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Abstract

not appropriate reference material for wheat studies.

(Fusarium head blight) and abiotic (water deficit) stresses.

mechanism

Background: Phytohormones are key regulators of plant growth, development, and signalling networks involved in
responses to diverse biotic and abiotic stresses. Transcriptional reference maps of hormone responses have been
reported for several model plant species such as Arabidopsis thaliana, Oryza sativa, and Brachypodium distachyon.
However, because of species differences and the complexity of the wheat genome, these transcriptome data are

Results: We comprehensively analysed the transcriptomic responses in wheat spikes to seven phytohormones,
including indole acetic acid (IAA), gibberellic acid (GA), abscisic acid (ABA), ethylene (ET), cytokinin (CK), salicylic acid
(SA), and methyl jasmonic acid (MeJA). A total of 3386 genes were differentially expressed at 24 h after the hormone
treatments. Furthermore, 22.7% of these genes exhibited overlapping transcriptional responses for at least two hormones,
implying there is crosstalk among phytohormones. We subsequently identified genes with expression levels that were
significantly and differentially induced by a specific phytohormone (i.e, hormone-specific responses). The data for these
hormone-responsive genes were then compared with the transcriptome data for wheat spikes exposed to biotic

Conclusion: Our data were used to develop a transcriptional reference map of hormone responses in wheat spikes.
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Background

Common wheat (Triticum aestivum) is one of the most im-
portant cereal crops worldwide because of its production
and use. Additionally, because of its unique processing
quality, wheat is consumed in many specific forms, includ-
ing as bread or steamed bread, pizza, noodles, cake,
biscuits, and dumplings. Common wheat is a hexaploid
species (2n = 6x =42), with a large genome comprising 16
gigabases [1]. The complexity of the wheat genome has
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impeded the elucidation of the roles of phytohormones in
wheat plants, in contrast to model plant species.
Phytohormones are key molecules for regulating plant
growth, development, and signalling networks involved in
responses to diverse biotic and abiotic stresses [2-4].
Moreover, they function as part of a complex network that
finely regulates gene expression in response to environ-
mental cues. The biosynthesis, catabolism, transport, and
signalling pathways of the major hormones [i.e., auxin,
gibberellin (GA), abscisic acid (ABA), cytokinin (CK),
ethylene (ET), salicylic acid (SA), and jasmonic acid (JA)]
have been widely investigated in model plant species such
as Arabidopsis thaliana and rice [5-10]. Phytohormones
affect wheat yield, pre-harvest sprouting, and Fusarium
head blight (FHB) resistance, all of which are related to
spikes. The global wheat yield has substantially increased
since the 1960s largely because of the Green Revolution
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[11], with one of the wheat Green Revolution genes en-
coding a mutant GA-responsive protein, DELLA [12].
Auxins can increase the final wheat harvest [13]. Addition-
ally, GA, ABA, and auxins (IAA) regulate pre-harvest
sprouting and seed dormancy [14—16]. Both wheat yield and
quality are negatively affected by FHB, which is a devastating
disease worldwide [17]. Infections by Fusarium grami-
nearum (ie., the major causal agent of FHB) lead to altered
endogenous phytohormone levels in the wheat spikes [18].
The effects of JA, ABA, IAA, ET, and SA on FHB have been
reported [18—24]. Moreover, F. graminearum and JA and/or
ABA treatments have a synergistic effect on the expression
of ExpB6 (B-expansin 6), Pdfl.2 (plant defensin 1.2), and
PR4 (pathogenesis-related protein 4). Furthermore, F. grami-
nearum and JA treatments have an antagonistic effect on
ATB?2 (auxin-inducible oxidoreductase) expression [18].

The transcriptome refers to the total mRNA content in
an organism or in a specific type of tissue or cell. A tran-
scriptome analysis enables researchers to characterise the
global transcriptional activity and to identify a subset of tar-
get genes relatively easily. Considering the importance of
phytohormones, transcriptome analyses are essential for
elucidating the key roles of phytohormones, and have been
conducted for several model plant species such as A.
thaliana (135 megabases) [10], rice (389 megabases) [25],
and Brachypodium distachyon (272 megabases) [26]. The
resulting comprehensive transcriptome data have been
widely used in other studies regarding the largescale or
gene-specific regulation of transcripts. However, these tran-
scriptome data cannot be used as reference material for
studies on wheat spike-related traits because of species dif-
ferences and the complexity of the common wheat genome
(16 gigabases). Nevertheless, transcriptome analyses are still
widely used for the global and rapid identification of differ-
entially expressed genes (DEGs) under various conditions.
Therefore, the phytohormone-regulated transcriptomic
changes in wheat spikes can and should be analysed.

In this study, we completed a comprehensive analysis of
the transcriptomic changes in wheat spikes in response to
seven phytohormones [IAA, GA (GAj;), ABA, ET, CK
(trans-zeatin), SA, and MeJA] to identify responsive genes,
investigate the crosstalk among hormones, and develop
quantitative real-time polymerase chain reaction (QRT-PCR)
markers for hormone signalling. The resulting data were
then used for combined analyses of the transcriptomic
changes due to biotic (FHB) and abiotic (water deficit)
stresses. The results presented herein may be useful for clari-
fying the effects of phytohormones on wheat spike-related
traits.

Results

Identification of differentially expressed genes
Microarray data revealed gene expression changes in
wheat spikes in response to all seven tested hormones. A
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total of 3386 DEGs were identified (Additional file 1: Table
S1). The application of exogenous phytohormones upreg-
ulated gene expression levels as follows: 135 genes for
IAA, 34 genes for GA3, 1425 genes for ABA, 187 genes
for ET, 132 genes for trans-zeatin, 2 genes for SA, and 599
genes for MeJA (Fig. 1a). The phytohormone treatments
downregulated gene expression levels as follows: 278
genes for IAA, 69 genes for GA3, 897 genes for ABA, 183
genes for ET, 45 genes for trans-zeatin, 11 genes for SA,
and 493 genes for MeJA (Fig. 1a). Moreover, ABA and SA
exhibited the strongest and weakest effects on transcript
abundance, respectively.

Among the identified DEGs, only one (Ta.12812) was
common to all seven phytohormones. We observed some
overlapping gene expression, but the expression levels of
many genes were uniquely upregulated or downregulated
by individual hormones (Fig. 1b). Specifically, the expres-
sion levels of 40, 4, 1038, 71, 42, and 262 genes were
uniquely upregulated by IAA, GA, ABA, ET, trans-zeatin,
and MeJA, respectively, whereas the expression levels of
135, 13, 654, 45, 2, and 312 genes were uniquely downreg-
ulated by IAA, GA, ABA, ET, trans-zeatin, and MeJA,
respectively (Fig. 1c). We did not detect any gene uniquely
regulated by SA under our experimental conditions.

A hierarchical clustering analysis to compare global
gene expression changes (Fig. 1d) indicated that the differ-
ences between the drought stress and hormone treat-
ments (except SA) were significant. The global expression
patterns induced by MeJA, GA, and ET were similar to
those induced by ABA, CK, and IAA, respectively.

Gene ontology classification of DEGs affected by
phytohormones

A gene ontology (GO) classification of DEGs was com-
pleted to identify biological processes affected by six of
the seven hormone treatments (the exception was SA)
(Fig. le). Genes associated with the GO terms ‘cellular
processes, ‘single-organism processes, and ‘metabolic
processes’ were generally the most affected by the hor-
mone treatments. Notably, genes associated with the GO
term ‘response to stimulus’ were strongly affected by the
six hormone treatments. Significant GO terms were
identified for each of the six hormone treatments (Add-
itional file 1: Table S2). Additionally, the gene response
patterns varied among the hormone treatments.

Antagonistic and synergistic interactions between
phytohormones

In this study, 22.7% of the DEGs were regulated by two or
more hormones. These overlapping genes might be import-
ant for the crosstalk among hormones. The percentage of
antagonistically regulated genes obviously varied between
different hormone pairs (Fig. 2a). In particular, almost no
opposite responses were identified for the overlapping
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Fig. 1 Differentially expressed genes (DEGs) in hormone-treated wheat spikes. a Number of DEGs regulated by various plant hormones. b
Overlapping and unique DEGs in response to various plant hormones (excluding SA). ¢ Number of unique DEGs regulated by various plant
hormones. d Heat map illustrating the hierarchical clustering results for the microarray data. Mock, water treatment. @ Gene ontology classification of DEGs

genes between GA and CK, IAA and ET, IAA and CK, and
ET and CK (Fig. 2b), indicating extensive synergy between
these hormones at the transcriptional level. In contrast,
there were considerable opposite responses for the overlap-
ping genes between GA and MeJA, ABA and ET, CK and
ABA, and GA and ABA (Fig. 2b).

Validation of gene expression by qRT-PCR

Microarray data were verified by the qRT-PCR analysis
of 44 DEGs (Additional file 1: Table S1). The expression
patterns of the 44 genes as determined by qRT-PCR

were largely consistent with those obtained from the
microarray analysis (Fig. 3).

Some of the genes were identified as suitable hormone
response markers in wheat spikes because they were signifi-
cantly and differentially regulated by a specific phytohor-
mone. A gene specifically induced by SA (Ta.5208.1.S
1_x_at, which encodes a thionin-like protein) exhibited ap-
proximately 6.9-fold and 8.5-fold increases in expression
levels in response to SA according to microarray and
qRT-PCR analyses, respectively. Similarly, the expression
levels of genes encoding an auxin-responsive protein
(Ta.16912.1.S1_at), a seed maturation protein (Ta.9389.1.S
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Fig. 2 Antagonistic and synergistic interactions between phytohormones. a Percentage of antagonistically regulated genes between pairs of
hormones. Gene number refers to the number of overlapping genes regulated by the two corresponding hormones. b Scatter plots of fold-
changes in the overlapping genes between pairs of hormones. The vertical and horizontal ordinates indicate expression values presented in the
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1 x_at), a flavonol 3-sulfotransferase (Ta.12136.1.A1_at),
and a chymotrypsin inhibitor (Ta.2632.1.S1_x_at) were
upregulated by IAA, ABA, CK, and MeJA, respectively, ac-
cording to the microarray and qRT-PCR data. Conversely,
the expression of TaAffx.15441.1.A1_at, Ta.646.1.A1_at,
Ta.8582.1.S1_at, and Ta.21556.1.S1_x_at was inhibited by
GA, ABA, ET, and MeJA, respectively.

Expression of hormone-responsive genes during an F.
graminearum infection

To better characterise the phytohormone functions related
to wheat resistance against F. graminearum, the transcrip-
tome data for T. aestivum cv. ‘Roblin’ plants infected with
FHB (GEO record #GSE54554) were compared with our
data. A total of 10,068 DEGs, including 3180 upregulated
and 6888 downregulated genes, were identified at 2 and 4
days post-inoculation with F. graminearum (Fig. 4a).

Moreover, 1599 of the 10,086 DEGs were responsive to
both the F. graminearum infection and hormone treat-
ments (Fig. 4b).

wn

A

Six DEGs were responsive to SA (Fig. 4c; Additional file 1:
Table S3), and five of them, including Ta.5208.1.S1_x_at
(i.e., SA-response marker gene) were similarly expressed
following an F. graminearum infection (fungal stress) and
SA treatment.

MeJA

A total of 550 DEGs were identified as MeJA-responsive
genes, and 90.55% (498/550) of these DEGs exhibited simi-
lar expression patterns in response to fungal stress and
MeJA (Fig. 4c and d; Additional file 1: Table S3). A GO en-
richment analysis indicated that multiple defence-related
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expression, respectively

processes were over-represented, including glutathione
conjugation reactions and metabolic processes, sulfur
metabolic processes, responses to oxidative stress,
heterocycle biosynthetic processes, and peroxidase
reactions (Additional file 1: Table S4). Excluding the
interference of other hormones, 273 DEGs were spe-
cifically regulated by MeJA, 85 of which exhibited up-
regulated expression in response to both fungal stress
and MeJA. An examination of the putative functions
of these 85 genes revealed that they are involved in
DON detoxification, phenylpropanoid pathways for
secondary cell wall thickening, peroxidase reactions,
GDSL-lipase reactions, cell wall defence, and defence
signalling (Table 1).

ABA

We identified 1138 DEGs as ABA-responsive genes, and
93.06% (1059/1138) of these genes were similarly
expressed after fungal stress and ABA treatments
(Fig. 4c and d; Additional file 1: Table S3). Among
these DEGs, 777 were specifically regulated by ABA,
and 92.41% (718/777) of these DEGs produced similar
expression patterns in response to fungal stress and
ABA treatments. We previously confirmed that JA
and ABA (differentially regulate wheat resistance
against F. graminearum, with JA significantly
enhancing resistance and ABA having the opposite ef-
fect [18]. Unexpectedly, multiple defence processes
were over-represented among the DEGs upregulated
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Fig. 4 Expression of hormone-responsive genes during an F. graminearum infection. a Number of upregulated and downregulated genes
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by ABA, including glutathione conjugation reactions
and metabolic processes, cell wall polysaccharide
metabolic processes, xylan catabolic processes, and
sulfur metabolic processes (Additional file 1: Table
S4). In contrast, phenylpropanoid metabolic and bio-
synthetic processes were enriched among the DEGs
downregulated by ABA. Indeed, the expression levels
of multiple types of phenylpropanoid pathway genes
involved in lignin and flavonoid biosynthesis were
downregulated by ABA, including genes encoding
caffeic acid-O-methyltransferase, dihydroflavonol-4-re-
ductase, flavonoid 3’'-monooxygenase, chalcone syn-
thase, chitinase, and dirigent proteins (Table 2).
Obviously, ABA can promote F. graminearum infec-
tions in wheat by inhibiting the biosynthetic processes
related to the plant secondary cell wall, even though
ABA also upregulates the expression of many genes
associated with resistance against F. graminearum.

1AA

A total of 216 IAA-responsive DEGs were detected, of
which 81.02% (175/216) were similarly expressed follow-
ing fungal stress and IAA treatments (Fig. 4c and d).
Similar to the effects of MeJA and ABA, the expression
levels of many defence-related genes were upregulated
by IAA, but 75.79% (72/95) of the upregulated genes
were not specifically regulated by IAA.

ET

We determined that 192 DEGs were responsive to
ET, and 69.79% (134/192) of these DEGs exhibited
similar expression patterns in response to fungal
stress and ET (Fig. 4c and d). Only 40 DEGs were
specifically regulated by ET, of which 23 were simi-
larly expressed during exposures to fungal stress and
exogenous ET.
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Probe Set Annotation Flod change (log2)
Fg-2d Fg-4d MeJA
DON detoxification
Ta.12808.1.51_at PDR-like ABC transporter 18.06 16.20 239
Ta.21281.2.A1_at similar to PDR-like ABC 862 11.66 244
transporter
TaAffx.1140.1.A1_at glutathione S-transferase 742 1543 335
Ta.13496.1.A1_at UDP-glucosyltransferase 324 413 2.21
Ta.22589.151_at UDP-glucosyltransferase 358 6.05 218
Ta.18630.1.A1_at cytochrome P450 10.84 13.91 2.25
Ta.18630.1.A1_x_at cytochrome P450 10.83 10.57 230
Ta.1875.1.51_at cytochrome P450 10.18 51.10 240
Ta.1875.2.51_at cytochrome P450 9.45 26.90 2.56
Ta.1875.251_x_at cytochrome P450 10.05 3493 237
TaAffx.105598.1.51_at cytochrome P450 452 2.06 237
Secondary cell wall
Ta.8618.1.51_at shikimate kinase 4761 59.14 217
Ta.9122.151_at arogenate dehydratase 1 13.86 2833 272
Ta.9122.151_x_at arogenate dehydratase 1 14.02 25.07 2.86
Ta.9122.251_at arogenate dehydratase 1 591 4.88 231
Ta.16968.1.A1_at 4-coumarate--CoA ligase 1538 14.90 248
Ta.8228.151_at agmatine coumaroyltransferase 2231 83.23 8.60
TaAffx.109981.1.51_x_at agmatine coumaroyltransferase 12.31 771 413
TaAffx.29050.1.51_s_at agmatine coumaroyltransferase 24.29 3347 480
Ta.14545.1.51_at O-methyltransferase 267.12 20533 299
Peroxidase
Ta.18497.151_at Peroxidase 2337 1047 231
Ta.21505.1.51_at peroxidase 1531 712 2.03
Ta.24106.1.51_x_at peroxidase 829 259 3.94
Ta.24710.151_at Peroxidase 6.01 246 413
TaAffx.39568.2.51_at Peroxidase 426 253 5.04
Defense genes
Ta.14766.151_at NBS-LRR type disease 17.96 5.14 2.28
resistance protein RPG1-B
GDSL-lipases
Ta.5520.151_at GDSL lipase 340 2.36 2.06
Cell wall defence
Ta.21262.1.A1_at xylanase inhibitor precursor 16.40 23.60 245
Ta.21262.1.A1_x_at xylanase inhibitor precursor 16.13 23.60 2.54
Ta.19591.2.A1_a_at Glucan 1,3-beta-glucosidase 2.88 3.78 238
precursor
Transcription and signalling
Ta4678.151_at WRKY transcription factor 967 31.06 231
Ta4678.1.51_x_at WRKY transcription factor 8.87 29.85 2.28
Ta.30507.251_x_at ZIM domain containing 13.60 20.22 2.11
protein
Ta.30507.151_a_at ZIM domain containing 12.70 18.32 2.30



Qi et al. BMC Genomics (2019) 20:390

Page 8 of 13

Table 1 Defence-related genes specifically upregulated by MelJA and F. graminearum (Continued)

Probe Set Annotation Flod change (log2)
Fg-2d Fg-4d MeJA
protein
Ta.9507.2.51_x_at zinc-finger protein 35.96 7.822 278
TaAffx.120360.1.A1_at similar to heat shock 15.24 33.62 334
transcription factor
TaAffx.76510.1.51_at similar to MADS-box 345 260 2.20

protein FDRMADS

CK and GA

Among the detected DEGs, 78 and 30 were responsive
to CK and GA, respectively (Fig. 4c; Additional file 1:
Table S3). Additionally, 70.51% (55/78) and 66.67% (20/
30) of these DEGs produced similar expression patterns
in response to fungal stress and the corresponding hor-
mone, respectively (Fig. 4d). Only 8 and 5 of these DEGs
were specifically regulated by CK and GA, respectively.

Expression of hormone-responsive genes in the wheat
glume under water deficit conditions

Wheat glume, which is the main green tissue of spikes,
facilitates photosynthesis and delays aging under drought
conditions [27]. To clarify the effects of the major hor-
mones in the wheat glume in response to drought stress,
we compared the available data for 629 DEGs under water
deficit conditions at 6 days after anthesis [28] with the data
generated in the current study. Of these 629 DEGs, 157
were identified as hormone-responsive genes (Fig. 5a;
Additional file 1: Table S5).

We determined that 71.92% (82/114) of the ABA-re-
sponsive genes (Fig. 5b) were similarly expressed in
response to ABA and drought stress, whereas 87.88%
(29/33) of the IAA-responsive genes (Fig. 5b; Additional
file 1: Table S6) exhibited the opposite expression pat-
terns following IAA and water deficit treatments. More-
over, the expression levels of almost all of these IAA-

responsive genes (28/29) were downregulated by IAA,
but were upregulated by drought stress (Fig. 5c). These
results suggested that the drought resistance of the wheat
glume may be improved by inhibiting IAA signalling.
Functional annotations further implied that these 29 genes
contribute to the drought resistance of the wheat glume
by encoding the vesicle-associated membrane protein,
serine/threonine protein kinase, receptor-like protein kin-
ase, cytochrome P450, xyloglucan endotransglucosylase/
hydrolase protein, lipoxygenase, and the cold acclimation
protein (Additional file 1: Table S6).

Discussion

Comprehensive transcriptome analyses following hormone
treatments have been completed for model plant species,
including A. thaliana [10], rice [25], and B. distachyon
[26]; however, these studies focused on the seedling stage.
Gene expression patterns differ dramatically between or-
gans and tissues because of a temporally and spatially regu-
lated process involving the selective expression of specific
parts of the genome [29, 30]. Common wheat, which is an
allohexaploid species comprising three genomes (A, B, and
D), has multiple orthologous genes. The expression of
these genes for coordinated responses to diverse stimuli in-
volves a very complex mechanism [31, 32]. Additionally,
the complexity of the wheat genome contributes to the dif-
ficulties associated with analyses using transcriptional data

Table 2 Phenylpropanoid pathway genes downregulated by ABA and F. graminearum

Probe set Category Annotation Fold change (log2)
ABA Fg-2d Fg-4d

TaAffx.115378.1.51_at Phenylpropanoid biosynthesis caffeic acid 3-O-methyltransferase 042 0.07 0.12
Ta.9172.151_x_at flavonoid biosynthetic process chalcone synthase 0.25 0.07 0.13
Ta.9172.251_x_at flavonoid biosynthetic process chalcone synthase 041 0.28 0.21
Ta9172351_x_at flavonoid biosynthetic process chalcone synthase 032 0.29 0.18
Ta.12690.2.51_x_at flavonoid biosynthetic process dihydroflavonol-4-reductase 044 0.30 0.28
TaAffx.37978.1.A1_at flavonoid biosynthetic process Flavonoid 3-monooxygenase 0.31 0.39 032
Ta4385.2.A1_at Lignin Biosynthesis chitinase-like protein 2 043 0.22 0.15
Ta.4455.1.A1_at lignin Biosynthesis laccase - like protein 036 0.17 0.14
Ta.25384.151_at Lignin Biosynthesis dirigent-like protein 038 045 031
TaAffx.132123.1.A1_x_at Lignin Biosynthesis dirigent protein 0.22 0.28 0.19
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Fig. 5 Expression of hormone-responsive genes in the wheat glume in response to water deficit stress. a Venn diagrams presenting the genes
responsive to water deficit stress and hormone treatments. b Number of differentially expressed genes exhibiting similar and the opposite
expression patterns in spike samples treated with water deficit stress or hormones. ¢ Scatter plots of the fold-changes for the 29 genes that
exhibited the opposite expression patterns in response to water deficit stress and an IAA treatment. The vertical and horizontal ordinates indicate
the expression values presented in the log,-transformed form

from diploid species. We previously determined that cau-
tion should be exercised when using traditional A. thaliana
marker genes to investigate wheat [20]. In the current
study, we comprehensively analysed the transcriptomic
changes in wheat spikes induced by seven phytohormones.
A comparison between the transcriptome data for B.
distachyon and rice [25, 26] and the data generated in this
study indicated that only a few genes exhibited the same
expression pattern in wheat spikes (data not shown),
highlighting the importance of the transcriptional reference
map of hormone responses in wheat spikes.

Satisfying the growing demand for wheat worldwide has
been challenging [33]. Research on the effects of phytohor-
mones may contribute to increased productivity to narrow
the gap between the demand and supply. Since the 1960s,
the global wheat yield has substantially increased as a result
of the the manipulation of GA signaling [11, 12]. Other
GA-responsive dwarfism genes, such as Rht4, Rht5, Rht8,

Rht12, and Rhtl13, have the potential to increase bread
wheat yield without compromising aerial biomass or cole-
optile length. The use of uniconazole, a plant growth regu-
lator that inhibits GA biosynthesis, also enhances wheat
production [34]. Additionally, an earlier investigation
proved that increasing the auxin level positively influences
the final wheat yield [13]. In rice, OsCKX2 encodes a cyto-
kinin oxidase/dehydrogenase, which degrades CK. Thus,
downregulated OsCKX2 expression results in the accumu-
lation of CK in rice inflorescence meristems and increases
the number of reproductive organs, ultimately resulting in
increased grain vyield [35]. Identifying hormone-responsive
genes in the wheat spike may provide important insights
for the cloning of specific genes encoding regulators of
wheat production.

Pre-harvest sprouting in wheat refers to the germination
of seeds in the spikes after physiological maturity, but
before harvest, which leads to decreased grain yield and
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end-use quality as well as considerable economic losses
[36]. Pre-harvest sprouting in wheat mainly results from
the breaking or lack of seed dormancy under humid
conditions [37]. Seed dormancy is primarily regulated by
the balance between ABA and GA [38]. However, in A.
thaliana, IAA also controls seed dormancy via its
stimulatory effects on ABA signalling [15]. Accordingly,
the application of exogenous IAA enhances the accu-
mulation of ABA in wheat spikes [18]. There is little
information available on the effects of endogenous
hormones in wheat spikes on pre-harvest sprouting.
Related research may benefit from the gene expression
data generated in this study.

Drought stress adversely impacts many aspects of plant
physiology, especially the photosynthetic capacity, thereby
diminishing crop growth and productivity. Drought
tolerance is a complex trait controlled by various genes,
transcription factors, microRNAs, hormones, proteins,
co-factors, ions, and metabolites [39]. In addition to quanti-
tative trait locus mapping, transcriptomic, proteomic, and
metabolomic techniques have been used to identify
drought signalling pathways in wheat [39-44]. However,
there has been relatively little research focused on wheat
spikes, which are an important photosynthate source for
the grain-filling period [45]. Consequently, the molecular
mechanism underlying drought tolerance in wheat spikes
remains relatively uncharacterised [28]. Hormone re-
sponses and homeostasis are key physiological mechanisms
associated with drought stress tolerance [39, 43, 46]. Reddy
et al. [47] reported that auxin, ABA, brassinosteroid, CK,
ET, GA, and JA are involved in the drought stress response
of wheat leaves, and that ABA, auxin, and ET are particu-
larly important for this response. In the current study, we
determined that ABA, JA, and auxin (IAA) play a major
role in the drought stress response of wheat spikes (Fig.
5b). The accumulated ABA is thought to activate the accli-
mation and adaptation response that allows longer term
survival under drought stress conditions [48, 49]. Addition-
ally, decreases in the auxin content to inhibit growth may
also mediate drought stress responses [50]. Our results
suggest that ABA signalling is a key factor for improving
the drought resistance of wheat spikes, whereas IAA
decreases the drought tolerance of wheat spikes. Our data
may be useful for clarifying the key molecular mechanism
regulating drought responses in wheat spikes during the
grain-filling period.

The contribution of phytohormones to the wheat
defence mechanisms against FHB remains relatively un-
known, although studies have been completed to elucidate
the roles of phytohormones related to wheat FHB resist-
ance [19, 20, 23, 51-53]. The infection of wheat heads by
F. graminearum leads to a significant increase in the
accumulation of SA, JA, ABA, and IAA [18]. Additionally,
SA signalling is reportedly important for A. thaliana and
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wheat defences against F. graminearum [22—-24, 54]. Previ-
ous studies confirmed that JA signalling is a key factor for
improving wheat resistance to FHB [18, 19, 52]. A com-
parison of the transcriptomic data of FHB-susceptible and
-resistant wheat lines revealed a strong correlation between
the upregulation of JA signalling and wheat FHB resistance.
The application of exogenous JA and the inhibition of JA
biosynthesis by BSMV (barley stripe mosaic virus)-VIGS
(virus induced gene silencing) can increase and decrease
FHB resistance, respectively [18]. In the current study, we
confirmed that exogenous MeJA specifically upregulates the
expression of numerous genes, many of which are closely
related to defence response processes (Table 1). These genes
may be important for JA-induced FHB resistance. Exogen-
ous ABA reportedly increases the susceptibility of wheat to
F. graminearum infections [18, 53]. However, we observed
that ABA induced the expression of the highest number of
FHB-responsive genes among the seven tested phytohor-
mones, including many detoxification-related genes. A
possible mechanism underlying the negative effect of ABA
on FHB tolerance involves the suppressed expression of
phenylalanine pathway genes due to ABA. Previous studies
of A. thaliana [55, 56] demonstrated that ABA may sup-
press lignin production by regulating phenylpropanoid bio-
synthesis. Secondary cell wall thickening is one of the main
mechanisms that prevents the spread of F. graminearum in
wheat, and is due to the deposition of hydroxycinnamic acid
amides, flavonoids, and lignin, which are synthesised via a
phenylpropanoid metabolic shunt [57]. Suppression of the
phenylalanine pathway involved in flavonoid and lignin
biosynthesis may decrease FHB resistance by weakening the
physical barriers to the fungus. Additionally, IAA may
be crucial for the interaction between wheat and F. gra-
minearum. An earlier investigation indicated that F.
graminearum can produce IAA, thereby contributing to
dramatic changes in the IAA contents of infected wheat
heads [18]. However, the mechanism by which fungal-
derived IAA affects wheat FHB resistance remains
unclear. Interestingly, IAA induces the accumulation of
ABA [18], which represents a possible explanation. Our
transcriptome analysis described herein may promote
future research into the role of IAA during F. grami-
nearum infections. Moreover, our transcriptional data
may provide new insights into the contribution of
phytohormones to wheat FHB resistance.

Conclusions

In this study, we comprehensively analysed the
transcriptomic changes in wheat spikes induced by
seven phytohormones (IAA, GA, ABA, ET, CK, SA,
and MeJA), ultimately resulting in a transcriptional
reference map of hormone responses in wheat spikes.
We applied this map to investigate the role of hormone
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signalling pathways in wheat responses to biotic (FHB)
and abiotic (water deficit) stresses. The data presented
herein may be valuable for elucidating the contribution
of phytohormones to wheat spike-related traits.

Methods

Plant material and growth conditions

Triticum aestivum cv. ‘Roblin’ (provided by Agriculture
Canada) plants were grown in climate-controlled cham-
bers under a 16-hday (25°C):8-h night (20°C) cycle.
The plants were watered as needed and 15-15-15
(N-P-K) fertiliser was applied weekly.

Hormone treatments

Only flowering heads were used for hormone treatments.
Two florets of each fully developed spikelet from a whole
spike at the mid-anthesis stage were treated with 10 pl 10%
methanol:water solution with or without (control) 2 mM
IAA, 1 mM SA, 1 mM MeJA, 0.38 mM ABA, 0.5 mM GA3,
or 0.5 mM trans-zeatin (a type of cytokinin). Regarding the
ET treatment, each head was sealed in a plastic bag with 2
ml freshly prepared 25 mM ethephon (pH =11). All of the
hormone solutions were used to treat florets within 1 h of
being prepared. The heads were collected at 24 h after the
hormone treatments, and then ground to a fine powder in
liquid nitrogen. Each treatment was completed with three
biological replicates, each of which comprised at least five
heads. No unusual morphological changes were observed
in the treated heads. The hormone concentrations of the
treatments were based on previous studies [18, 20, 58].

RNA isolation and microarray and qRT-PCR analyses
For the microarray analysis, total RNA was extracted with
the TRIzol reagent (Invitrogen, Shanghai, China). The
quality of the extracted RNA was monitored with the
ND-1000 spectrophotometer (NanoDrop Technologies,
Wilmington, DE, USA) and by agarose gel electrophoresis.
The Affymetrix wheat genome array, with 61,127 probe
sets representing up to 55,052 transcripts, was used for
gene expression profiling at CapitalBio Corporation
(Beijing, China). Normalised values are herein presented
in the log,-transformed form. The normalised data were
analysed with the R package SAM (significance analysis of
microarrays) [59] to identify candidate genes that were
significantly and differentially expressed according to the
following criteria: g-value <0.05, fold-change =2 in the
expression ratio (i.e. log, ratio>1.0 or < - 1.0; hormone
treatment vs control), and signal intensity > 1000 for at
least one of the probes for a given gene. A hierarchical
clustering analysis of the RNA data involving the average
linkage method was used to estimate the global changes
between biological replicates and treatments.

Regarding the qRT-PCR analyses, RNA samples were
extracted with the TRIzol reagent (Invitrogen). The RNA
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quality was monitored with the ND-1000 spectrophotom-
eter and by agarose gel electrophoresis before and after a
DNase I treatment (Takara, Dalian, China). The RNA was
purified with the RNeasy kit (Tiangen, Beijing, China), after
which ¢cDNA was synthesised with the PrimeScript RT re-
agent kit (Takara) and 1pug total RNA as the template.
Primers were designed and qRT-PCR analyses were com-
pleted as previously described [60]. Details regarding the
qRT-PCR primers are listed in Additional file 1: Table S7.
The primers were designed based on the consensus se-
quences in the NCBI unigene database (http://www.ncbi.
nlm.nih.gov). Three housekeeping genes encoding aldehyde
oxidase (AOx, NCBI UniGene Ta.6172), glyceraldehyde-3-
phosphate dehydrogenase (w-GAPDH, Ta.66461), and
heterogeneous nuclear ribonucleoprotein Q (hn-RNPQ, Ta.
10105) were amplified as reference genes for the normal-
isation of the data [20].

Gene annotation and GO term enrichment analysis
Blast2GO (version 2.8) was used to annotate the gene
transcripts with GO terms. For each treatment, all of the
enriched GO terms (biological process, level 2) were
identified based on a singular enrichment analysis, which
was completed with the agriGO tool (http://systemsbiol-
ogy.cau.edu.cn/agriGOv2/) [61].

Additional file

Additional file 1: Table S1. List of genes differentially expressed in
wheat spikes in response to seven hormones. Table S2. Gene
enrichment analysis of DEGs in response to various hormones. Table S3.
List of 1599 DEGs responsive to both F. graminearum and hormone
treatments. Table S4. Gene enrichment analysis of DEGs commonly
regulated by hormones (ABA, MeJA, or IAA) and F. graminearum. Table.
S5. List of 157 DEGs responsive to water deficit stress in the glume and
hormone treatments. Table S6. List of 29 genes that exhibited the
opposite expression patterns in response to water deficit stress and 1AA.
Table S7. Details regarding the gRT-PCR primers. (XLSX 583 kb)
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