the proteins. The top 10%
of edges of interactions ranked by the score were retained
and genes whose summarized score of neighbours is 0
were removed. HumanNet (v1) [52] is a probabilistic func-
tional gene network inferred from omics data collected in
humans, yeast, worms, and flies, which adopts a Bayesian

model to integrate different types of evidence into a single
interaction score. INet [56] is an integrated network
constructed from four existing human weighted gene
interaction networks including String and HumanNet,
which employs information entropy to define the uncer-
tain degree of gene-gene links. For each network, the
RWR-based network propagation was performed to
propagate the scRNA-seq gene expression matrix through
the network to obtained a new propagated matrix.
In the context mode, the network propagation is per-

formed without any priori interaction network but solely
relies on the given scRNA-seq data set. To this end, a
context-specific gene-gene network is constructed from
the scRNA-seq data set using the WGCNA package [57],
a popular tool for constructing the weighted correlation
network. First the count data was log2 transformed
(pseudo count = 1). Then low-abundance genes that are
below the 60th percentile of summarized expression levels
in all cells were filtered out. Except for the Xue data which
only contains 29 cells, low-abundance cells that are below
the 50th percentile of summarized expression levels in all
genes were discarded. Next, cells and genes with too many
missing entries and genes with zero variance were further
removed by the goodSamplesGenes function in the
WGCNA package. Finally, the topological overlap matrix
from the given expression data was obtained by the TOM-
similarityFromExp function in the WGCNA package,
which was then used as input for igraph to construct a
context-specific weighted and undirected network. Based
on this context-specific network, the network propagation
based on RWR can be performed to smooth the scRNA-
seq gene expression matrix.

scNPF-fusion to learn similarities by fusing multiple
expression networks
We applied similarity network fusion (SNF) [58] to flexibly
integrate two gene-cell expression matrices by constructing
a network of cells for each input matrix and then fusing
both networks into one comprehensive network. This
process consists of two main steps for data integration.
Here, we take the matrix from the priori mode of
scNPF-propagation (hereinafter referred as priorMatrix)
and the one from context mode (hereinafter referred as
contextMatrix) as inputs for scNPF-fusion to demonstrate
the process of learning a similarity matrix. First,
scNPF-fusion constructs a cell-to-cell similarity matrix for
priorMatrix and contextMatrix, respectively. Then, both
similarity matrices are iteratively and gradually fused to a
coherent and combined network, employing the non-linear
method of message passing theory [59]. Finally, weak simi-
larities which may be potential noise are discarded, and
strong similarities are added. By generating consensus
similarities among cells from priorMatrix and contextMa-
trix, SNF provides deeper insight into the comprehensive
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biological relationship among cells, beyond the scope of
basic classification or subtyping methods.
Given a propagated gene expression matrix with n

cells and m genes. A cell similarity network is denoted
as a graph G = < V, E>, where vertices V {c1, … , cn} cor-
respond to cells and edges E are weighted by how simi-
lar the cells are. Edge weights are described by a
similarity matrix W[n × n] with Wij indicating the similar-
ity between cells ci and cj. The weight of an edge can be
determined using a scaled exponential similarity kernel:

Wij ¼ exp −
d2
ij

βαij

 !
ð3Þ

Here dij represents the Euclidean distance between
cells ci and cj. β is an empirical hyperparameter which
is recommended to be set over a sizable range of [0.3,
0.8] [58]. αij is introduced to eliminate the scaling prob-
lem, which can be defined as follows:

αij ¼ diNi þ djN j
þ dij

� �
=3 ð4Þ

where Ni are the neighbours of cell ci and diNi is the
mean distances between the cell ci and each of its
neighbours.
To compute the fused matrix from priorMatrix and

contextMatrix, a full and sparse kernel on the vertex
set V is defined, which is derived from the weight
matrix W. The full kernel is a normalized weight matrix
P[n × n] that carries the full information about the simi-
larity of each cell to all other cells, which can be
defined as:

Pij ¼
Wij=2

X
k≠i

W ik ; j≠i

1=2; j ¼ i

(
ð5Þ

Another matrix S[n × n] encodes the local affinity
which measures the similarity of a cell to the K most
similar cells via K nearest neighbours:

Sij ¼
Wij=

X
k∈Ni

Wik ; j∈Ni

0; otherwise

8<
: ð6Þ

Here Ni are the neighbours of cell ci including ci in
the graph G. The network fusion process always starts
from P as the initial state using S as the kernel matrix
to efficiently capture local structure of graphs.
To fuse the priorMatrix and contextMatrix, two simi-

larity matrices Wa and Wb were computed, respectively.
Then the initial state matrices Pa and Pb were calcu-
lated from the two similarity matrices, and the kernel
matrices Sa and Sb were also computed. Given the
initial two status matrices at t = 0, Pa

t¼0 and Pb
t¼0 , the

fusion process iteratively updates the respective similar-
ity matrix:

Pa
tþ1 ¼ Sa � Pa

t � Sað ÞT

Pb
tþ1 ¼ Sb � Pb

t � Sb
� �T ð7Þ

Then after t steps, the overall status matrix can be
obtained:

Po ¼ Pa
t þ Pb

t

2
ð8Þ

Po is the fused network of cells by comparing cells’ gene
expression profiles combining both priorMatrix and con-
textMatrix, which can be used for downstream analyses,
such as clustering, subtyping, and label prediction.

Implementation of scNPF
To facilitate the application of our integrative frame-
work, we have built an open-source R package called
scNPF for preprocessing of scRNA-seq data. scNPF
implements within a well-established framework inte-
grating several preprocessing procedures for scRNA-
seq data. The package also provides the ability to
seamlessly connect different modules for more compre-
hensive analyses. The output of scNPF-propagation or
scNPF-fusion can be directly applied on other
scRNA-seq tools, such as cell type clustering tools, for
downstream analyses. Users can also provide their own
interaction networks for scNPF-propagation or scNPF-
fusion. scNPF generates well-formatted output files to
archive analysis outcomes of different modules. The
scNPF package is freely available at https://github.com/
BMILAB/scNPF.

Performance evaluation
We used four performance metrics to quantify the clus-
ter accuracy, including the ARI, Jaccard, Purity, and
NMI. All these metrics are ranging from 0 to 1, with
the higher value indicating the better performance. ARI
is a widely-used metric for quantifying the concordance
between two clustering results. ARI ranges from 0 for
random clustering to 1 for perfect matching. Purity is a
metric of the extent to which a cluster contains a single
class. A purity score of 1 is possible by putting each
data point in its own cluster. The Jaccard index is used
to quantify the similarity between two data sets. An
index of 1 indicates that the two data sets are identical,
and an index of 0 means that there is not any common
element between the two data sets. NMI is a variation
of mutual information for measuring clustering accur-
acy, which corrects the effect of an agreement solely
caused by chance. A higher NMI indicates higher clus-
tering accuracy. ARI and Jaccard are calculated using
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the adjustedRand function in the R package clues [60];
NMI is obtained by the compare function in the R
package igraph (https://igraph.org/r/).
Three additional internal validation metrics were also

adopted to quantitatively assess the goodness of a cluster-
ing structure, which do not require external knowledge
such as class labels but employ the intrinsic information
of the clustering process. The DBI [61] is based on the
average of ratios between the within cluster distances and
the between cluster distances over all clusters. The smaller
score of DBI indicates better separation of clusters. The
Connectivity [62] measures the extent of observations that
are placed in the same cluster as their nearest neighbours
in the data space. The Dunn index [62] reflects non-linear
combinations of the compactness and separation. The
smaller the score of Connectivity or DBI, or the larger the
score of Dunn, the better the separation is. We adopted
the R package clValid [62] to calculate validation scores
for Connectivity and Dunn and used the R package clus-
terSim [63] to obtain the score for DBI.
Cluster analyses were carried out to evaluate the per-

formance of imputation methods or similarity metrics.
The spectral clustering was implemented by the Spec-
tralClustering function in the R package SNFtool [58]
with the number of clusters set as the number of cell
types. The hierarchical clustering [40] is performed by
the flashClust function in the R package flashClust
(method = average) [64]. The PAM clustering [42] is im-
plemented by the pam function in the cluster R package
[65]. The k-means clustering is implemented by the
kmeans function of the stats R package with the max-
imum number of iterations set as 1e+ 9, the number of
cluster centers set as the number of cell types, and the
random seed set at 1000. The Rtsne package [66] is
utilized to obtain the 2D embedding based on t-SNE.
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