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Abstract

Background: Rhodococcus ruber strain Chol-4, a strain isolated from a sewage sludge sample, is able to grow in
minimal medium supplemented with several compounds, showing a broad catabolic capacity. We have previously
determined its genome sequence but a more comprehensive study of their metabolic capacities was necessary to
fully unravel its potential for biotechnological applications.

Results: In this work, the genome of R. ruber strain Chol-4 has been re-sequenced, revised, annotated and
compared to other bacterial genomes in order to investigate the metabolic capabilities of this microorganism. The

analysis of the data suggests that R. ruber Chol-4 contains several putative metabolic clusters of biotechnological
interest, particularly those involved on steroid and aromatic compounds catabolism.

To demonstrate some of its putative metabolic abilities, R. ruber has been cultured in minimal media containing
compounds belonging to several of the predicted metabolic pathways. Moreover, mutants were built to test the
naphtalen and protocatechuate predicted catabolic gene clusters.

Conclusions: The genomic analysis and experimental data presented in this work confirm the metabolic potential
of R. ruber strain Chol-4. This strain is an interesting model bacterium due to its biodegradation capabilities. The
results obtained in this work will facilitate the application of this strain as a biotechnological tool.
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Background

Rhodococci belong to the taxon of nocardioform actino-
mycetes. These aerobic Gram-positive bacteria are found
in diverse environmental niches and are world-widely
distributed being abundant in soil, water and marine en-
vironments [1]. They differ from other Actinomycetes
and are called the Mycolata because their distinctive cell
envelope contains large branched chain lipids known as
mycolic acids [2]. The genome size of these
non-sporulating mycolic-acid-containing bacteria varied
for different strains from 4.3 Mb (e.g. R rhodnii strain
LMG5362, [3]) to 10.0Mb (e.g. R wratislaviensis,
GCA_000583735.1).

Rhodococci are known for displaying a wide metabolic
versatility and for their ability to transform a varied
range of pollutants such as aliphatic and aromatic hy-
drocarbons, oxygenated and halogenated compounds,
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nitroaromatics, heterocyclic compounds, nitriles, and
various pesticides [4]. The analysis of their genomes has
revealed a multiplicity of genes, a high genetic redun-
dancy of metabolic pathways, and a complex regulatory
network [5]. Moreover, some Rhodococcus strains harbor
circular and linear plasmids that contain genes encoding
additional catabolic enzymes [6—8]. Even the extracellu-
lar polysaccharides of the outer membrane of rhodococci
contribute to the catabolism of aromatic compounds [9].
This versatile metabolic capacity and also their environ-
mental persistence and tolerance to stress conditions
make Rhodococcus strains good candidates for biotech-
nological processes such as bioremediation, biotransfor-
mations or biocatalysis [4, 10, 11]. On the other hand,
Rhodococcus strains are able to synthesize compounds of
industrial interest including biosurfactants [12] and ster-
oid precursors [13]. For all these reasons, the
characterization of different Rhodococcus metabolic cap-
abilities is necessary to fully exploit their biotechno-
logical potential.
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Rhodococcus ruber strain Chol-4, isolated from a sew-
age sludge sample, is classified as a Gram-positive bac-
teria belonging to the actinobacteria taxon with a high
guanine-cytosine content [14]. This strain is able to grow
in minimal medium supplemented with several aromatic
compounds, showing a broad catabolic capacity. We
have recently published the draft genome sequence of
this bacterium [15]. The analysis of the genomic se-
quence of different bacterial species, i.e. the presence of
specific genes or gene families, allows inferring their par-
ticular metabolic capabilities. In this work we present
novel and more comprehensive results, both computa-
tional and experimental, that support the versatile meta-
bolic potential of R. ruber strain Chol-4.

Methods

Bacterial strains and culture conditions

The bacterial strains and plasmids used in this work are
listed in Additional file 1.

E. coli DH5a was purchased to Thermo Fisher Scien-
tific. E. coli GM48 was obtained from the E. coli Genetic
Resources Collection (CGSC5127 number) and E. coli
S17.1 was obtained from the ATCC Bacteriology Collec-
tion (ATCC 47055 number). Rhodococcus ruber strain
Chol-4, a strain isolated from a sewage sludge sample
[14], and their derived mutants have been obtained in
our laboratory.

Escherichia coli cells were grown at 37 °C in Luria Ber-
tani (LB) [16]. Rhodococcus ruber and its derived mutant
strains were routinely grown in LB or minimal medium
(Medium 457 of the DSMZ, Braunschweig, Germany)
containing the desired carbon and energy source under
aerobic conditions at 30 °C in a rotary shaker (250 rpm)
for 1-3 days. Where appropriate, antibiotic were added
at the following concentrations: ampicillin (100 pg/mL),
nalidixic acid (15 pug/mL) or kanamycin (25-50 pg/mL
for E. coli or 200 pg/mL for Rhodococcus). For the
growth experiments, a LB pre-grown culture was washed
two times with minimal medium prior to inoculation of
10 mL of fresh minimal medium (initial DOgyopm = 0.05)
supplemented with an organic compound as only source
of energy and carbon. Volatile compounds such as
indane, tetralin, isopropanol, 1,3-butanediol, 2,3-butane-
diol, xylene, benzene, ethylbenzene, toluene, phenylace-
tic acid or styrene were provided supplied in gas phase
via saturated atmosphere (Additional file 2). Aromatic
compounds were used at 1 mg/mL of naphthalene in
powder, 10 mM sodium benzoate, 2 mM phenol, 5 mM
L-tryptophan, 4 mM vanillic acid, 4 mM gentisate, 5 mM
homogentisate, 2 mM catechol, 2.2 mM cholic acid, 2
mM DHEA and 10mM protocathecuate, 15mM bi-
phenyl, 20 mM phthalate, 5 mM 2-aminobenzoate, from
2 to 4mM salicylic acid, 0.5 mM hydroxyquinol or 2
mM L-tyrosine. DHEA (dehydroepiandrosterone) and

Page 2 of 17

cholic acid were previously dissolved in 16.5mM
methyl-B-cyclodextrin to form inclusion complexes fol-
lowing a modification of a previously reported method
[17] and prepared as described [18]. Although it is not
necessary to add methyl-B-cyclodextrin to dissolve cho-
lic acid at the concentrations employed in our experi-
ments, we have used them in the cholic acid growth
experiments to homogenize the experimental conditions
for compounds with similar structures (e.g. steroids).
Biological replicas (2 to 5 replicates) were performed for
all growth experiments.

Competent and electrocompetent cells of E. coli were
prepared and transformed as previously described [16].
Selection of transformed cells was carried out in LB agar
plates supplemented with appropriate antibiotics.

DNA manipulation and sequencing

Chromosomal DNA extraction from R. ruber strain
Chol-4 was performed using the Cetyl Trimethyl Am-
monium Bromide procedure [19]. Briefly, bacterial cells
were collected from a LB plate, resuspended in 400 pL
Tris-EDTA buffer (10 mM Tris/HCl, pH 8, 1 mM EDTA)
and incubated at 80 °C for 20 min. Then, 50 puL of lyso-
zyme (100 mg/mL) was added and incubated at 37 °C for
12 h. Afterwards, 70 uL of 10% SDS and 5 pL of protein-
ase K (10 mg/mL) were added and the sample was incu-
bated for 10min at 65°C. Proteins were precipitated
with 100 pl of 5M NaOH and 100 ul CTAB (0.1 g/ml re-
suspended in 0.7 M NaOH) for 10 min at 65°C. DNA
was purified by extraction with chloroform-isoamyl
alcohol (24:1) and phenol-chloroform-isoamyl alcohol
(25:24:1) and precipitated with 0.6 vol of isopropanol at
room temperature for 30 min. After centrifugation, DNA
was washed with 70% ethanol and resuspended in sterile
water.

Manipulation of genomic DNA was carried out ac-
cording to standard protocols [16], and the extracted
DNA was purified three times to achieve highest purity
and quality for subsequent sequencing of the complete
genome.

Two independent NGS experiments were combined
to generate this new version of the R. ruber Chol-4
de novo genomic assembly. One was previously per-
formed using Roche 454 technology [15]. A new one
based on massively parallel pyrosequencing of the
genomic DNA was done by Biejing Genomics Insti-
tute, BGI - Hong Kong Laboratory (Hong Kong,
China), using Illumina HiSeq 2000 platform. A 500 bp
short-insert library was constructed and a 91 PE se-
quencing was used as strategy. Before data delivery,
Incoming Quality Control and three levels of Quality
Control processes (e.g. GC content and depth correla-
tive analysis) were performed by BGL
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The program SPAdes v3.1.0 [20] was employed to as-
semble the reads. This assembler accepts different for-
mats for the input sequences (Fasta, FastaQ, single-end,
pair-end, etc.), thus allowing the combination of se-
quences generated by different sequencing platforms.
Four large sequences previously generated in our lab by
conventional  cloning and  Sanger  sequencing
(JQ083440.1, JQ083439.1, EU878550.1 and FJ842098.2)
were entered as trusted contigs (—-trusted-contigs flag),
[llumina reads as paired-reads and Roche reads as un-
paired. To reduce the number of mismatches and short
indels, mismatch corrector was run after the initial as-
sembly by specifying the flag --careful in the SPAdes
command. The quality assessment of the genome assem-
bly was done using QUAST [21]. Manual curation of the
assembly was subsequently carried out in order to re-
duce the number of contigs, based on their length, the
G + C content and sequence similarity of the generated
contigs with other known species.

Mutagenesis of R. ruber strain Chol-4

Unmarked gene deletions were carried out as described
previously in R. erythropolis SQ1 involving conjugative
transfer of a mutagenic plasmid carrying the sacB selec-
tion system [22]. Specific sets of primers were designed
from the up and downstream sequences of each cluster
(ketoadipate and naphtalen pathway). Polymerase chain
reaction (PCR) amplicons were obtained from isolated R.
ruber strain Chol-4 genomic DNA. Primers and condi-
tions employed in the experiments are summarized in
Additional file 3. To facilitate cloning, the primer se-
quences included restriction sites: the ketoadipate clus-
ter contained EcoRI-Xbal for the up fragment, and
Xbal-Hindlll for the down fragment; the naphtalen clus-
ter contained Xhol-HindIll and Xbal-HindIll for the up
and down fragment, respectively.

PCR amplicons (up and down fragments) were first
cloned separately into pGEM-T-Easy vectors and then
combined in order to get an EcoRI-HindIIl and Xhol--
Hindlll fragments containing a truncated cluster. Trans-
formation into E.coli GM48 was necessary in order to
avoid dam methylation of the Xbal site. The EcoRI-Hin-
dlll and Xhol-HindIll inserts, containing the fused up
and down fragments, were transferred to pK18mobsacB
plasmid [23] to construct the mutagenic plasmid
pK18(U + D) used for the partial deletion of the
corresponding cluster from R ruber strain Chol-4
chromosome.

Every mutagenic plasmid was introduced into E. coli
S$17.1 and mobilized to R. ruber strain Chol-4 by conju-
gation as previously described [19]. R. ruber transconju-
gants that had integrated the plasmid by homologous
recombination were selected on LB plates supplemented
with nalidixic acid. The cluster fragment deletion was
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achieved as a result of a second spontaneous homolo-
gous recombination process within the genome of R
ruber strain Chol-4. Colony PCR detection was per-
formed to confirm the deletion in the nar and pca
clusters in the mutant R. ruber strains.

Genome analysis and annotation

Homology searches were performed using the BLAST
server of the NCBI (http://blast.ncbi.nlm.nih.gov/Blast.
cgi). The annotation of the genome was carried out
using the GenBank tool PGAP and the on-line service
RAST (http://rastnmpdr.org/). The complete genome
sequence has been deposited at GenBank under acces-
sion number NZ_ANGC00000000.2. The program
Circos was used to visualize genomic data [24].

Pulsed field gel electrophoresis (PFGE)

PFGE was performed from 10 mL of a cell culture grown
at ODgoonm of 0.8—1.0. Cells were collected by centrifu-
gation and suspended in 0.5 mL of cell suspension solu-
tion (10mM Tris-HCl pH7.2, 20mM NaCl, 100 mM
EDTA). Plugs containing the cells were prepared with
1.5% agarose, placed in lysis buffer (1 mg/mL lysozyme,
10 mM Tris-HCI pH 7.2, 50 mM NaCl, 100 mM EDTA,
0.2% DOC, 0.5% N-laurylsarcosine sodium salt, 0.06 g/L
RNase) and incubated for 1 h at 37 °C with soft shaking.
Lysis was followed by two washes in 20 mM Tris-HCl
pH 8 and 50 mM EDTA. The plugs were placed in 3 mL
proteinase solution (1 mg/mL proteinase K, 100 mM
EDTA pH8.0, 1% N-lauryilsarcosine sodium salt, 0.2%
DOC) and incubated with gently shaken at 42 °C for 18
h. After removing the proteinase solution, 9 mL TE con-
taining 40 pg/mL PMSF were added and kept at 50 °C
for one hour, repeating the whole process two times.
After washing twice for 15 min in 20 mM Tris-HCl pH
8, 50mM EDTA the DNA in plugs was resolved by
PFGE on a contour-clamped homogeneous electric field
II Mapper system (Bio-Rad Laboratories) in 0.5x
Tris-borate-EDTA and the following running conditions:
6 V/cm for 18-24h at 13°C, with a 50-s switch time.
Gels were stained in Gel Red solution (5min) and
photographed under UV light.

Phytosterol consumption followed by mass spectrometry-
high performance liquid chromatography (MS-HPLC)

R. ruber was grown at 30 °C with 200 rpm shaking, in 25
mL of minimal medium (M457 of the DSMZ, Braun-
schweig, Germany) supplemented with a mixture of in-
dustrial phytosterols in powder (around 0.7 mg/mL),
kindly given by Gadea S.A. Two mL aliquots were col-
lected at different times and 1 mg of pregnenolone was
added as internal control of the extraction. The steroid
fraction was extracted twice with 2 mL of chloroform.
HPLC and MS determination was carried out in the
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Chromatography Service of the Biological Research Cen-
ter (“Centro de Investigaciones Bioldgicas” CIB-CSIC).
The relative peak area was calculated as the ratio between
the HPLC peak area obtained for each phytosterol (brassi-
casterol, campesterol, stigmasterol and p-sitosterol) and
the peak area of pregnenolone used as internal control.
The experiment was done twice.

Results

General genome features

R. ruber strain Chol-4 genome was sequenced using two
different Next Generation Sequencing (NGS) technolo-
gies. First, a genomic library was generated and se-
quenced in a Roche 454 GS FLX instrument. After
quality filtering and adapter clipping, this library ren-
dered 242,042 reads with an average length of 400 bp
[15]. A second library was independently generated and
processed by pair-end sequencing in an Illumina HiSeq
2000 instrument (see methods). This library generated
2,782,965 pair end reads of 90 bp with an average frag-
ment size of 500 bp between pairs. Single-reads from the
454 library and pair-end reads from the Illumina library
were combined with four larger sequences (6.3 to 11.7
Kb) that we previously obtained by standard cloning and
Sanger sequencing (GenBank accession numbers
JQ083440.1, JQ083439.1, EU878550.1 and FJ842098.2).
All the sequences were assembled using SPAdes de novo
assembler v3.1.0 [20]. The initial assembly generated 129
sequence scaffolds between 128 bp and 1,025,475 bp cov-
ering 5.63 Mb, with N50 of 438,623 bp and L50 of 4).
These scaffolds were named successively according to
their length, being Scaffold 001 the longest and Scaf-
fold_129 the shortest (Additional file 4). This nomencla-
ture was maintained in the final version of the assembly
uploaded to GenBank (NZ_ANGC00000000.2). The vast
majority (n =126) of these scaffolds were composed of a
single sequence contig with no internal gaps. Hence, for
all practical purposes, ‘scaffold’ and ‘contig’ denomina-
tions would be interchangeable in this work. To stream-
line the final assembly, twenty scaffolds shorter than
500 bp, and covering less than 3.5kb in total, were dis-
carded. Of the remaining 109 scaffolds, 65 (161.2 kb) ex-
hibited a G+ C content below 55%, and sequence
similarity to plasmid vectors and genomes from unre-
lated species. These scaffolds presumably originated
from cross-contamination of the NGS experiments,
where several libraries were sequenced in parallel in the
same flow cell, and therefore they were removed from
the final assembly. The remaining 44 scaffolds of the
final assembly exhibited a high G+ C content (70.7%)
typical of Rhodococci, and very high sequence similarity
to other Rhodococcus genomes. These 44 scaffolds cov-
ered 5.46 Mb with N50 of 438,623 bp, L50 of 4, and an
average read depth above 100X. These sequences are
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available from the NCBI GenBank database under the
accession numbers NZ ANGCO0000NNN.1, where
NNN indicates the scaffold number. We provide a more
detailed report of the assembly in Additional file 5.

Figure 1a shows the DNA sequence similarity between
R. ruber Chol-4 genome and R. pyridinivorans SB3094
(GenBank: NC_023150.1), one of its closest relatives.
The figure provides an approximation of how the R
ruber contigs might be arranged along its genome as-
suming a high degree of synteny with R. pyridinovorans.
No evidence of circular plasmids in the genome of R
ruber Chol-4 was found by pulsed-field gel electrophor-
esis. However, some genetic elements present in other
Rhodococcus plasmids were found interspersed along the
Chol-4 genome (Fig. 1b).

Annotation of Rhodococcus ruber strain Chol-4

Genome annotation using RAST server [25] identified
5049 coding sequences and 59 RNAs. 53 out of the 59
RNAS are tRNAs representing 43 different anticodons
are encoded in the R ruber genome (Additional file 6).
There were at least 7 tRNAs in multicopy: tRNAM®
(ATG) is present in 4 copies, tRNA®Y (GGC) in 3 copies
and tRNAY (GTC), tRNA®" (GAG), tRNA*? (GCO),
tRNA*P (GAC) and tRNA“" (CTC) in 2 copies. The
codon usage correlated with the high G + C content of
this strain as G + C codons are predominant in this or-
ganism (Additional file 6). Codons that have a T at the
third position lacked a cognate tRNA in R. ruber with
the single exception of Arg (CGT).

The number of tRNAs was similar to others Rhodococ-
cus strains that display a median value of 53 tRNAs al-
though there are exceptions such as R rhodnii
ASM72037vl that contains 69 tRNAs (EMBL:
NZ_JOAA00000000.1). The genomic assembly revealed
a single rrn operon located in the NZ_ANGC02000002.1
contig containing the genes for 16S, 23S and 5S rRNA.

The 4861 protein-coding detected ORFs covered
nearly 91% of the genome. Among the coding sequences,
the analysis revealed at least 129 genes related to the
metabolism of aromatic compounds: 15 of them in-
volved in peripheral degradation pathways (quinate,
benzoate and p-hydroxibenzoate degradation), 15 genes
related to the aromatic amine catabolism and 6 genes as-
sociated with the gentisate degradation pathway. A small
number of genes were involved in the resistance to anti-
biotics (resistance to vancomycin, fluoroquinolones,
B-lactamase), while a relatively large number of genes
were related to the resistance to toxic compounds, such
as mercury and arsenic.

Mobile elements
Within the genome of the strain Chol-4 we found a few
mobile elements (Additional file 7), some of them
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Fig. 1 Sequence homology of the 44 scaffolds of R. ruber strain Chol-4
genome assembly (in orange) with the genome of closely related
Rhodococcus bacteria. In a the comparison with the chromosome of its
closest relative, R. pyridinivorans (in purple). R. ruber strain Chol-4 scaffolds
are ordered and oriented according to their probable genomic location
assuming a high level of synteny between these two microorganisms.
The internal blue edges indicate regions of sequence homology above
70% with a minimum length of 0.5 kb. Scaffold order and orientation
were computed to minimize de number of cross-overs among edges. In
b comparison with the chromosomes and extrachromosomic elements
of R. pyridinivorans (purple), R. equi (green), Rjostii (red) and R. opacus
(blue). This color code is also use for the internal edges indicating
regions of sequence homology above 70% with a minimum length of
0.5 kb. For simplicity, only the homology with extrachromosomal
elements is shown. R. ruber strain Chol-4 genome scaffolds are ordered
according to their length. Many of the sequences found in the large
plasmids pPYRO2 (R. pyridinovorans), pVAPA1037 (R. equi), pRHL1-3 (R.
Jjosti) and pROBO1-02 (R. opacus), are also present in the genome of R.
ruber strain Chol-4. In both A and B, the small font numbers outside the
scaffolds indicate their internal coordinate, in kb. The large font numbers
indicate the chromosome, plasmid or scaffold names as they appear in
the original GenBank entries
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remaining as pseudogenes. Surprisingly, 25% of these
mobile elements were concentrated in a 120 kb region of
NZ_ANGC020000011.1 contig.

R. ruber Chol-4 genome had two copies of IS1164
from the IS256 transposase family (the prototype of a
major family of bacterial insertion sequence elements) in
NZ_ANGC02000007.1 contig. This element has also
been found in other Rhodococcus strains [5]. In the same
contig there were two genes (D092_RS18300 and
D092_RS17945) coding for an identical protein keeping
a 90-92% base identity with elements of Rhodococcus
pyridinivorans SB3094 plasmid (CP006997.1) and with
elements of the pNSL1 plasmid (KJ605395.1) from Rho-
dococcus sp. NS1. Both genes share 84% identity with a
transposase of Mycobacterium sp.

Other two IS elements, described for some Rhodoco-
coccus, were absent in this genome: the 1S2112 element
belonging to the IS110 family found in R. rhodochrous
NCIMB 13064 and related to genome rearrangements
[26] and the IS1166 element from the IS256 family,
found in R. erythropolis IGTSS8 [27].

Apart from those derived of mobile elements, strain
Chol-4 contains many different recombinases with dif-
ferent putative roles (Additional file 8).

Other genetic elements

Some actinobacteria such as Mycobacterium tubercu-
losis contain from 1 to 3 clustered regularly inter-
spaced short palindromic repeats (CRISPR) elements
(CRISPR  database, https://crispr.i2bc.paris-saclay.fr/
crispr/) [28]. However, R. ruber apparently is a strain
devoid of detectable CRISPRs systems, similarly to
other Rhodococcus strains. On the other hand, we
found a gene cluster related to specialized protein
degradation systems that includes a 20S proteasome
activity (subunits o and B), an ATPase (that use ATP
to unfold proteins and translocate them into the pro-
teasome) and a system of tagging proteins for degrad-
ation with Pup prokaryotic ubiquitin-like protein.
Conjugation with Pup serves as a signal for degrad-
ation by the mycobacterial proteasome (Fig. 2) [29,
30]. Most of the restriction modification systems de-
tected in this genome are classified as type I or IV
(Additional file 9).

Aromatic compounds specific gene clusters

The R. ruber Chol-4 genome annotation revealed the
presence of a rich set of gene cluster that may code for
several aromatic compounds catabolic pathways, reflect-
ing a high potential for degrading this kind of com-
pounds. The catabolism of aromatic compounds
proposed for R. ruber is outlined in Fig. 3 showing the
peripheral, central and basic pathways.
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putative DeoR-family transcriptional regulator; pafC: DNA-binding protein; tatA and tatC: twin-arginine translocation proteins; hel: DEAD/DEAH box
helicase; yfcD: nudix hydrolase YfcD; kpr: 2-dehydropantoate 2-reductase. All R. jostii RHA1 genes have the prefix “RHA1_" not included in
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Fig. 4 Gene clusters putatively involved in aromatic compounds catabolism identified in R. ruber Chol-4 and its comparison with R. jostii RHA1.
Abbreviations: ) ketoadipate pathway: catR: transcriptional regulator CatR; catA: catechol 1,2 dioyxigenase; catB: muconate cycloisomerase; catC:
mucolactone isomerase; pcal: succinyl-CoA:3-ketoacid-coenzyme A transferase subunit B; pcal: succinyl-CoA:3-ketoacid-coenzyme A transferase
subunit A; pcaH: protocatechuate 3,4-dioxygenase 3 chain; pcaG: protocatechuate 3,4-dioxygenase a chain; pcaB: 3-carboxy-cis,cis-muconate
cycloisomerase; pcal: 4-carboxymuconolactone decarboxylase; pcaR: Pca regulon regulatory protein; pcaF: 3-ketoadipyl-CoA thiolase. Ill) 2-
hydroxypentandienoate pathway: nit: nitrilotriacetate monooxy7genase component B; xylF: 2-hydroxymuconic semialdehyde hydrolase; hsaE: 2-
hydroxypentadienoate hydratase; hsaG: acetaldehyde dehydrogenase, acetylating, it is found in gene cluster for degradation of phenols, cresols,
catechol; hsaf: 4-hydroxy-2-oxovalerate aldolase; hyd: hydroxylase; bphC: 2,3-dihydroxybiphenyl 1,2-dioxygenase; hsd4B: enoyl-CoA hydratase; kstD:
3-ketosteroid-A'-dehydrogenase. IV) gentisate pathway: 3hb6h:3-hydroxybenzoate 6-hydroxylase; benk: benzoate MFS transporter; genR:
transcriptional regulator (IcIR family); genA: gentisate 1,2-dioxygenase; genB: fumarylpyruvate hydrolase; genC: maleylpyruvate isomerase,
mycothiol-dependent; xylF: 2-hydroxymuconic semialdehyde hydrolase; paa-oxy: 4-hydroxyphenylacetate 3-monooxygenase; oxo-red:3-oxoacyl-
[acyl-carrier protein] reductase; xylE: catechol 2,3-dioxygenase; retron: retron-type RNA-directed DNA polymerase. V) homogentisate pathway: /p:
uncharacterized protein Rv2599/MT2674 precursor; lipoprotein; hmgR: transcriptional regulator (MarR family); hmgA: homogentisate 1,2-
dioxygenase; hmgB: fumarylacetoacetate hydrolase; ech: enoyl-CoA hydratase; acs: acetoacetyl-CoA synthetase, long-chain-fatty-acid-CoA ligase.
VI) hydroxyquinol pathway: sh: salicylate hydroxylase; ICoA: long chain fatty acid CoA ligase; ad: acyl dehydratase; fm: FAD-binding monoxigenase;
dh: iron-containing alcohol dehydrogenase; dxnf: hydroxyquinol 1,2-dioxygenase. VII) homoprotocatechuate pathway: xylE, hsaG, hsafF are
previously described; chdh: 5-carboxymethyl-2-hydroxymuconate semialdehyde dehydrogenase; scdh: putative short chain dehydrogenase; tau: 4-
oxalocrotonate tautomerase; nit: NADH-FMN oxidoreductase-nitrilotriacetate monooxygenase component B; hpa: 4-hydroxyphenylacetate 3-
monooxygenase. VIII) A central pathway with an unknown substrate described in R. jostii RHA1: duf1486: protein of unknown function DUF1486
(probable NADH dehydrogenase/NAD(P)H nitroreductase); acDH: acyl-CoA dehydrogenase, type 2, C-terminal domain; dbps:3,4-dihydroxy-2-
butanone 4-phosphate synthase /GTP cyclohydrolase II; ox: NADH-FMN oxidoreductase; dhbdil: biphenyl-2,3-diol-1,2-dioxygenase Il (2,3-
dihydroxybiphenyl dioxygenase Il); hpcE: possible fumarylacetoacetate hydrolase; hyd: FAD-binding monooxygenase (PheA/TfdB family),
conserved hypothetical hydroxylase, similar to 2,4-dichlorophenol 6-monooxygenase; syn: acetoacetyl-CoA synthetase; asnC: transcriptional
regulator (AsnC family); pyrDH: pyruvate dehydrogenase E1 component. All R. jostii RHAT genes have the prefix “RHA1_" not included in the figure
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Central pathways

There are eight central aromatic pathways chromosom-
ally encoded in R. jostii RHA1 and R. opacus B4 [31, 32]
and 7 of them are found in R ruber: 1) the
[B-ketoadipate or ortho-cleavage pathway encoded by the
pca and cat genes and responsible for the conversion of
catechol and protocatechuate into acetyl-CoA and
succinyl-CoA by intradiol cleavage of the catecholic
intermediate (Fig. 4 I); 2) the phenylacetate pathway
encoded by the paa genes [33], that takes part in the ca-
tabolism of a variety of compounds, including

homophthalate, tropate and phenylalkanoates. This
pathway was not found in R ruber); 3) the
2-hydroxypentadienoate  pathway that transforms

2-hydroxypentadienoates into acetyl-CoA and pyruvate
through the successive action of a hydratase, an aldolase
and a dehydrogenase (Fig. 4 III) [34]; 4) the gentisate
pathway encoded by the genABC gene cluster that con-
verts gentisate to pyruvate and fumarate (Fig. 4 IV) [35];
5) the homogentisate pathway encoded by the hmgABC
genes that involves the extradiol cleavage of homogenti-
sate, followed by a C-C bond hydrolysis to finally yield
fumarate and acetoacetate (Fig. 4 V) [36]; 6) the hydro-
xyquinol pathway responsible of an intradiol-type cleav-
age of 4-hydroxysalicylate/hydroxyquinol leading to
aceyl-CoA and succinyl-CoA (Fig. 4 VI) [37]; 7) the
homoprotocatechuate pathway encoded by the ipc genes
and involved in the extradiol-type cleavage of homopro-
tocatechuate (Fig. 4 VII); 8) lastly, a putative metabolic
pathway for an unknown substrate that would be made
up of a hydroxylase, an extradiol dioxygenase and a
hydrolase (Fig. 4 VIII) [31, 32].

Peripheral pathways

Some of the above aromatic compounds are intermedi-
ates in the degradation pathways of other more complex
compounds that are also growing substrates of R. ruber
Chol-4 and whose catabolic pathways meet those previ-
ously presented as central pathways. The Chol-4 genes
encoding the putative necessary enzymatic activities of
these peripheral pathways are described below.

Gene clusters ben, cat and pca (Fig. 4i and Fig. 5a)
could be involved in the benzoate degradation. Isopro-
pylbenzene degradation genes were found in a gene clus-
ter in NZ_ANGC02000001.1 contig, and also in a
different gene cluster in NZ_ANGC02000021.1 contig
(Fig. 5b). In Fig. 5¢ some of the steroid catabolic gene
clusters contained in the R. ruber genome are depicted.
Transport systems related to steroid molecules are also
of interest and therefore mammalian cell entry (MCE)
systems that have been associated with steroid transport
[38, 39] were searched through the genomic data. Fig-
ure 6 collects all the MCE systems found in the R. ruber
genome.
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A putative gene cluster for vanillate degradation was
found in R. ruber genome (GenBank: Y11521, Fig. 5d).
Probably involved in naphtalene catabolism, a nar gene
cluster containing two regulatory genes, narRI belong-
ing to the GntR family and NarR2 of the NtrC family of
enhancer-binding proteins has been also found in the R
ruber Chol-4 genome (Fig. 5e). NZ_ANGC02000009.1
contig (Fig. 5f) contained a putative anaerobic degrad-
ation gene cluster for an acetophenone carboxylase ac-
tivity. There was also another cluster containing a
phenylalanine dehydrogenase putatively involved in
amino acid catabolism (Fig. 5g).

Other gene clusters that occur in related bacteria were
not found in the R ruber Chol-4 genome, such as the
bph cluster for biphenyl catabolism, [40] and the pad
cluster for phthalate catabolism [41].

Growth in different organic compounds

In order to determine the growth capabilities of Rhodo-
coccus ruber strain Chol-4, we analyzed its ability to use
several compounds as sole energy and carbon source
(Table 1).

The growth curves of R ruber with some of the
metabolizable compounds (sodium benzoate, cholic acid,
gentisate, naphthalene or DHEA as sole carbon source)
are shown in Fig. 7.

R. ruber was isolated by its capacity to degrade steroid
compounds like cholesterol. In this work, its growth
capabilities using other steroids of interest such as plant
sterols was investigated. Cells were grown on minimal
medium supplemented with a mix of phytosterols (plant
sterols that included brassicasterol, campesterol, stig-
masterol and [-sitosterol) as only source of energy and
carbon. The sterol consumption was followed by HPLC.
The results proved that sterol concentration was re-
duced to 5% of the initial value (Fig. 8).

Mutant construction

Unmarked gene deletions were carried out in the pca
and nar gene clusters of R. ruber strain Chol-4 to verify
the involvement of these genes in the growth of protoca-
techuate and naphthalene, respectively. A scheme of the
introduced deletions is depicted in Fig. 9 A. Mutants
were confirmed by PCR and growth experiments proved
that nar R ruber mutants lost the ability to grow on
naphthalene; similarly, pca R ruber mutants were not
able to grow on protocatechuate (Fig. 9 B).

On the other hand, the growth of the nar and pca R
ruber mutants was also checked with different carbon
sources (Table 2). The nar mutant could grow in all al-
ternative substrates tested. The pca mutant, however,
lost the capability to grow in vanillate.
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Fig. 5 Peripherical routes in R. ruber. Abbreviations: a Benzoate degradation: red: flavin reductase; pvcC: pyoverdin chromophore biosynthetic
protein; benR: transcriptional regulator (AraC family); cypX: cytochrome P450 monooxygenase; cypY: putative phenol hydroxylase; benA: benzoate
1,2-dioxygenase a subunit; benB: benzoate 1,2-dioxygenase 3 subunit; benC: benzoate dioxygenase, ferredoxin reductase component/1,2-
dihydroxycyclohexa-3,5-diene-1-carboxylate dehydrogenase; benD: 1,2-dihydroxycyclohexa-3,5-diene-1-carboxylate dehydrogenase; benK: benzoate
MFS transporter; luxR: transcriptional regulator (luxR family) putative,; ben: benzoate transport protein. b Isopropylbenzene pathway: ipbA4:
ferredoxin reductase; bphD: 2-hydroxy-6-oxo-2,4-heptadienoate hydrolase; bphC: 2,3-dihydroxybiphenyl 1,2-dioxygenase; ipbAT: isopropylbenzene
2,3-dioxygenase or IPB-dioxygenase, ISP large subunit; ipbA2: IPB-dioxygenase (ISP small subunit); ipbA3: IPB-dioxygenase ferredoxin; hcaB:
hydroxybenzaldehyde dehydrogenase, hsaf, hsaG; hsak: previously described (Fig. 4); iclR: transcriptional regulator (IcIR family); kin: sensor kinase;
st: sterol-binding domain protein; dapA: 4-hydroxy-tetrahydrodipicolinate synthase. ¢ Steroids pathway: syn: non-ribosomal peptide synthetase;
kstD: 3-oxosteroid 1-dehydrogenase; kshA: ketosteroid-9-a-hydroxylase, oxygenase; hyd: hydroxylase; hsaC: 2,3-dihydroxybiphenyl 1,2-dioxygenase;
icIR: transcriptional regulator (IcIR family); padR: transcriptional regulator (PadR family); ntaA: nitrilotriacetate monooxygenase component B; chnB:
cyclohexanone monooxygenase; hsaA: flavin-dependent monooxygenase; hsaD: 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase; hsaC: iron-
dependent extradiol dioxygenase; hsaB: flavin-dependent monooxygenase reductase subunit; sc-DH: short-chain dehydrogenase; hsa:
monooxygenase; tetR: probable transcriptional regulator (TetR family); tran: acetyl-CoA acetyltransferase; dh: acyl-CoA dehydrogenase; fadA: 3-
ketoacyl-CoA thiolase; hsd17b4: 3-a,7-0,12-a-trihydroxy-5--cholest-24-enoyl-CoA hydratase; thio: thioesterase. d Vanillate: padR: transcriptional
regulator (PadR family); vanA: vanillate o-demethylase oxygenase subunit, flavodoxin reductases (ferredoxin-NADPH reductases) family 1; vanB:
vanillate o-demethylase oxidoreductase; pcak: 4-hydroxybenzoate transporter; mt:methyltransferase. @ Naphtalen. (nar genes: R. opacus plasmid
pROB02:AP011117): narR1 and narR2: putative naphthalene degradation regulatory protein; narAa: nidA, naphthalene dioxygenase large subunit;
narAb: (nidB) naphthalene dioxygenase small subunit; narB: (nidC) 1,2-dihydro-1,2-dihydroxynaphthalene dehydrogenase; narC: (nidD) putative
aldolase NarC. f Acetophenone carboxylase (anaerobic): apc1-4: acetophenone carboxylase subunits; fisR: transcriptional regulato (Fis family). g
Aminoacid: iorAB: indolepyruvate ferredoxin oxidoreductase (a and {3 subunits); pdh: glutamate / leucine / phenylalanine / valine dehydrogenase;
asnC: transcriptional regulator (AsnC family). All R. jostii RHA1 genes have the prefix “RHA1_" not included in the figure

Discussion work, we present a more comprehensive genomic ana-
General genome features lysis on this revised sequence, and a comparative ana-
The sequence data employed in this study is the inte- lysis with other already described Rhodococcus genome
grated results of two independent sequencing experi- sequences. The published genome size of different Rho-
ments (NCIB database: NZ_ANGC00000000.2). In this  dococcus is in the range of 3.9 to 10 Mb. This large
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Fig. 6 Mce systems in R. ruber. Abbreviations: a red: enoyl-[acyl-carrier-protein] reductase [FMN]; hyd: enoyl-CoA hydratase; fadD5: long-chain fatty-
acid-CoA ligase, Mycobacterial subgroup FadD5; yrbETA: conserved hypothetical integral membrane protein YrbETA (ABC-transporter permease);
yrbE1B: conserved hypothetical integral membrane protein YrbE1B (ABC-transporter permease); mce1A-D: MCE-family protein MceA-D; mcelE:
MCE-family lipoprotein LprK (MCE-family lipoprotein Mcele); mceF: MCE family protein of Mce F Subgroup; mp: membrane protein. b /710p: LSU
ribosomal protein L10p (PO); /7/112: LSU ribosomal protein L7/L12 (P1/P2); met-ABC: methionine ABC-transporter ATP-binding protein (npd:2-
nitropropane dioxygenase, NPD). ¢ reg: possible transcriptional regulatory protein; fadD17: long-chain fatty-acid-CoA ligase (Mycobacterial
subgroup FadD17); fadE27: butyryl-CoA dehydrogenase; fadk26: acyl-CoA dehydrogenase (Mycobacterial subgroup FadE26); fdx: ferredoxin; fabG: 3-
ketoacyl-ACP reductase (hsd4A); supA and supB: ABC-transporter permease; ts-reg: two-component system response regulator; tps: a,a-trehalose-
phosphate synthase [UDP-forming]; npd: acyl-CoA synthetase; epi: epimerase, dihydroflavonol-4-reductase. All R. jostii RHAT genes have the prefix

"RHA1_" not included in the figure

difference in genome size could be related both to the
presence of large plasmids and to the extensive genome
instability that occurs in several Rhodococcus species
[42]. The genome of R ruber Chol-4 is 5.4 Mb long, a
size close to Rhodococcus genome average size (5.69 Mb:

Table 1 Growth of R. ruber Chol-4 wild type on minimum
medium with different carbon sources

Aromatic compounds Growth Volatile compounds Growth
catechol + 13-butanediol +
cholic acid + 2,3-butanediol +
DHEA + Isopropanol +
gentisate + benzene -
homogentisate + ethylbenzene -
L-tryptophan + indane -
naphthalene + phenylacetic acid -
phenol + styrene -
protocathecuate + tetralin -
sodium benzoate + toluene -
vanillic acid + xylene isomers -

2-aminobenzoate -
bipheny! -
hydroxyquinol -
L-tyrosine -
phthalate -

salicylic acid -

https://www.ncbi.nlm.nih.gov/genome/13525) and quite
similar to the R. equi ATCC 33707 (5.2 MB), R. pyridini-
vorans SB3094 (5.6 Mb), R. aetherivorans or R. fascians
A44A (both with 5.9 Mb) genome.

The analysis of the genomic data suggests that R ruber
Chol-4 contains several putative metabolic gene clusters of
biotechnological interest, particularly those involved in the
catabolism of aromatic compounds (clusters related to the
metabolism of benzoate, vanillate, naphtalen, gentisate, etc.)
and steroids (for instance, clusters related to cholesterol ca-
tabolism) supporting its potential as a model organism for
studying aromatic molecules and steroid biodegradation.

Rhodococci are very interesting microorganisms be-
cause of their ability to degrade a broad spectrum of aro-
matic molecules, which are structures very difficult to
catabolize and widely distributed in the biosphere. In
Rhodococcus strains, the catabolism of aromatic com-
pounds is organized in a modular way that includes per-
ipheral, central and basic pathways (Fig. 3). In the
peripheral pathways, aromatic compounds (e.g. biphenyl
and phthalate) are converted into specific intermediates
(e.g. catechol and phenylacetate) that, in turn, are used
in central aromatic pathways to produce a set of com-
mon intermediates (e.g. tricarboxylic acid cycle metabo-
lites) that finally are substrates for the basic pathways
(Fig. 3) [32]. This kind of organization has been previ-
ously named catabolon in other organisms, such as
Pseudomonas [43].
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Fig. 7 Growth curves of R. ruber WT in minimal medium 457 supplemented with cholic acid, sodium benzoate, gentisate or DHEA. In the case of
cholic acid and DHEA 16.5 mM cyclodextrins were present in the medium to increase the solubility of the compounds (no growth when using
only cyclodextrins was observed). R. ruber was also grown in minimal medium 457 supplemented with naphthalene in powder (1 mg/mL). Data
of 3-4 independent experiments are depicted. The standard error of the mean was calculated by GraphPad Prism 5.0

The central aromatic pathways constitute a catabolic
core present in most rhodococci. R. ruber Chol-4
genome contains 7 out of the 8 central aromatic
pathways described in both R. jostii RHA1 and R.
opacus B4 [31, 32] (see Fig. 3a) being absent only the
phenylacetate pathway. This pathway seems to be
characteristic of larger genomes as most of the smal-
lest Rhodococcus genomes (R. equi, R. aetherivorans

and R. pyridinivorans among them) lack also the phe-
nylacetate pathway. However, other pathways such as
the genes encoding the gentisate, the homoprotoca-
techuate and the named VIII pathways found in
RHA1 are absent in at least two R. erythropolis
strains: PR4 and SK121 [32]. Therefore, although
most of the aromatic central pathways are conserved
within rhodococci, there are metabolic differences
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among species that could be related to their genome
size.

On the other hand, some of the genes detected in the cen-
tral pathways are redundant in the genome of R ruber
Chol-4. Apart from certain enzymatic activities such as KstD
and Ksh isoforms previously described in this strain within
the steroids catabolism [19, 44, 45],there are also redundant
clusters in the R ruber genome such as 3 copies of pcaj-pcal
involved in the catechol and protocatechuate pathways of
the P-ketoadipate and leucine catabolism that encodes a
succinyl-CoA: 3-ketoacid-coenzyme A transferase (EC
2.8.3.5) in NZ_ANGC02000003.1 (D092_RS10690-RS10695),
NZ_ANGC02000026.1  (D092_RS24595-RS24600) and
NZ_ANGC02000008.1 (D092_RS18665-RS18670) contigs
with an amino acid identity of 66—73% among them and the
2 copies of the hsaEGF cluster (NZ_ANGC02000004.1 con-
tig; Fig. 4 III) with an amino acid identity of 65-78% belong-
ing to the 2-hydroxypentanodienoate pathway. Gene
redundancy in Rhodocci in both catabolic and anabolic path-
ways is proposed to facilitate high metabolic versatility [44—
46] or as a mechanism to increase their potential to adapt to
new carbon sources [41].

More complex aromatic compounds are partially de-
graded in the peripheral pathways until they reach one
of the intermediates that are substrates of the central
aromatic pathways. The number of peripheral pathways
present in every Rhodococcus species is variable, prob-
ably related with the genomic size or the plasmid
content.

In Rhodococcus ruber the pathways related to the ca-
tabolism of benzoate, isopropylbenzene, vanillate,
napthalen and steroids, among others has been identi-
fied. The benzoate clusters ben, cat and pca, are present

in the R. ruber Chol-4 genome closely located and orga-
nized in a similar way to that in R jostii RHA1 (Figs. 4
and 5a) [41]. Rhodococcus jostii strain RHA1 catabolizes
benzoate via the cathecol pathway that includes a
ring-hydroxylating oxygenase [41]. The cathecol and the
protocatechuate branches of the -ketoadipate pathway
converge at the f-ketoadipate enol-lactone in this strain.

In R ruber, the genes encoding the isopropylbenzene
catabolic pathway are located in NZ_ANGC02000001.1
and NZ_ANGC02000021.1 contigs (Fig. 5b). This aro-
matic hydrocarbon compound is a constituent in crude
oil and refined fuels. The isopropylbenzene gene cluster
ipbA1A2A3A4C codes for a reductase (iphbA4), a ferre-
doxin (iphbA3), a dioxygenase (ipbAIA2) and a
3-isopropylcatechol-2,3-dioxygenase (ipbC) [47].

A gene cluster for vanillate catabolism is found in the
R. ruber Chol-4 genome (GenBank: Y11521, Fig. 5d) and
it is similar to the gene loci vanA and vanB of Pseudo-
monas sp. strain HR199. Vanillate is a lignin-derived
methoxylated monocyclic aromatic compound whose ca-
tabolism proceeds via protocatechuate in Comamonas
testosteroni strain BR6020 and in Pseudomonas sp. strain
HR199 [48, 49].

The naphtalene-involved nar gene cluster found in R
ruber Chol-4 (Fig. 5e) is similar to the cluster present in
the plasmid pROBO02 of Rhodococcus opacus B4
(NC_012521). In Rhodococcus sp. strain NCIMB 12038
and Rhodococcus opacus R7 the activities proposed to be
encoded in the nar cluster are: i) a gentisate 1,2-dioxy-
genase that converts gentisate into maleylpyruvate; ii) a
mycothiol-dependent maleylpyruvate isomerase that cat-
alyzes the isomerization of maleylpyruvate to fumaryl-
pyruvate; and iii) a fumarylpyruvate hydrolase that
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Fig. 9 Rhodococcus ruber mutants. a Scheme of R. ruber deletion pca mutant and nar mutant. b Growth of R. ruber on minimal medium
supplemented with 10 mM PCA or naphthalene in powder (1 mg/mL), respectively. WT: wild type; pca mutant (3, 4 and 5) and nar mutant (1-3);
control: non-existent growth in the absence of inoculum

Table 2 Growth of R. ruber Chol-4 mutants on minimum medium with different carbon sources

Strain/carbon source Naph Benz Tryp Cat Homog Gen PCA Chol Vanill
Wild type + + + + + + + + +
nar mutant - + + + + + + + +
pca mutant + + + + + + - + -

Naph Naphthalen 7 mM, Benz Benzoate 10 mM, L-Tryp L-tryptophan 5 mM, Cat Catechol 10 mM, Homog Homogentisate 2 mM, Gen Gentisate 4 mM, PCA
Protocatechuic acid 10 mM, Chol Cholic acid 2.2 mM, Vanill Vanillic acid 4 mM
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hydrolyzes fumarylpyruvate to yield fumarate and pyru-
vate [50, 51]. The gentisate degradation pathway is
shared by both the naphthalene and the
3-hydroxybenzoate catabolism. The nar gene cluster
presents a diverse genetic organization with different
kind of regulators among Rhodococcus strains
[51].Among the genes involved in the last pathway, the
dioxygenase thnA1234 cluster could correspond to the
isopropylbenzene ipb1234 cluster found in the R. ruber
genome (Fig. 5b). Therefore, naphthalene could be ca-
tabolized in R. ruber via either the nar genes or the iso-
propylbenzene cluster.

Rhodococcus ruber contains many related-steroid clus-
ters (Fig. 5c and Fig. 6). We previously reported other
steroid clusters, conferring the ability to grow in differ-
ent steroids (such as cholesterol, cholestenone, testoster-
one, 14-adrostadien-3,17-dione or 4-7adrostene-
3,17-dione), and the role of some enzymes such as keto-
steroid dehydrogenases, ketosteroid 9-a hydroxylases
and cholesterol oxidase [14, 19, 44, 45, 52].

Rhodococci are so broadly known as competent ster-
oid degraders [11] that they could be considered as the
steroid-consumer strains by excellence. The cholesterol
catabolic pathway has been widely studied, revealing a
notable complexity in part due to the existence of alter-
native pathways and the diversity of the enzymes in-
volved. As steroid intermediates are highly appreciated
in the pharmaceutical industries, the steroid catabolic
capacity of R. ruber strain Chol-4 represents a promising
biotechnological platform for the production of steroid
drugs.

The steroid degradation genes are generally orga-
nized within large gene clusters [53] and this seems
also to be the case in R. ruber Chol-4. For instance,
the cholate catabolic gene cluster found in RHA1
[54] is also present in the R. ruber Chol-4 genome
(Fig. 5c). Other steroid genes, encompassing the MCE
systems, are involved in steroid transport in actino-
bacteria. Every MCE system is an ATP-binding cas-
sette transporter comprising more than eight distinct
proteins. The number of MCE systems could vary
among bacteria: from 4 in Mycobacterium tuberculosis
H37Rv to 6 in M. smegmatis. The MCE4 system of
Rhodococcus jostii RHA1 or Mycobacterium smegmatis
has been proved to be an active uptake system that
requires ATP to transport steroids such as choles-
terol, 5-a-cholestanol, 5-a-cholestanone or (3-sitosterol
[38, 39]. The other mce operons could be involved in
the cell envelope structure maintenance [39]. We
found three MCE systems in R. ruber Chol-4 (Fig. 6).
One of them, lying in NZ_ANGC02000015.1 contig,
exhibited the higher similarity with the mce4 system
of RHA1. Consequently, we propose that this MCE
system would be related to steroid transport.
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On the other hand, although R. ruber can grow on
cholate [44], no ORFs similar to the RHAI1 cholate
transport system, ie. the ABC-transporter CamABCD
ro04888 to ro04885 and CamM ro05792 [55] were de-
tected. This suggest that cholate transport systems could
differ within Rhodoccus species.

Experimental analysis of R. ruber catabolic capabilities
The growth results were in accordance with the theoret-
ical data from the identification of gene clusters within the
genome of Rhodococcus ruber Chol-4. For instance, the
failure to grow on volatile compounds (benzene, toluene,
etc.) could be explained by the absence of specific clusters
involved in the catabolism of these compounds.

However, there were some interesting exceptions: R. ruber
Chol-4 did not grow on hydroxyquinol despite the fact that
the pathway VI genes are present in its genome (see Fig. 3).
It neither grew on salicylate, although up to two putative sa-
licylate hydroxylases (EC 1.14.13.1) were found in its gen-
ome (D092_RS04015 in NZ_ANGC02000001.1 contig and
D092_RS16585 NZ_ANGC02000006.1 contig).

Some interesting observations were revealed by the in
vitro growth experiments. R. ruber grew on benzoate,
catechol and protocatechuic acid. Therefore, the catabol-
ism of benzoate could take place via the cathecol path-
way through a ring-hydroxylating oxygenase as it has
been proposed for RHA1 [41]. On the other hand, R
ruber grew on naphthalene as sole organic substrate
(Fig. 7 and Table 1). As stated before, two different path-
ways for naphthalene catabolism have been described in
Rhodococci to date, one relying on the nar cluster and
the other relying on the isopropylbenzene cluster (ipb)
[51, 56], both converging on salicylate which is subse-
quently hydroxylated to gentisate. Thus, the fact that R
ruber grew in naphthalene and gentisate, but not in sali-
cylate, was perplexing, and suggested that the intake of
this compound might be hampered or, a more provoking
hypothesis, that this strain catabolizes naphthalene
through an alternative pathway that would not involve
salicylate as intermediate. More studies should be taken
to elucidate this apparent paradox.

Mutant construction

In order to check the functionality of several of the path-
ways putatively identified in R. ruber two groups of genes
were deleted. On one hand, protocatechuate 3,4-dioxygen-
ase o chain (pcaG) and the 3-carboxy-cis,cis-muconate
cycloisomerase (pcaB) genes of the cluster related to the
protocatechuic acid pathway were deleted (Figs. 9 and 41).
The R. ruber Chol-4 pca mutants were not able to grow
on protocatechuate (Fig. 9) showing that the pca gene
cluster is directly involved in the metabolism of protoca-
techuate. The growth on vanillate also resulted to be
dependent on the pca cluster in this strain (Fig. 3). A
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RHA1 pca mutant also failed to grow on vanillate as the
sole organic substrate suggesting that this substrate is de-
graded via the p-ketoadipate pathway [57]. On the other
hand, deletion of the naphthalene dioxygenase nar genes
led to the loss of growth on naphthalene (Figs. 9 and 5e).
Therefore, the nar gene cluster is responsible of the naph-
thalene catabolism in R. ruber Chol-4, while the ipb gene
cluster is not involved in that degradation.

Conclusions

In summary, the analysis of the Rhodococcus ruber strain
Chol-4 genome substantiated its relevance as a model
organism for studying steroid and aromatic compounds
biodegradation. The agreement between gene clusters
found in the genome and the growth results of R. ruber
has been established. R. ruber is able to grow in minimal
medium with steroids (e.g. cholesterol, phytosterols,
DHEA), bile acids (cholic acid) or several aromatic com-
pounds (e.g. benzoate, naphthalene, gentisate) as the
only source of carbon and energy. Deeper studies on
Chol-4 degradation capabilities based on the construc-
tion of some mutants revealed that the nar gene cluster
is indeed involved in the naphthalene catabolism in R.
ruber, while the pca gene cluster is responsible of the
metabolism of both protocatechuate and vanillate.

Our results confirm and reinforce the biotechnological
interest of R. ruber strain Chol-4 due to its metabolic
potential that opens a great variety of applications as, for
instance, its use in the bacterial transformation of ste-
roids to produce pharmaceutically active steroid drugs.
Further studies will be focused in exploring R. ruber
Chol-4 novel potential biotechnological applications.
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