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Abstract

Background: A popular strategy to study alternative splicing in non-model organisms starts from sequencing the
entire transcriptome, then assembling the reads by using de novo transcriptome assembly algorithms to obtain
predicted transcripts. A similarity search algorithm is then applied to a related organism to infer possible function of
these predicted transcripts. While some of these predictions may be inaccurate and transcripts with low coverage are
often missed, we observe that it is possible to obtain a more complete set of transcripts to facilitate possible functional
assignments by starting the search from the intermediate de Bruijn graph that contains all branching possibilities.

Results: We develop an algorithm to extract similar transcripts in a related organism by starting the search from the
de Bruijn graph that represents the transcriptome instead of from predicted transcripts. We show that our algorithm is
able to recover more similar transcripts than existing algorithms, with large improvements in obtaining longer
transcripts and a finer resolution of isoforms. We apply our algorithm to study salt and waterlogging tolerance in two
Melilotus species by constructing new RNA-Seq libraries.

Conclusions: We have developed an algorithm to identify paths in the de Bruijn graph that correspond to similar
transcripts in a related organism directly. Our strategy bypasses the transcript prediction step in RNA-Seq data and
makes use of support from evolutionary information.
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Background
As the advance in high-throughput sequencing enables
the generation of large volumes of genomic information,
it provides researchers the opportunity to study non-
model organisms even in the absence of a fully sequenced
genome. These studies often start from sequencing the
entire transcriptome, while additional software is applied
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to process the data. An important mechanism to study is
alternative splicing, which is crucial to a variety of bio-
logical functions. The goal of these studies is to recover
as many isoforms as possible in order to understand the
underlying biological processes.

In the presence of a reference database, there are two
strategies for analyzing transcriptome data. Mapping-first
algorithms perform splice-aware alignment of the reads
to the reference genome to reconstruct the transcripts
[1, 2]. While these algorithms can construct transcripts
independent of known splice sites and identify novel
mRNA products, they only allow very few differences dur-
ing the alignment. Alternatively, when a reference genome
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is not available but a reference transcriptome is avail-
able, transcript quantification algorithms can be applied
to analyze differential expression of genes [3, 4].

In the absence of a reference database, an alternative
strategy is to employ de novo sequence assembly algo-
rithms [5–12]. A popular strategy of transcriptome assem-
bly algorithms is to assemble the reads by obtaining a de
Bruijn graph that represents the transcriptome [12–15].

Although the de Bruijn graph contains all branching
possibilities, an additional step is needed to obtain pre-
dicted transcripts from the graph. To obtain information
about possible function of these predicted transcripts, a
similarity search algorithm such as BLAST [16] is then
applied to identify similar transcripts in a related organ-
ism. In non-model organisms where a fully sequenced
genome is not available, this step is the most reliable
way to facilitate possible functional assignments. Since
the predicted transcripts are constructed based on cover-
age information, one shortcoming of this approach is that
sequences with low coverage are often ignored leading
to missed transcripts. The later BLAST step to a related
organism then starts from this relatively incomplete set of
predicted transcripts.

Instead of performing similarity search from the pre-
dicted transcripts, we observe that it is possible to obtain
a more complete set of similar transcripts if we start the
search from the de Bruijn graph directly (see Fig. 1). This
strategy bypasses the transcript prediction step and makes
use of support from evolutionary information. Since the
graph retains more information from the transcriptome
data, transcripts that have low coverage can still be recov-
ered if they have high similarity to the ones from the

Fig. 1 Difference between traditional strategy to obtain similar
transcripts and our new strategy that bypasses the transcript
prediction step

related organism. Wu et al. [17] employed a similar strat-
egy in metagenomics to extract paths directly from the de
Bruijn graph that correspond to homologous genes from
closely related species. Bao et al. [18] utilized genomic
information from the same organism or a related organ-
ism (instead of transcripts from a related organism) to
improve de novo transcriptome assemblies by first identi-
fying exons from alignments.

While the strategy of applying BLAST from each node
in a de Bruijn graph to a related organism can already give
a lot of hits, it is possible that some significant hits are
missed since the sequence within a node may be too short.
There is a need to identify paths in the de Bruijn graph that
are similar to transcripts from the related organism. Since
the number of possible paths that can be constructed from
the de Bruijn graph can be very large, it is not feasible to
enumerate all of them.

We develop a heuristic extension algorithm that starts
by enumerating short paths in the de Bruijn graph, and
iteratively extends these paths in the most promising
direction rather than in all possible directions. This pro-
cedure generalizes the BLAST algorithm to allow a non-
linear query structure instead of a query sequence. Fu et
al. [19] utilized a similar heuristic algorithm to simulta-
neously extend paths in two de Bruijn graphs in order
to compare the transcriptomes of two related organisms
at the same time. Zhong et al. [20] employed a gene-
centric approach in metagenomics to extend an assembly
graph structure by identifying reads that are related to
assembled protein sequences. Note that our strategy is dif-
ferent from the one in [17] that uses optimal alignment
to extend paths due to the smaller scale of metagenomic
data. We compare the performance of our algorithm that
starts the search from the de Bruijn graph against existing
algorithms that employ the strategy of first obtaining pre-
dicted transcripts then applying BLAST to obtain similar
transcripts.

We validate our algorithm by extracting reads from
publicly available RNA-Seq libraries. We construct new
RNA-Seq libraries for the non-model organisms Melilo-
tus albus and Melilotus siculus, and apply our algo-
rithm to study salt and waterlogging tolerance in these
two species.

Methods
Given a set of reads and a parameter k, a popular strat-
egy of transcriptome assembly algorithms is to assemble
these reads into a de Bruijn graph that represents the tran-
scriptome. By taking each k-mer that appears within the
reads as a vertex, and connecting two k-mers by a directed
edge if the (k − 1)-suffix of the first k-mer is the same
as the (k − 1)-prefix of the second k-mer, the de Bruijn
graph implicitly assembles the reads by linking together
the same k-mer that comes from different reads [21, 22].
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This strategy is very popular among short read assembly
algorithms [6, 7, 9–11].

To minimize the effect of sequencing errors, these algo-
rithms remove short tips and further simplify the de
Bruijn graph by collapsing similar paths. Each linear path
that contains a sequence of vertices with no branches is
collapsed into a single node, and a k-mer coverage cutoff
c is imposed to remove low coverage nodes [9–11]. We
develop an algorithm to identify paths in the de Bruijn
graph that correspond to similar transcripts in a related
organism. Each extracted path can be considered as a
predicted transcript in the original organism.

Initial choice of contigs to extend
For each transcript in a related organism, our goal is to
recover the best path in the de Bruijn graph that cor-
responds to the transcript. Our approach is based on
the seed-extension strategy that starts from short paths,
and iteratively extends these paths in the most promis-
ing direction. We start the search from nodes in a de
Bruijn graph that correspond to contigs from short read
assembly algorithms [9–11].

Given a de Bruijn graph, a database of known transcripts
in a related organism and an e-value cutoff ef , we first
apply BLAST from each node in the de Bruijn graph to the
transcript database to obtain all hits with e-value below
ei, where ei > ef . The extra e-value cutoff ei is chosen to
allow the initial seed nodes to be of lower quality. Some of
these nodes can be extended later into longer paths that
are of higher quality.

For each transcript in the database, we extract the top n
nodes in the de Bruijn graph that give the best BLAST hits
to it, where n is a given parameter. The resulting collec-
tion of nodes over all transcripts in the database becomes
the set of all nodes that our heuristic extension algorithm
will start from, which are the ones that are most likely
to have correspondences with transcripts in the database.
Note that more stringent values of k and the k-mer cover-
age cutoff c can provide longer nodes to start with but can
also lead to missed nodes.

Heuristic extension
For each node u in the collection, we extend its sequence
by one node along all outgoing edges from u, and apply
BLAST from each of these extended sequences to the
transcript database (see Fig. 2). If at least one of these
extended sequences gives a better e-value, we extract the
top extended path that gives the best e-value. We repeat
the extension procedure starting from this new path until
either there are no more outgoing edges to extend from or
the e-value no longer improves.

Note that during each extension, only one best direction
is chosen. Extending in more than one direction is very
time-consuming since the number of possibilities can be

Fig. 2 Illustration of the heuristic extension procedure from a node u
and its twin node u′ until the e-value no longer improves (extension
proceeds along bold edges)

exponential even in the absence of cycles. Although it is
possible that the real best path may be missed, it is still
possible to resolve different isoforms since the heuristic
extension procedure starts independently from multiple
nodes, some of which may be specific to particular iso-
forms. The procedure can be applied even in the presence
of cycles in the de Bruijn graph since the e-value cannot
improve indefinitely.

We perform a similar procedure on the node u′ that is
the twin node of u, which represents the reverse comple-
mentary sequence of k-mers on the opposite strand, and
try to extend it in the opposite direction (see Fig. 2). In
addition to adding these two extended paths from u and u′
to the set of candidate paths, we also merge the twin path
that is complementary to the extended path from u′ with
the extended path from u to obtain a longer path. We add
the merged path to the set of candidate paths and identify
its best BLAST hit in the transcript database.

Extraction of similar transcripts
At the end of the procedure, for each transcript in the
database, we report the top path that gives the best e-value
to it among all the candidate paths if such a path exists,
where the set of candidate paths includes all paths that
BLAST has been applied. Only the nodes of a path that are
in the best BLAST alignment are reported. It is possible
that some of these paths may be the same or very similar
for different transcripts in the database.

Melilotus RNA-Seq
mRNA was extracted from Melilotus albus and Melilotus
siculus using a Qiagen Oligotex mRNA mini kit. Fragmen-
tation of mRNA was done using an Ambion fragmentation
buffer. Construction of the cDNA library was based on the
Illumina protocol. First strand cDNA synthesis was done
using Random Hexamer Primers (Invitrogen) and second
strand synthesized using a DNA Polymerase 1 (Promega).
End repair was carried out to create uniform blunt ends
(Epicentre End-IT repair kit). Unique 4 bp adaptors (Illu-
mina) were added so that the libraries could be pooled for
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sequencing. An ‘A’ base was added using a Klenow enzyme
(3′ to 5′ exo minus, NEB) and adaptor ligation was per-
formed using Epicentre Fast-Link DNA ligation kit. The
cDNA template was run on a 2% agarose gel at 120 V for
60 minutes and fragments of approximately 200–500 bp
were removed and purified (Zymo gel purification kit).
The purified cDNA template was PCR enriched using the
Illumina primers and a Phusion polymerase (NEB). The
library was quantified using an Invitrogen Qubit fluorom-
eter. Libraries were sequenced on an Illumina Genome
Analyzer II under normal conditions and conditions asso-
ciated with salt tolerance and/or waterlogging tolerance as
single-end 100 bp reads, which were trimmed to 71 bp.

Results and discussion
To assess the performance of our algorithm extCon-
tig, we extracted reads from publicly available RNA-
Seq libraries (see Table 1). We validate our algo-
rithm on model organisms by applying BLAST to a
database of annotated transcripts in each model organ-
ism itself and in two other related model organisms with
varying evolutionary distances, including Schizosaccha-
romyces pombe against another yeast species Saccha-
romyces cerevisiae and another fungus Neurospora crassa,
Drosophila melanogaster against another Drosophila
species Drosophila pseudoobscura and mosquito Anophe-
les gambiae, Homo sapiens against squirrel monkey

Table 1 Data sets used in the evaluation of our heuristic
extension algorithm, with organism indicating the starting
organism, related organisms indicating the related model
organisms that BLAST is applied to, library indicating the total
number of libraries, size indicating the total number of bases in
all the reads after quality trimming, and reference indicating the
publication that describes the libraries

Organism Related organisms Library Size Reference

S. pombe S. cerevisiae 32 17 G [12]

N. crassa

D. melanogaster D. pseudoobscura 13 9.6 G [37]

A. gambiae

H. sapiens S. boliviensis 4 16 G [38]

M. musculus

A. thaliana A. lyrata 5 16 G [39]

O. sativa

L. sericata D. melanogaster 9 4.6 G [23]

H. glaber H. sapiens 13 61 G [24]

C. sociabilis H. sapiens 10 66 G [25]

C. arietinum A. thaliana 3 8.6 G [26]

M. albus A. thaliana 12 5.5 G New data

M. siculus A. thaliana 12 5.4 G New data

Saimiri boliviensis and mouse Mus musculus, and Ara-
bidopsis thaliana against another Arabidopsis species
Arabidopsis lyrata and rice Oryza sativa.

We evaluate the performance of our algorithm on pub-
licly available RNA-Seq libraries from four non-model
organisms. The blow fly Lucilia sericata is important in
medicine, forensic science and agriculture due to its filth
feeding habits, its use in maggot therapy, its colonization
of human and animal remains, and its ability to cause
myiasis in vertebrates [23]. The naked mole rat Hetero-
cephalus glaber is important in medicine and in biomed-
ical research due to its resistance to cancer and delayed
aging, and its ability to live in adverse conditions [24]. The
rodent Ctenomys sociabilis is important in the study of
social behavior of mammals and the relationship to gene
expression [25]. The chickpea Cicer arietinum is one of
the most consumed legume crops that grows in arid areas
with low productivity [26]. Similarity search is performed
from L. sericata to the model organism D. melanogaster,
from H. glaber and C. sociabilis to the model organism H.
sapiens, and from C. arietinum to the model organism A.
thaliana. The searches that are applied against the same
model organism have varying evolutionary distances.

We have constructed new RNA-Seq libraries for the
non-model organisms Melilotus albus and Melilotus sicu-
lus, which are important in the study of salt and waterlog-
ging tolerance of forage plants [27]. Genomic information
on the species will enable the dissection of coumarin
production that can be utilized in pharmaceutical devel-
opment [28]. Similarity search is performed from M. albus
and M. siculus to the model organism A. thaliana.

We trimmed each read by removing all positions includ-
ing and to the right of the first position that has a quality
score of less than 15. For smaller data sets (including
D. melanogaster, L. sericata, C. arietinum, M. albus and
M. siculus), we compare the performance of our heuris-
tic extension algorithm extVelvet starting from the de
Bruijn graph given by Velvet [9] against the performance
of Oases [14] that is a postprocessing module of Velvet.
Since Oases requires that Velvet is run without cover-
age cutoff and then applies the coverage cutoff itself, we
use the de Bruijn graph within Oases that is modified
from Velvet’s original de Bruijn graph. For the other larger
data sets, we compare the performance of our heuris-
tic extension algorithm extABySS starting from the de
Bruijn graph given by ABySS [10] against the performance
of Trans-ABySS [13] that is a postprocessing module
of ABySS. In each case, we compare the change recov-
ered by Oases and Trans-ABySS to the change recovered
by extVelvet and extABySS respectively over the values
recovered by their base algorithms Velvet and ABySS
respectively.

We applied each algorithm over k = 25, 31, and c =
3, 5, 10 for smaller data sets and c = 10, 20, 50 for
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larger data sets. BLAST is applied from predicted tran-
scripts in Oases and Trans-ABySS, from paths in the de
Bruijn graph in extVelvet and extABySS, and from con-
tigs in Velvet/Oases and ABySS. When comparing each
model organism against itself, nucleotide BLAST search
is applied to a database of gene transcripts with initial
e-value cutoff ei = 10−15 and final e-value cutoff ef =
10−100. In the other cases, translated BLAST search is
applied to a database of protein transcripts in a related
organism with initial e-value cutoff ei = 10−6 and final
e-value cutoff ef = 10−20. For each transcript in the
database, the top 8 nodes (and their twin nodes) are cho-
sen to form the initial nodes for extension. Additional
criteria are imposed to extend past very short nodes.

Transcript recovery
We assess the performance of each algorithm in recov-
ering transcripts by investigating the amount of simi-
lar transcripts obtained and the amount of recovered
transcripts that are close to full length. While the per-
formance depends on the size of RNA-Seq data, the
complexity of transcriptomes, the evolutionary distance
between organisms and the assembly algorithm that is
being used, Fig. 3 shows that Oases and Trans-ABySS
recover more similar transcripts than their base algo-
rithms Velvet and ABySS, while extVelvet and extABySS
recover even more. The improvement of Trans-ABySS
is small when compared to ABySS, which leads to
a much larger improvement of extABySS over Trans-
ABySS. These improvements are not absolute since dif-
ferent algorithms can recover different sets of similar
transcripts.

Figure 4 shows that extVelvet and extABySS can recover
more similar transcripts that are close to full length than
Oases and Trans-ABySS in most cases. Both Oases and
extVelvet (or Trans-ABySS and extABySS) can recover
more full length transcripts than Velvet (or ABySS), which
can be a few times more in some cases.

Alternative splicing
We assess the ability of each algorithm in distinguish-
ing between isoforms by considering exons in genes with
multiple isoforms. Figure 5 shows that extVelvet and
extABySS are able to recover a larger number of such
exons in most cases.

Figure 6 shows examples in which extVelvet and
extABySS can better resolve isoforms with respect to a
related organism, including the ZDHHC16 gene, which
is a zinc finger protein that may be involved in apopto-
sis regulation [29]; the dSarm gene, in which the loss of
its function protects against injury-induced axon death
[30]; the STAT3 gene, which is an acute-phase response
factor in which the isoforms have unique functions [31];
and the AT4G34660 gene, which is a SH3 domain-

containing protein that is involved in clathrin-mediated
vesicle trafficking [32].

Translocated transcripts
We assess the reliability of each algorithm by identifying
the amount of translocated transcripts that are returned.
As reported by GMAP [33], Fig. 7 shows that extVelvet
and extABySS recover a larger number of similar tran-
scripts that are uniquely mapped than Oases and Trans-
ABySS, with extVelvet returning less translocated tran-
scripts than Oases when the starting organism is different
from the related organism, and extABySS returning a few
times more translocated transcripts than Trans-ABySS in
most cases (except for A. thaliana when Trans-ABySS
returns very few translocated transcripts).

Gene expression
We assess the ability of each algorithm in recovering tran-
scripts at different expression levels. We apply eXpress [4]
to the reads in each data set with respect to the database
of recovered similar transcripts in the starting organism
that are close to full length to obtain FPKM expression
estimates. Figure 8 shows that extABySS is able to recover
a higher proportion of full length transcripts with low
coverage than ABySS and Trans-ABySS.

Melilotus albus and Melilotus siculus
In order to study salt and waterlogging tolerance of the
two Melilotus species, we apply our algorithm extVelvet
starting from each species both to the model organism
A. thaliana and to the non-model organism Medicago
truncatula. Although M. truncatula is not as well anno-
tated as A. thaliana, it is closer in evolutionary distance
to Melilotus and will give better results. We assess the dif-
ferences between the two species by applying GO Term
Finder [34] to the two sets of genes that are present in
recovered similar transcripts from M. albus and M. sicu-
lus when our algorithm is applied to A. thaliana and M.
truncatula, and identify significant GO terms with Bon-
ferroni corrected p-value below 0.01 within the biological
process ontology. Figures 9 and 10 show that while a large
number of genes in recovered similar transcripts and sig-
nificant GO terms are shared by the two species, a small
number of results that are unique to each species can be
found (see Additional file 1 for details). For M. albus, the
most notable unique genes are related to RNA splicing,
response to brassinosteroid stimulus, and developmen-
tal regulation. For M. siculus, the most notable unique
genes are related to response to karrikin (a smoke-derived
molecule that regulates seed development), nucleic acid
metabolism, negative regulation of cell differentiation, and
nucleus organization. These results suggest large differ-
ences in gene expression strategies of these species, as
they respond to the same stressful environments.
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Fig. 3 Comparisons of the change in the number of similar transcripts recovered by Oases and Trans-ABySS (shown as white bar) to the change in
the number of similar transcripts recovered by extVelvet and extABySS (shown as grey bar) respectively over the number of similar transcripts
recovered by Velvet and ABySS (shown under the x-axis) respectively for different values of k and k-mer coverage cutoff c. Within each graph, the
corresponding values of k_c are 25_3, 25_5, 25_10, 31_3, 31_5, 31_10 from left to right for smaller data sets, including D. melanogaster, L. sericata, C.
arietinum, M. albus and M. siculus, and 25_10, 25_20, 25_50, 31_10, 31_20, 31_50 from left to right for larger data sets, including S. pombe, H. sapiens,
A. thaliana, H. glaber and C. sociabilis. When comparing each model organism against itself (graphs with a single-species label), nucleotide BLAST
search is applied with e-value cutoff ef = 10−100. In the other cases, translated BLAST search is applied with e-value cutoff ef = 10−20



Fu et al. BMC Genomics 2019, 20(Suppl 5):425 Page 7 of 14

Fig. 4 Comparisons of the change in the number of similar transcripts in the starting organism that are 80% full length transcripts (100% full length
transcripts when S. pombe is the starting organism) and recovered by Oases and Trans-ABySS to the change in the ones recovered by extVelvet and
extABySS respectively over the ones recovered by Velvet and ABySS respectively for different values of k and k-mer coverage cutoff c. Notations are
the same as in Figure 3. These transcripts are the ones in which 80% (100% when S. pombe is the starting organism) of the coding region is included
in the best BLAST alignment

To assess gene expression under different conditions, we
apply edgeR [35] on the FPKM expression estimates given
by eXpress [4] to obtain a set of differentially expressed
genes under one condition against another condition with
q-value below 0.01, and apply GO Term Finder [34] to
identify significant GO terms within each set of genes.

Tables 2 and 3 show that differentially expressed genes
can be identified in all cases, with some of them asso-
ciated with significant GO terms (see Additional file 1

for details). In the results from libraries associated with
salt and waterlogging tolerance against control, many
genes are found to be differentially expressed in M. albus
that are related to response to chemical stimulus, stress,
organic substance, inorganic substance, abiotic stimulus,
and oxygen stress. There is also a significant enrichment
of genes that respond to hormones, with at least one
of these genes indicating ethylene physiology as impor-
tant in the stress response. In contrast, very few genes
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Fig. 5 Comparisons of the change in the total number of exons in genes with multiple isoforms recovered by Oases and Trans-ABySS to the change
in the ones recovered by extVelvet and extABySS respectively over the ones recovered by Velvet and ABySS respectively for different values of k and
k-mer coverage cutoff c. Notations are the same as in Figure 3. Exons within isoforms that do not have the same starting position or the same
ending position are considered to be distinct. An exon is recovered if it has some overlap with the best BLAST alignment. Exons within mRNAs are
considered when comparing each model organism against itself, while exons within coding regions of the related model organism are considered
in the other cases. Results for S. pombe are not included since there is little alternative splicing, while a few other results are not included due to poor
annotations of alternative splicing in the related model organisms

are found to be differentially expressed in M. siculus.
Among these genes, chalcone-flavanone, terpenoid, and
ferulic acid physiology are implicated in the biology of
the stress response. These results provide further basis
to study the genes that are responsible for the major dif-
ferences in salt and waterlogging tolerance of the two
species.

Conclusions
Since the main memory requirement of our algorithm is
for storing the de Bruijn graph and performing BLAST
searches, our heuristic extension algorithms extVelvet and
extABySS are much less memory intensive and more
easily parallelizable than the base algorithms Velvet and
ABySS [36]. Since a postprocessing module such as Oases
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Fig. 6 Examples of the resolution of alternative splicing with respect to a related organism. The splicing structures are on exons in the coding region
of the related organism. For the dSarm gene, uppercase letters indicate isoforms and their start/end exons, with Oases resolving less isoforms than
extVelvet. In the other splicing structures, the isoforms are drawn to scale and the starting and ending amino acid positions of isoform 1 are shown.
For the ZDHHC16 gene, Trans-ABySS cannot resolve its different isoforms on S. boliviensis, and recovers a shorter segment of it on M. musculus with
no known alternative splicing. Trans-ABySS cannot resolve isoforms 1 and 3 of the STAT3 gene, while Oases cannot resolve isoforms 1 and 2 of the
AT4G34660 gene

may need more memory than its base algorithm Velvet,
our heuristic extension algorithm provides an alternative
in these cases. Iterative BLAST searches can be performed
independently in parallel by assigning disjoint subsets of
nodes to different processors.

The running time of our algorithm has large depen-
dence on the number of nodes that are chosen for
extension (see Table 4). This in turn depends on the
size of RNA-Seq data and the complexity of transcrip-
tomes, which are reflected by the number of nodes in

the de Bruijn graph and the number of transcripts in the
database. It also depends on the evolutionary distance
between the starting organism and the related model
organism. As the evolutionary distance increases, both
the number of nodes that are chosen for extension and
the running time decrease. When applying to a different
related organism, our running time in terms of processor-
hours is at most a few to 10 times more than the base
algorithm in almost all cases, and it can be much less in
some cases.
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Fig. 7 Comparisons of the number of similar transcripts in the starting organism that are uniquely mapped (unique) or translocated (transloc) as
reported by GMAP and recovered by Oases and Trans-ABySS to the ones recovered by extVelvet and extABySS respectively for different values of k
and k-mer coverage cutoff c. The number in parentheses is the ratio of the number of translocated transcripts to the number of uniquely mapped
transcripts
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Fig. 8 Comparisons of the cumulative distribution of the FPKM expression estimates of similar transcripts in the starting organism that are 80% full
length transcripts (100% full length transcripts when S. pombe is the starting organism) and recovered by Velvet, Oases and extVelvet (or by ABySS,
Trans-ABySS and extABySS), with the range of FPKM values in each assembly divided into 20 intervals of equal width and shown as a percentage
under the x-axis. The least stringent values of k_c are used in each case, which is 25_3 for D. melanogaster and 25_10 for the other organisms

Fig. 9 Venn diagrams of the number of genes that are present in
recovered similar transcripts from M. albus and M. siculus when our
algorithm is applied to A. thaliana and M. truncatula in the 25_3
assembly

Fig. 10 Venn diagrams of the number of significant GO terms from M.
albus and M. siculus when our algorithm is applied to A. thaliana and
M. truncatula in the 25_3 assembly
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Table 2 Number of differentially expressed genes recovered
from M. albus and M. siculus when our algorithm is applied to A.
thaliana and M. truncatula from libraries associated with one
condition versus another condition in the 25_3 assembly, with
organism indicating the starting organism and its related
organism, SvsC indicating salt tolerance versus control, WvsC
indicating waterlogging tolerance versus control, SWvsC
indicating salt and waterlogging tolerance versus control, SWvsS
indicating salt and waterlogging tolerance versus salt tolerance,
and SWvsW indicating salt and waterlogging tolerance versus
waterlogging tolerance

Organism SvsC WvsC SWvsC SWvsS SWvsW

M. alb to A. tha 8 141 81 47 12

M. sic to A. tha 39 7 10 45 8

M. alb to M. tru 11 220 114 86 17

M. sic to M. tru 74 24 31 84 12

The situation is different in model organisms when
similarity searches are performed to the organism itself.
Since the BLAST hits are of much higher quality, path
extensions can be very time-consuming. In such cases,
mapping-first algorithms such as Cufflinks [2] or Scrip-
ture [1] could be used instead, which often have better
performance since our need to impose a k-mer cover-
age cutoff to simplify the de Bruijn graph for heuristic
extension often leads to missed transcripts.

Our heuristic extension strategy cannot be applied to all
transcriptome assembly algorithms. On algorithms such
as Trinity [12] that first clusters the data and constructs a
de Bruijn graph individually for each cluster, each of these
graphs has simple structures. Performing heuristic exten-
sion on top of these graphs will not lead to significant
improvements.

While our strategy cannot replace transcript predictions
in de novo assemblies when the goal is to identify novel
transcripts that have no similarity to other organisms, we
have shown that our strategy can recover more and longer
transcripts and can better resolve isoforms when simi-
lar transcripts are available from a related organism. The
sequence similarity support from the BLAST alignments
ensures that the correspondences between the transcripts
in the original organism and in the related organism are
real.

Table 3 Number of significant GO terms recovered from M. albus
and M. siculus when our algorithm is applied to A. thaliana and M.
truncatula from libraries associated with one condition versus
another condition in the 25_3 assembly. Notations are the same
as in Table 2

Organism SvsC WvsC SWvsC SWvsS SWvsW

M. alb to A. tha 0 23 42 7 0

M. sic to A. tha 9 0 0 2 0

M. alb to M. tru 2 0 1 0 0

M. sic to M. tru 0 0 0 0 0

Table 4 Running time in processor-hours, with the values to the
left and to the right of “+” indicating the running time of Velvet
and Oases respectively (or ABySS and Trans-ABySS respectively),
organism indicating the related model organism, time indicating
the running time of extVelvet (or extABySS), chosen indicating
the number of nodes that are chosen for extension, de Bruijn
indicating the number of nodes in the de Bruijn graph, and
database indicating the number of transcripts in the database

Least stringent k_c Organism Time Chosen De Bruijn Database

S. pom (84+0.2) S. pom 45 41692 536894 5011

S. cer 12 15252 536894 5907

N. cra 12 16366 536894 10082

D. mel (6.7+4.4) D. mel 238 138972 459644 22102

D. pse 67 64012 459644 16071

A. gam 32 41580 459644 12659

H. sap (45+0.2) H. sap 595 222244 1133368 32787

S. bol 490 88340 1133368 25621

M. mus 167 85166 1133368 29617

A. tha (112+0.2) A. tha 2495 423410 3111862 41671

A. lyr 944 218760 3111862 32549

O. sat 616 144058 3111862 26777

L. ser (1.2+0.2) D. mel 67 41872 257700 22102

H. gla (368+0.2) H. sap 1920 192772 5457968 32799

C. soc (440+0.2) H. sap 1344 175690 5030586 32799

C. ari (4.2+4.6) A. tha 200 103524 1205362 41671

M. alb (5.8+2.9) A. tha 79 82996 562210 41671

M. sic (9.3+6.8) A. tha 67 83718 482826 41671

Additional file

Additional file 1: Lists of unique genes that are present in recovered
similar transcripts and differentially expressed genes from libraries
associated with one condition versus another condition along with
significant GO terms recovered from M. albus and M. siculus when our
algorithm is applied to A. thaliana and M. truncatula in the 25_3 assembly.
(ZIP 101 kb)

Acknowledgements
We thank the reviewers for comments that significantly improve the paper.
Computations were performed on the Brazos Cluster and the Whole Systems
Genomics Initiative Cluster at Texas A&M University.

Funding
This work was supported in part by the National Science Foundation
[DBI-0820846, MCB-0951120]; and the National Institute of Justice
[2012-DN-BX-K024]. NLT is supported by the Centre for Ecohydrology, a
Western Australian State Government Centre of Excellence, and the Australian
Government Science and Innovation Award. AMT is supported by start-up
funds from the College of Agriculture and Life Sciences at Texas A&M University
and Texas AgriLife Research. Points of view in this document are those of the
authors and do not necessarily represent the official position or policies of the
U.S. Department of Justice. Publication costs for this work were funded by the
Open Access to Knowledge (OAK) Fund at the Texas A&M University Libraries.

https://doi.org/10.1186/s12864-019-5702-5


Fu et al. BMC Genomics 2019, 20(Suppl 5):425 Page 13 of 14

Availability of data and materials
The extContig software that implements the algorithm is available at
http://faculty.cse.tamu.edu/shsze/extcontig. The newly constructed Melilotus
RNA-Seq libraries are available at the Sequence Read Archive (SRP187991,
SRP188004).

About this supplement
This article has been published as part of BMC Genomics Volume 20
Supplement 5, 2019: Selected articles from the 7th IEEE International
Conference on Computational Advances in Bio and Medical Sciences (ICCABS
2017): genomics. The full contents of the supplement are available online at
https://bmcgenomics.biomedcentral.com/articles/supplements/volume-20-
supplement-5.

Authors’ contributions
SF, AMT and S-HS designed the computational work. PLC, MLF and NLT
performed the molecular experiments. All authors read and approved the final
manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Biochemistry & Biophysics, Texas A&M University, College
Station 77843, TX, USA. 2Molecular and Computational Biology Section,
Department of Biological Sciences, University of Southern California, Los
Angeles 90089, CA, USA. 3Department of Crop and Soil Sciences, Washington
State University, Pullman 99164, WA, USA. 4Department of Plant Pathology,
Washington State University, Pullman 99164, WA, USA. 5Centre for
Ecohydrology, The University of Western Australia, 35 Stirling Highway, 6009
Crawley, WA, Australia. 6School of Plant Biology (M084), Faculty of Natural and
Agricultural Sciences, The University of Western Australia, 35 Stirling Highway,
6009 Crawley, WA Australia. 7Department of Entomology, Texas A&M
University, College Station, TX 77843, USA. 8Department of Computer Science
and Engineering, Texas A&M University, College Station 77843, TX, USA.

Published: 6 June 2019

References
1. Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J, Adiconis X,

Fan L, Koziol MJ, Gnirke A, Nusbaum C, Rinn JL, Lander ES, Regev A. Ab
initio reconstruction of cell type-specific transcriptomes in mouse reveals
the conserved multi-exonic structure of lincRNAs. Nat Biotechnol.
2010;28:503–10.

2. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ,
Salzberg SL, Wold BJ, Pachter L. Transcript assembly and quantification
by RNA-Seq reveals unannotated transcripts and isoform switching
during cell differentiation. Nat Biotechnol. 2010;28:511–5.

3. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq
data with or without a reference genome. BMC Bioinformatics. 2011;12:
323.

4. Roberts A, Pachter L. Streaming fragment assignment for real-time
analysis of sequencing experiments. Nat Methods. 2013;10:71–3.

5. Dohm JC, Lottaz C, Borodina T, Himmelbauer H. SHARCGS, a fast and
highly accurate short-read assembly algorithm for de novo genomic
sequencing. Genome Res. 2007;17:1697–706.

6. Butler J, MacCallum I, Kleber M, Shlyakhter IA, Belmonte MK, Lander ES,
Nusbaum C, Jaffe DB. ALLPATHS: de novo assembly of whole-genome
shotgun microreads. Genome Res. 2008;18:810–20.

7. Chaisson MJ, Pevzner PA. Short read fragment assembly of bacterial
genomes. Genome Res. 2008;18:324–30.

8. Hernandez D, François P, Farinelli L, Østerås M, Schrenzel J. de novo
bacterial genome sequencing: millions of very short reads assembled on
a desktop computer. Genome Res. 2008;18:802–9.

9. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome Res. 2008;18:821–9.

10. Birol I, Jackman SD, Nielsen CB, Qian JQ, Varhol R, Stazyk G, Morin RD,
Zhao Y, Hirst M, Schein JE, Horsman DE, Connors JM, Gascoyne RD,
Marra MA, Jones SJM. de novo transcriptome assembly with ABySS.
Bioinformatics. 2009;25:2872–7.

11. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen
K, Li S, Yang H, Wang J, Wang J. de novo assembly of human genomes
with massively parallel short read sequencing. Genome Res. 2010;20:
265–72.

12. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I,
Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E,
Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C,
Lindblad-Toh K, Friedman N, Regev A. Full-length transcriptome
assembly from RNA-Seq data without a reference genome. Nat
Biotechnol. 2011;29:644–52.

13. Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, Mungall K,
Lee S, Okada HM, Qian JQ, Griffith M, Raymond A, Thiessen N, Cezard T,
Butterfield YS, Newsome R, Chan SK, She R, Varhol R, Kamoh B, Prabhu A-L,
Tam A, Zhao Y, Moore RA, Hirst M, Marra MA, Jones SJM, Hoodless PA,
Birol I. de novo assembly and analysis of RNA-seq data. Nat Methods.
2010;7:909–12.

14. Schulz MH, Zerbino DR, Vingron M, Birney E. Oases: robust de novo
RNA-seq assembly across the dynamic range of expression levels.
Bioinformatics. 2012;28:1086–92.

15. Xie Y, Wu G, Tang J, Luo R, Patterson J, Liu S, Huang W, He G, Gu S, Li S,
Zhou X, Lam T-W, Li Y, Xu X, Wong GK-S, Wang J. SOAPdenovo-Trans:
de novo transcriptome assembly with short RNA-Seq reads.
Bioinformatics. 2014;30:1660–6.

16. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local
alignment search tool. J Mol Biol. 1990;215:403–10.

17. Wu Y-W, Rho M, Doak TG, Ye Y. Stitching gene fragments with a
network matching algorithm improves gene assembly for
metagenomics. Bioinformatics. 2012;28:363–9.

18. Bao E, Jiang T, Girke T. BRANCH: boosting RNA-Seq assemblies with
partial or related genomic sequences. Bioinformatics. 2013;29:1250–9.

19. Fu S, Tarone AM, Sze S-H. Heuristic pairwise alignment of de Bruijn
graphs to facilitate simultaneous transcript discovery in related organisms
from RNA-Seq data. BMC Genomics. 2015;16(Suppl 11):5.

20. Zhong C, Yang Y, Yooseph S. GRASP2: fast and memory-efficient
gene-centric assembly and homolog search. In: Proceedings of the 7th
IEEE International Conference on Computational Advances in Bio and
Medical Sciences. IEEE Xplore Digital Library; 2017.

21. Pevzner PA. l-tuple DNA sequencing: computer analysis. J Biomol Struct
Dyn. 1989;7:63–73.

22. Idury RM, Waterman MS. A new algorithm for DNA sequence assembly. J
Comput Biol. 1995;2:291–306.

23. Sze S-H, Dunham JP, Carey B, Chang PL, Li F, Edman RM, Fjeldsted C,
Scott MJ, Nuzhdin SV, Tarone AM. A de novo transcriptome assembly of
Lucilia sericata (Diptera: Calliphoridae) with predicted alternative splices,
single nucleotide polymorphisms, and transcript expression estimates.
Insect Mol Biol. 2012;21:205–21.

24. Kim EB, Fang X, Fushan AA, Huang Z, Lobanov AV, Han L, Marino SM,
Sun X, Turanov AA, Yang P, Yim SH, Zhao X, Kasaikina MV, Stoletzki N,
Peng C, Polak P, Xiong Z, Kiezun A, Zhu Y, Chen Y, Kryukov GV, Zhang Q,
Peshkin L, Yang L, Bronson RT, Buffenstein R, Wang B, Han C, Li Q,
Chen L, Zhao W, Sunyaev SR, Park TJ, Zhang G, Wang J, Gladyshev VN.
Genome sequencing reveals insights into physiology and longevity of
the naked mole rat. Nature. 2011;479:223–7.

25. MacManes MD, Lacey EA. The social brain: transcriptome assembly and
characterization of the hippocampus from a social subterranean rodent,
the colonial tuco-tuco (Ctenomys sociabilis). PLoS ONE. 2012;7:45524.

26. Garg R, Patel RK, Tyagi AK, Jain M. de novo assembly of chickpea
transcriptome using short reads for gene discovery and marker
identification. DNA Res. 2011;18:53–63.

27. Rogers ME, Colmer TD, Frost K, Henry D, Cornwall D, Hulm E, Deretic J,
Hughes SR, Craig AD. Diversity in the genus Melilotus for tolerance to
salinity and waterlogging. Plant Soil. 2008;304:89–101.

https://bmcgenomics.biomedcentral.com/articles/supplements/volume-20-supplement-5
https://bmcgenomics.biomedcentral.com/articles/supplements/volume-20-supplement-5


Fu et al. BMC Genomics 2019, 20(Suppl 5):425 Page 14 of 14

28. Stoker JR, Bellis DM. The biosynthesis of coumarin in Melilotus Alba. J Biol
Chem. 1962;237:2303–5.

29. Li B, Cong F, Tan CP, Wang SX, Goff SP. Aph2, a protein with a zf -DHHC
motif, interacts with c-Abl and has pro-apoptotic activity. J Biol Chem.
2002;277:28870–6.

30. Osterloh JM, Yang J, Rooney TM, Fox AN, Adalbert R, Powell EH,
Sheehan AE, Avery MA, Hackett R, Logan MA, MacDonald JM,
Ziegenfuss JS, Milde S, Hou Y-J, Nathan C, Ding A, Brown RHJ, Conforti L,
Coleman M, Tessier-Lavigne M, Züchner S, Freeman MR. dSarm/Sarm1 is
required for activation of an injury-induced axon death pathway. Science.
2012;337:481–4.

31. Maritano D, Sugrue ML, Tininini S, Dewilde S, Strobl B, Fu X, Murray-Tait
V, Chiarle R, Poli V. The STAT3 isoforms α and β have unique and specific
functions. Nat Immunol. 2004;5:401–9.

32. Lam BC-H, Sage TL, Bianchi F, Blumwald E. Role of SH3
domain-containing proteins in clathrin-mediated vesicle trafficking in
Arabidopsis. Plant Cell. 2001;13:2499–512.

33. Wu TD, Watanabe CK. GMAP: a genomic mapping and alignment
program for mRNA and EST sequences. Bioinformatics. 2005;21:1859–75.

34. Boyle EI, Weng S, Gollub J, Jin H, Botstein D, Cherry JM, Sherlock G.
GO:TermFinder—open source software for accessing Gene Ontology
information and finding significantly enriched Gene Ontology terms
associated with a list of genes. Bioinformatics. 2004;20:3710–5.

35. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package
for differential expression analysis of digital gene expression data.
Bioinformatics. 2010;26:139–40.

36. Zhao Q-Y, Wang Y, Kong Y-M, Luo D, Li X, Hao P. Optimizing de novo
transcriptome assembly from short-read RNA-Seq data: a comparative
study. BMC Bioinformatics. 2011;12(S14):2.

37. Daines B, Wang H, Wang L, Li Y, Han Y, Emmert D, Gelbart W, Wang X,
Li W, Gibbs R, Chen R. The Drosophila melanogaster transcriptome by
paired-end RNA sequencing. Genome Res. 2011;21:315–24.

38. Bahn JH, Lee J-H, Li G, Greer C, Peng G, Xiao X. Accurate identification
of A-to-I RNA editing in human by transcriptome sequencing. Genome
Res. 2012;22:142–50.

39. Marquez Y, Brown JWS, Simpson C, Barta A, Kalyna M. Transcriptome
survey reveals increased complexity of the alternative splicing landscape
in Arabidopsis. Genome Res. 2012;22:1184–95.


	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Initial choice of contigs to extend
	Heuristic extension
	Extraction of similar transcripts
	Melilotus RNA-Seq

	Results and discussion
	Transcript recovery
	Alternative splicing
	Translocated transcripts
	Gene expression
	Melilotus albus and Melilotus siculus

	Conclusions
	Additional file
	Additional file 1

	Acknowledgements
	Funding
	Availability of data and materials
	About this supplement
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

