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Abstract

Background: Gastrointestinal nematodes (GIN), liver flukes (Fasciola hepatica) and bovine lungworms (Dictyocaulus
viviparus) are the most important parasitic agents in pastured dairy cattle. Endoparasite infections are associated
with reduced milk production and detrimental impacts on female fertility, contributing to economic losses in
affected farms. In quantitative-genetic studies, the heritabilities for GIN and F. hepatica were moderate, encouraging
studies on genomic scales. Genome-wide association studies (GWAS) based on dense single nucleotide polymorphism
(SNP) marker panels allow exploration of the underlying genomic architecture of complex disease traits. The current
GWAS combined the identification of potential candidate genes with pathway analyses to obtain deeper insights into
bovine immune response and the mechanisms of resistance against endoparasite infections.

Results: A 2-step approach was applied to infer genome-wide associations in an endangered dual-purpose cattle
subpopulation [Deutsches Schwarzbuntes Niederungsrind (DSN)] with a limited number of phenotypic records. First,
endoparasite traits from a population of 1166 Black and White dairy cows [including Holstein Friesian (HF) and DSN]
naturally infected with GIN, F. hepatica and D. viviparus were precorrected for fixed effects using linear mixed models.
Afterwards, the precorrected phenotypes were the dependent traits (rFEC-GIN, rFEC-FH, and rFLC-DV) in GWAS based
on 423,654 SNPs from 148 DSN cows. We identified 44 SNPs above the genome-wide significance threshold (pBonf = 4.
47 × 10− 7), and 145 associations surpassed the chromosome-wide significance threshold (range: 7.47 × 10− 6 on BTA 1
to 2.18 × 10− 5 on BTA 28). The associated SNPs identified were annotated to 23 candidate genes. The DAVID analysis
inferred four pathways as being related to immune response mechanisms or involved in host-parasite interactions. SNP
effect correlations considering specific chromosome segments indicate that breeding for resistance to GIN or F.
hepatica as measured by fecal egg counts is genetically associated with a higher risk for udder infections.

Conclusions: We detected a large number of loci with small to moderate effects for endoparasite resistance. The
potential candidate genes regulating resistance identified were pathogen-specific. Genetic antagonistic associations
between disease resistance and productivity were specific for specific chromosome segments. The 2-step approach
was a valid methodological approach to infer genetic mechanisms in an endangered breed with a limited number of
phenotypic records.
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Background
Endoparasite infections imply impaired cattle health and
increasing economic losses in pasture-based production
systems [1, 2]. Gastrointestinal nematodes (GIN), the
bovine lungworm (Dictyocaulus viviparus) and the liver
fluke (Fasciola hepatica) are the most important parasitic
helminths of pastured dairy cows [3, 4]. Subclinical infec-
tions were associated with reduced milk production [5, 6],
impaired reproductive performance [7] and a decrease in
product quality [8].
From a farm management perspective, prophylactic as

well as diagnosis-based anthelmintic treatments can be
applied to control endoparasite infections in affected dairy
herds [4, 9]. However, anthelmintic treatments are expen-
sive, and drug residues might pollute the environment and
food products [10]. Furthermore, anthelmintic treatments
contribute to anthelmintic resistance [11–13]. Hence,
sustainable endoparasite control implies the consideration
of proper breeding and selection strategies [9, 14]. In this
regard, breeding approaches have focused on the selection
of specific breeds or genetic lines representing enhanced
resistance against specific endoparasites [15, 16].
In cattle, heritability estimates ranged from 0.04 to 0.36

for various definitions of GIN and D. viviparus infections
[e.g., fecal egg count (FEC), antibody level], indicating a
genetic component for pathogen-specific susceptibility [17,
18]. For the liver fluke F. hepatica, the heritabilities ranged
from 0.09 to 0.33 [15, 19, 20]. The pronounced additive-
genetic variances identified were stimuli to explore the
underlying genomic architecture for endoparasite resist-
ance in cattle and sheep, with a focus on GIN [21–23].
Genome-wide association studies (GWAS) using dense
single-nucleotide polymorphism (SNP) marker panels and
QTL mapping approaches contributed to the identification
of candidate genes related to immune mechanisms (e.g.,
the IFNγ gene, major histocompatibility complex
(MHC)-related genes) against GIN infections in cattle and
sheep [24–27]. Coppieters et al. [27] based their studies on
microsatellite mapping in Dutch HF cows, and they identi-
fied two genome-wide significant QTL on BTA 9 and on
BTA 19 influencing FEC for GIN infections. In an experi-
mental Angus population and using microsatellite markers,
genome-wide suggestive QTL on BTA 8 and potential link-
age with segments on BTA 4, 12 and 17 were associated
with patent GIN infections [28]. A GWAS based on 50,000
SNPs identified 12 genomic regions on BTA 3, 5, 8, 15 and
27 as contributing to FEC variation in Angus cattle [29].
Potential candidate genes were related to immunological
pathways, i.e., the toll-like receptor-signaling pathway and
the cytokine-cytokine receptor interaction pathway [29]. In
Angus cattle, association studies based on copy number
variations (CNV) have identified immune-related genes,
i.e., the genes involved in GIN resistance mechanisms [23,
30, 31]. Although infections with the liver fluke F. hepatica

in dairy cattle represent a serious animal health problem
worldwide [32], studies with a focus on the identification of
genomic variants influencing F. hepatica resistance are
lacking. In sheep, a QTL microsatellite mapping study [33]
detected QTL for resistance against Fasciola gigantica on
OAR 10, 13, 17, 18 and 19, 22.
In Europe, the rising importance of maintaining dairy

cattle in grassland systems implies exposure to endopara-
site infections and further pathogenic agents [34]. Thus,
there is increasing interest in local breeds being best
adapted to harsh environments and being less susceptible
against infections. The local dual-purpose German Black
Pied cattle (DSN, German: Deutsches Schwarzbuntes Nie-
derungsrind) is the founder breed of the modern Holstein
Friesian (HF) cattle, with a long breeding history in the
grassland region of East Frisia, Lower Saxony, Germany
[35]. DSN are an endangered breed because they are not
competitive with HF regarding milk and protein yield. DSN
are defined as robust cattle under harsh environmental
conditions [36], and they show better female fertility
parameters and a better health status for metabolic disor-
ders after calving compared with HF [37]. Susceptibility to
endoparasite infections as measured by the levels of endo-
parasite burden (i.e., resistance) may not reflect the host’s
actual ability to limit the impact of endoparasite infections
on fitness and production (i.e., tolerance) [38]. Hence, DSN
cows with a high FEC for F. hepatica and larvae counts for
D. viviparus had low somatic cell counts [15]. The udder
somatic cell count is a commonly used indicator for mas-
titis and udder health in overall breeding goals [39]. High
levels of somatic cells in milk reflect leukocyte recruitment
and indicate udder inflammation. Pimentel et al. [40]
discussed antagonistic associations among functional traits
and between functional traits and productivity on
quantitative-genetic and phenotypic scales. However, the
correlations were partly favorable when only considering
specific important chromosome segments. Hence, a deeper
understanding of the physiological or biological trait inter-
actions is imperative in order to infer the antagonistic
relationships between resistance against endoparasites and
resistance against udder infections.
For small cattle populations, the limited number of

records for complex quantitative traits, especially for health
traits, is a special challenge in genomic studies [41]. The
use of multibreed reference populations to train on data
from several breeds simultaneously was suggested to in-
crease genomic prediction accuracies for production traits
[42, 43]. However, it remains challenging to harmonize re-
cording schemes for novel traits across country borders.
Within countries, a further methodological approach might
be a 2-step strategy. Step 1 involves using a larger data pool
of phenotypes from several breeds or genetic lines and
correcting the data for fixed effects. Afterwards, in step 2,
precorrected phenotypes are dependent traits in GWAS,
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considering just the small population. A similar strategy
was applied to infer quantitative-genetic (co) variance com-
ponents in small datasets including only daughter records
from specific sires [44].
The objectives of the present study were i) to identify

genome-wide associations for resistance or susceptibility
(measured by FEC) to three endoparasite infections (GIN,
D. viviparus and F. hepatica) in the endangered DSN breed
using a 2-step approach; ii) to assess annotations to poten-
tial candidate genes and to infer physiological pathways;
and iii) to estimate how SNP affects the correlations
among endoparasite traits and between endoparasite traits
with the test-day milk yield and test-day somatic cell count
in chromosomal segments with an impact on disease
resistance.

Methods
Animal ethics statement
The whole genotyping process from tissue sampling up to
the SNP database development was embedded in the logis-
tics and infrastructure of the cow genotyping activities in
Germany, organized by the German Holstein breeding
organization and their participating regional breeding orga-
nizations and farmers. This activity is the basis to imple-
ment a national cow training set for genomic selection.
Farmers agreed to collect small fecal samples for endopara-
site determinations. Such fecal collection does not influ-
ence the wellbeing of cows. Fecal samples were analyzed in
the laboratory of the university. Thus, no ethical approval
was required for this study.

Animals
The study was incorporated in the framework of a ‘pasture
genetics project’ established in 2007 in northwestern
Germany. In the framework of this project, a sample of
1166 German Black and White dairy cows distributed over
17 grassland farms was used for genetic line comparisons
and quantitative-genetic studies [15]. The five Black and
White genetic lines included an HF line selected for milk
yield (HF milk); an HF line suited for grazing conditions
(HF pasture); a New Zealand HF line (HF NZ); crosses be-
tween HF with Jersey, Angler or beef cattle sires (HF cross);
and DSN. All cows were exposed to endoparasite infections
(access to pasture before 1st of June with > 8 h per day) and
not treated with anthelmintics in the sampling year.
A subset of 148 DSN cows from three different farms

was selected for genotyping using a selective genotyping
approach. In this regard, the selection criteria were i) the
herd prevalence for GIN, as GIN was the endoparasite
with the highest prevalence in the initial dataset of 1166
cows, ii) individual parasitological measurements per
farm (i.e., considering the extreme phenotypes per herd
for GIN), and iii) the pedigree-based genetic relation-
ships. The aim was to minimize the average relationship

coefficients between all cows selected for genotyping
within and between GIN-infected and GIN-non in-
fected cows.

Phenotypes
The endoparasite dataset considered FEC for GIN (FEC--
GIN) and F. hepatica (FEC-FH) as well as fecal larvae
counts (FLC) for D. viviparus (FLC-DV). Based on the
coproscopical results, the predominant morphotype for
GIN was strongylid eggs (Trichostrongylidae or Oesopha-
gostomum and Bunostomum spp., respectively) followed by
Strongyloides papillosus and Capillaria spp. eggs (see May
et al. [45]). The whole dataset (n = 1166 cows) considered
repeated measurements for 840 cows. The endoparasite
trait definitions in the laboratory are described by May et
al. [15]. The test-day production traits included repeated
measurements from the whole lactation of the sampling
year. Cows with less than five test-day records were
excluded from the analysis. The somatic cell counts were
log-transformed into somatic cell score: SCS = log2 (SCC/
100.000) + 3 [46]. Descriptive statistics for the endoparasite
traits (FEC-GIN, FEC-FH, FLC-DV) and test-day traits
(MY, SCS) for all Black and White cows (whole dataset, n
= 1166 cows) and for the genotyped DSN cows (genotype
dataset, n = 148) are displayed in Table 1.

Genotypes and quality control
The DSN cows were genotyped using the BovineSNP50
Bead Chip V2 (50k SNP chip) following the Illumina Infi-
nium assay protocol (Illumina Inc., San Diego, CA, USA).
In the next step, the genotypes were imputed into Illu-
mina HD Bead Chip level (700 k SNP chip) using a multi-
breed reference panel of 2188 animals. The reference
panel considered 48 DSN animals genotyped with the Illu-
mina HD 700 k Bead Chip array (Illumina Inc., San Diego,
CA, USA) and 2140 sequenced animals (including 30 se-
quenced DSN animals) from the 1000 bull genome project
database [47] downscaled to Illumina HD Bead Chip
density. Imputation was performed using BEAGLE 4.1
software [48]. The average imputation accuracy from a
leave-one-out approach [49] was 89.3%. Only SNP
markers on autosomes with validated locations (i.e., based
on BLAST analysis against the bovine genome assembly
UMD3.1) were considered [49]. The imputed dataset
included 587,615 SNP markers from 148 DSN cows.
Quality control of the imputed genotype data was
performed using the software package PLINK, version 1.9
[50]. SNP markers with a minor-allele frequency (MAF) <
0.05, significant deviation from Hardy-Weinberg equilib-
rium (HWE, p < 10− 6) or a call rate < 95% were discarded.
Individuals with a call rate < 95% were also excluded. After
quality control, the final dataset for GWAS contained
423,654 SNP marker genotypes.
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Potential stratification in the dataset due to relatedness
among sampled individuals was examined prior to the
GWAS using a principal component analysis (PCA). The
PCA based on the variance-standardized relationship
matrix was derived from the SNP markers as implemented
in the --pca option in PLINK.

Statistical models
Precorrection of phenotypic data
In the first step, phenotypes for the endoparasite traits
(FEC-GIN, FLC-DV, FEC-FH) and the test-day traits MY
and SCS were precorrected for fixed effects using the initial
dataset from all 1166 Black and White cows (consideration
of all genetic lines). Precorrection of the endoparasite traits
for fixed effects was accomplished via a linear mixed model
analysis (model 1) using the statistical software SAS, version
9.4 [51] (SAS PROC MIXED, ML method):

yijklm ¼ μþ Fi þ P j þ GLk þ SPl þ LSm þ eijklm ð1Þ

yijklm = observations for FEC-GIN, FEC-FH and FLC-DV;
μ = overall mean effect; Fi = fixed effect of the ith farm (i
= 1, …, 17); Pj = fixed effect of the jth parity number (j =
1, 2, 3, 4, > 4); GLk = fixed effect of the kth genetic line (k
=HF milk, HF pasture, HF NZ, DSN, HF cross); SPl =
fixed effect of the lth sampling period (l = June/July, Sep-
tember/October); LSm = fixed effect of the mth lactation
stage according to Huth (1995) (m = < 14 days in milk
(DIM), 14–77 DIM, 78–140 DIM, 141–231 DIM, ≥232
DIM); and eijklm = random residual effect.
Hereafter, the precorrected phenotypes (residuals) for

the endoparasite traits (FEC-GIN, FEC-FH, FLC-DV) are
denoted as rFEC-GIN, rFEC-FH and rFLC-DV, respect-
ively. Precorrected phenotypes were available from 148

genotyped DSN cows. The distribution of residuals for
the endoparasite traits was checked and visually
inspected. To further validate the precorrection ap-
proach, we correlated the estimated breeding values
(EBVs) for all three endoparasite traits from the animal
models in May et al. [15] with EBVs from animal models
based on precorrected phenotypes. For all traits the EBV
correlations between models were > 0.95.
Accordingly, the test-day traits were precorrected for

fixed effects via linear mixed model applications (model
2) (SAS PROC MIXED, ML method):

yijklm ¼ μþ HTDi þ P j þ TSk þ YSl þ DIMm þ eijklm

ð2Þ

yijklm = observations for MY and SCS; HTDi = fixed effect of
the ith herd-test-date; Pj = fixed effect of jth parity number
(1, 2, 3, 4, > 4); TSk = fixed effect of kth time span between
each test-day record and the endoparasite sampling date (≤
− 200, > − 200 and ≤ − 100, > − 100 and ≤ 0, > 0 and ≤ 100,
> 100); YSl = fixed effect of lth year-season of last calving
(spring, summer, autumn, winter within each year); DIMm

= covariate for days in milk modeled with Legendre poly-
nomials of order 3; and eijklm = random residual effect.
Hereafter, the precorrected phenotypes (residuals) for the
test-day MY and SCS are denoted as rMY and rSCS,
respectively.

Genome-wide association analyses
In the second step, precorrected phenotypes (i.e., resid-
uals from step 1: rFEC-GIN, rFEC-FH, rFLC-DV, rMY,
rSCS) were used as dependent variables in single-trait
GWAS as implemented in the software package GCTA
[52]. All association analyses were performed using the

Table 1 Descriptive statistics for endoparasite traits for all cows and for genotyped DSN cows

Endoparasite traita No. of observations No. of cows Mean SD Min. Max.

All cows (n = 1166)

FEC-GIN 1997 1166 11.35 22.57 0 225.0

FEC-FH 2006 1166 0.61 3.64 0 89.0

FLC-DV 1988 1163 0.17 2.14 0 46.0

MYb 10,132 1049 22.06 6.98 2.20 57.20

SCSc 10,115 1049 3.02 1.64 0.01 10.01

Genotyped cows (n = 148)

FEC-GIN 256 148 15.53 29.80 0 225.0

FEC-FH 256 148 0.57 2.06 0 16.0

FLC-DV 255 148 0.56 4.20 0 45.0

MY 1376 148 19.98 5.77 4.30 47.90

SCS 1369 148 3.07 1.51 0.01 8.60
aFEC-GIN fecal egg count for gastrointestinal nematodes, FEC-FH fecal egg count for Fasciola hepatica, FLC-DV fecal larvae count for Dictyocaulus viviparus
bMY Milk yield (kg/cow/day)
cSCS somatic cell score (log-transformed somatic cell count: log2 (SCC/100.000) + 3)
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--mlma option in GCTA. The following statistical model
for testing single-locus SNP effects was applied:

y¼1μþxbþuþe

where y = vector of precorrected phenotypes (rFEC-GIN,
rFLC-DV, rFEC-FH, rMY and rSCS); μ = the overall
mean; b = additive fixed effect of the candidate variant
tested for association; x = vector of genotypes for the
candidate SNP; u � Nð0;Gσ2

uÞ = vector of random poly-
genic effects; G = genomic relationship matrix (GRM);
σ2u = polygenic variance estimated from a null model
(i.e., y = 1μ + u + e); and e � Nð0; Iσ2

eÞ = vector of ran-
dom residual effects, where I = an identity matrix and
σ2e = the residual variance.
An adjusted Bonferroni correction was applied to

account for multiple testing. The traditional Bonferroni
correction (i.e., relating the genome-wide significance
threshold of 0.05 to the total number of SNP) tends to
produce many false-negative results [53]. Therefore, the
effective number of independent SNP markers in the ana-
lysis (n = 111,901) was estimated based on the LD between
markers using the software GEC [54]. The adjusted
Bonferroni-corrected genome-wide significance threshold
with (p = 0.05 / n) was pBonf = 4.47 × 10− 7. In addition, we
considered a chromosome-wide significance threshold
(pCand = 0.05 / nc), where nc is the effective number of in-
dependent SNP markers of the respective chromosome.
In this regard, we applied GEC [54]. Chromosome-wide
significance thresholds ranged from 7.47 × 10− 6 (BTA 1)
to 2.18 × 10− 5 (BTA 28) (Additional file 1: Table S1).

Candidate gene annotation and pathway analyses
The biomaRt package [55, 56] from the Bioconductor
project was applied to retrieve ‘rs accession numbers’ of
associated SNP markers using the getBM() function.
Potential candidate genes were queried and assigned to
associated SNP markers using the current gene annota-
tions from the ENSEMBL (Version 90) [57] and NCBI
(Version 105) [58] databases. A gene was considered as
a candidate gene if at least one associated SNP marker
above pCand was positioned i) in the respective gene and/
or ii) within 5 kb up- and downstream of the respective
candidate gene. Regions including the candidate gene
±5 kb up- and downstream are hereafter referred to as
regions of interest (ROI). The potential candidate genes
identified were manually submitted to the DAVID
database (Version 6.8) [59] for pathway and enrichment
analyses. In addition, physiological functions and posi-
tions of potential candidate genes were further manually
reviewed in the KEGG [60], ENSEMBL [57] and NCBI
[58] databases.

Calculation of SNP effect correlations between traits
SNP effect correlations were calculated i) among rFEC-
GIN, rFEC-FH and rFLC-DV for the respective potential
candidate genes for each trait within all identified ROI and
ii) within identified ROI for rFEC-GIN, rFEC-FH and
rFLC-DV with rMY and rSCS. SNP effects were not corre-
lated for four ROI for rFLC-DV (corresponding genes:
FAM124B, ISL2, RCN2, and SCAPER) due to the limited
number of marker associations (see Table 2) or identical
SNP effects within traits (no variance for the respective
ROI).

Results
Population stratification
Additional file 2: Figure S1 includes the top two PCs
plotted against each other to visualize the population
structure with additional color representation for i) indi-
vidual farm affiliations and ii) individual endoparasite
phenotypes. The analysis revealed three main clusters
within the whole population caused primarily by the
three different farms. Relationships were closer between
the individuals of farm 1 (41 cows) and farm 2 (66
cows), whereas the individuals of farm 3 (41 cows) were
not closely linked among each other or to farm 1 and
farm 2 individuals. Generally, we only found slight strati-
fication induced by kinship. Hence, we did not account
for population stratification via the consideration of PCs
in the models for GWAS.

Genome-wide association analysis for endoparasite traits
Manhattan plots from the GWAS and corresponding
Q-Q plots for rFEC-GIN, rFEC-FH and rFLC-DV are
given in Fig. 1. For rFEC-GIN, GWAS identified 17 asso-
ciated SNP markers based on pCand on 9 chromosomes
(Additional file 3: Table S2). None of the SNP markers
reached the pBonf level. Most of the associations were de-
tected on BTA 2 (n = 4) and BTA 18 (n = 3). For
rFEC-FH, GWAS identified three SNP markers above
pBonf on BTA 7 (Additional file 4: Table S3). In total,
three additional variants surpassed the suggestive candi-
date thresholds pCand on the three chromosomes BTA 1,
7 and 28. GWAS for rFLC-DV identified 41 associations
according to the pBonf threshold on BTA 2, 5, 8, 15, 17,
21 and 24 (Additional file 5: Table S4). Moreover, 125
additional variants exceeded the pCand level with a ma-
jority (n = 44) positioned on BTA 29.

Gene annotation and pathway analysis
We identified five potential candidate genes for rFEC-GIN
(Table 2). More than two neighboring significantly associ-
ated SNP markers without any non-associated marker po-
sitioned between them were defined as an association
cluster. One association cluster including two variants on
BTA 24 was related to the PHLPP1 (PH domain and
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leucine rich repeat protein phosphatase 1) gene. The
PHLPP1 gene is a protein coding gene involved in
immunological processes (PI3K-Akt signaling pathway;
KEGG entry: bta04915), e.g., the regulation of T cell en-
ergy (Table 3). Functional annotation from rFEC-GIN
candidate genes revealed the estrogen signaling pathway
(KEGG entry: bta04915) for the candidate gene EGFR
(Table 3). We identified three immunological pathways for
the EGFR (Epidermal growth factor receptor) gene, with
the regulating cells involved in innate as well as adaptive
inflammatory host defenses (Table 3). The ALCAM (Acti-
vated leukocyte cell adhesion molecule) gene was related
to rFEC-FH on BTA 1 (Table 2). This gene was annotated
to the (immune) cell adhesion molecules (CAMs) pathway
(KEGG entry: bta04514) (Table 3).
We detected 17 potential candidate genes for rFLC-DV

(Table 2). An association cluster including 24 consecutively
positioned and associated SNP markers was detected on
BTA 21. This cluster is related to the SCAPER (S-Phase

cyclin A associated protein in the endoplasmic reticulum)
gene. The GSG1 (Germ cell associated 1) gene and the
RIMKLB (Ribosomal modification protein RimK-like family
member B) gene on BTA 5 revealed association clusters,
too. Functional annotation from the rFLC-DV candidate
genes revealed the cell adhesion molecules (CAMs)
pathway for the CDH2 gene on BTA 24 (Table 3).
The NAV3 (Neuron navigator 3) gene was the only

candidate gene associated with more than one trait
(rFEC-GIN and rFLC-DV). NAV3 is involved in the
regulation of interleukin 2 production by T cells. How-
ever, the marker associations within NAV3 did not over-
lap between rFEC-GIN and rFLC-DV. For rFEC-GIN,
one SNP marker positioned in the middle of NAV3 was
identified above pCand. For rFLC-DV, two SNP markers
positioned near the gene start position were signifi-
cantly associated. The space between both association
signals for rFEC-GIN and rFLC-DV in NAV3 was
approximately 235 kb.

Fig. 1 Manhattan plot displaying the GWAS results (p-values and corresponding Q-Q plot of observed p-values against the expected p-values) for
a rFEC-GIN, b rFEC-FH, and c rFLC-DV. Bonferroni-corrected genome-wide significance (red line), SNP marker above pBonf (marked in red) and SNP
marker above suggestive of the chromosome-wide significance threshold (range: p = 7.47 × 10− 6 on BTA 1 to p = 2.18 × 10− 5 on BTA 28) (marked
in blue) are also shown
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SNP effect correlations between endoparasite traits
The number of SNP markers within all identified ROI
ranged from 8 to 197. For three of the five ROI for rFEC-
GIN, we found antagonistic (negative) SNP effect correla-
tions (− 0.32 to − 0.69) between rFEC-GIN with rFEC-FH
(Fig. 2). Only on BTA 5 (6,772,101 – 7,683,220) and within
the ROI on BTA 24 (bp 61,563,972 – 61,797,092) were
correlations slightly positive (Fig. 2). We detected moderate
to high SNP effect correlations (0.34 to 0.87) between
rFEC-GIN and rFLC-DV within all ROI for rFEC-GIN. The
SNP effect correlation between marker effects for rFEC-FH
and rFEC-GIN was negative (− 0.17) for the ROI identified
for rFEC-FH (Fig. 2). For the same ROI, the correlation
between SNP effects for rFEC-FH and rFLC-DV was 0.73
(Fig. 2). Considering the identified ROI for rFLC-DV, corre-
lations ranged from − 0.53 on BTA 24 to 0.99 on BTA 5 be-
tween marker effects for rFLC-DV and rFEC-GIN (Fig. 2).
The correlations between the marker effects for rFLC-DV
and rFEC-FH ranged from − 0.47 on BTA 5 to 0.99 on
BTA 24 (Fig. 2). The correlation was 0.78 between the
marker effects for rFLC-DV and rFEC-GIN considering the
common ROI on BTA 5 (ROI: bp 6,772,101 – 7,683,220;
including the NAV3 gene) (Fig. 3).

SNP effect correlations between endoparasite traits and
test-day traits
The SNP effect correlations between rFEC-GIN, rFEC-FH
and rFLC-DV with rMY and rSCS are presented in Fig. 4.
The correlations between the marker effects for rFEC-GIN
and rMY were negative (− 0.10 to − 0.42) for three ROI.
The marker effect correlations between rFEC-GIN and
rMY were moderate to large (0.31 to 0.73) for two ROI.
Differing correlations between rFEC-GIN and rSCS were
estimated for different ROI, i.e., positive correlations (0.02
to 0.32) on BTA 5 and 22 but negative correlations (− 0.47
to − 0.99) on BTA 4, 18 and 24.
Regarding the ROI identified for rFEC-FH, the correl-

ation between the SNP effects for rFEC-FH and rMY
was − 0.67, and it was − 0.44 between the SNP effects
for rFEC-FH and rSCS. The correlations between the

SNP effects for rFLC-DV and rMY were in a positive
range (0.00 to 0.80) for four ROI, with the largest correl-
ation on BTA 21. Additionally, differing correlations
between rFLC-DV and rMY were detected for different
ROI from the same BTA on BTA 5. The SNP effect
correlations between rFLC-DV and rSCS were positive
(0.10 to 0.99) for 12 ROI and neutral or negative (0.00 to
− 0.15) for two ROI. The correlations between rFLC-DV
and rSCS differed for different ROI on BTA 24. Positive
correlations for different ROI were observed on BTA 5.
For seven ROI on BTA 2, 5 and 26, the correlations
between the SNP effects for rFLC-DV and rMY ranged
from − 0.11 to − 0.99, whereas those with rSCS were
positive (ranging from 0.11 to 0.99).

Discussion
Genome-wide association analysis for endoparasite traits
In local breeds with a small population size (e.g., DSN), re-
duced genetic variation and diversity compared with the
intensively selected HF breed is reported [61, 62]. Thus, in
comparison with HF or beef cattle breeds [27–29], other
SNP variants associated with endoparasite resistance have
been expected. The cattle selection lines best adapted to
harsh grassland environments (e.g., New Zealand HF lines,
DSN) [35, 63] are often described as more robust and less
susceptible to endoparasite infections [15]. One explan-
ation addresses genetic resistance to disease or endopara-
site infections via cellular immunological mechanisms and
adaptive immune responses, which differ between breeds
or selection lines [9, 64]. Hence, selection signatures were
identified when grouping subpopulations according to
DSN or HF gene percentages, and when focusing on
genomic regions with an impact on disease resistance [65].
In addition, higher levels of genomic homogeneity and of
genetic relatedness in DSN than in HF contribute to a
decrease in polymorphism, influencing the power to detect
marker associations [66].
For rFEC-GIN, the majority of SNP marker associations

were detected on BTA 2. Candidate genes were identified
on BTA 4, 5, 18, 22 and 24. In contrast, in Angus beef

Table 3 Candidate genes related to pathways potentially associated with endoparasite resistance

Pathway Endoparasite trait Candidate gene (BTA)a Possible association to endoparasite infections

Cell adhesion molecules
pathway

rFEC-FH ALCAM (BTA1), Cell adhesion interactions of T cellsb

rFLC-DV CDH2 (BTA 24)

Cytokine-cytokine
interaction pathway

rFEC-GIN EGFR (BTA 22) Intercellular regulation and mobilization of adaptive
immune response cellsb

Estrogen signaling
pathway

rFEC-GIN EGFR (BTA 22) Increase in reproduction rate of parasites as a result
of increasing metabolism of 17-ß-estradiol in its
host [74–76]

PI3K-Akt signaling
pathway

rFEC-GIN EGFR (BTA 22), PHLPP1 (BTA 24) Important functions in cellular immune responseb

aGene ID (chromosomal location); bBased on annotation in KEGG pathway [60]; BTA Bos taurus chromosome, rFEC-GIN Residuals of fecal egg counts for
gastrointestinal nematodes, rFEC-FH Residuals of fecal egg counts for Fasciola hepatica, rFLC-DV Residuals of fecal larvae counts for Dictyocaulus viviparus
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cattle, genomic regions on BTA 3, 5, 15 and 27 were sig-
nificantly associated (−log10 P = 4.3) with GIN infections
[29]. In Scottish Blackface sheep, evidence for associations
with GIN infections were detected on OAR 6 and 14 [66],
but the SNPs located on OAR 3 and 12 affected FEC in
crossbred sheep (Martinique Black Belly x Romane sheep)
[67]. For Dutch Holstein-Friesian dairy cattle, genome-
wide suggestive QTL on BTA 11, 14, 21, 24, 25 and 27
were reported using a within-family analysis based on a
dataset of 768 phenotyped cows [27]. In the same study,

genome-wide significant QTL were identified on BTA 9
and 19 in an across-family analysis [27]. In agreement with
the other studies based on FEC, we also detected signifi-
cantly associated SNPs for GIN resistance (according to
pCand) on BTA 5, 9 and 24.
The pre-selection of cattle according to phenotypes or al-

lele frequencies, the phenotyping strategy (e.g., utilization
of experimental vs. field data) [28, 29], and the differences
in trait definitions and parasitological examination tech-
niques are further possible explanations for the different

B

A

C

Fig. 2 SNP effect correlations between endoparasite traits for the identified genomic regions of potential physiological significance (candidate
gene position plus 5 kb up- and downstream) for a rFEC-GIN, b rFEC-FH and c rFLC-DV
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GWAS results in different populations or breeds. In the
current study, we did not distinguish among the different
species according to the GIN morphotypes. We assumed
that the diversity of GIN species in our study follows the
distribution usually reported for cattle, with Ostertagia
ostertagi as the most common species [68] followed by
Cooperia spp. and Trichostrongylus spp. [69]. In field data
studies, differences in infection exposure among individuals
and environments and the variable infection pressure over
time explain the reduced power to detect SNP associations
and potentially mask the genetic signals [70–72]. The total
number of associations was highest for rFLC-DV although
a low prevalence was detected for D. viviparus in the multi-
breed dataset of 1166 cows [15]. False-negative marker
associations could be the outcome in a dataset with a low
number of infected cows. From this perspective, associa-
tions for rFLC-DV should be viewed with caution. However,
the low prevalence of D. viviparus in our genotyped DSN
cows reflected the phenotypic trait distribution in the whole
cattle population.
GWAS results for GIN infections in previous studies [27,

29] reflect the findings for rFLC-DV. D. viviparus and GIN
represent the same biological order (Strongylida). Thus,
overlaps in marker associations between both species have
been expected. We found signals on seven common
chromosomes, with impacts on both the rFLC-DV and
rFEC-GIN traits. A large number of associations and poten-
tial candidate genes were identified on BTA 2 and BTA 24
for rFEC-GIN and rFLC-DV. The NAV3 gene on BTA 5
was detected for both traits; however, no same SNP was
identified to be simultaneously associated. Different SNP
variants for different nematode species [trichostrongylids
(herein referred to as GIN) and Nematodirus spp., which
belong to the same biological order] were detected in Scot-
tish Blackface lambs [66]. Furthermore, a GWAS for ecto-
parasites (different tick species) in cattle revealed SNP

associations on different chromosomes for the ixodid tick
species A. hebraeum and R. evertsi evertsi [73].
Regarding rFEC-FH, the three significant markers

based on pBonf were not related to potential candidate
genes. Efforts to characterize genes or genomic regions
for liver fluke traits in ruminants were reported for Fas-
ciola gigantica in sheep [33]. Thus, the current findings
present a novelty for enhancing disease resistance to F.
hepatica in cattle breeds.

Gene annotation and pathway analysis
Our study identified the cytokine-cytokine receptor inter-
action pathway for the EGFR gene for rFEC-GIN. In
addition, this pathway was identified in a GWAS for Angus
cattle [29]. The most interesting finding was the estrogen
signaling pathway involving the potential candidate gene
EGFR for rFEC-GIN. Experiments in mice have indicated
that parasites can exploit the hormonal host microenviron-
ment to favor their establishment, growth and reproduction
rate [74, 75]. In this regard, for the tapeworm Taenia crassi-
ceps, an increase in the physiological concentrations of the
(host) hormone 17-ß-estradiol was associated with an in-
crease in the reproductive capacity of T. crassiceps cysti-
cerci [76]. Moreover, steroid hormone synthesis (e.g.,
progesterone, testosterone) influenced the fertility of Schis-
tosoma mansoni and increased the length of Ascaris suum
larvae in its host [77, 78]. However, it remains unclear
whether similar mechanisms of host exploitation via the
regulation of host hormones such as estradiol are also due
to infections with GIN. The PI3K-Akt signaling pathway
was annotated to several candidate genes for rFEC-GIN.
There is evidence that the phosphatidylinositol-3 kinase
(PI3K) plays a decisive role in cellular immune response,
activated by costimulatory receptors of B and T cells in
mice [79, 80]. Furthermore, the PI3K-Akt signaling pathway
was identified for the protozoa Neospora caninum, an intra-
cellular parasite that causes high economic losses in the
cattle industry [81].
The activated leukocyte cell adhesion molecule

(ALCAM) gene on BTA 1 detected for rFEC-FH is related
to the cell adhesion molecules (CAMs) pathway, and it
plays a crucial role in immune response mechanisms, e.g.,
cell adhesion interactions of T cells. Interestingly, the same
pathway was also detected for D. viviparus as being re-
lated to the CDH2 (Cadherin 2, type 1, N-cadherin) gene
on BTA 24. Our GWAS revealed several genes and three
pathways as being involved in T lymphocyte interactions
for rFEC-GIN, rFEC-FH and rFLC-DV. The cellular
mechanisms mediated by T lymphocyte recruitment are
typical features of immune response to endoparasite (es-
pecially helminth) infections in its host [82–84]. In cattle,
natural infections with F. hepatica induce Th2-associated
reactions, with simultaneous inhibition of Th1 cell activity
[85]. Immune response against GIN mainly involves Th2

Fig. 3 Correlations based on SNP effects between rFLC-DV and
rFEC-GIN within the common ROI on BTA 5 (ROI: bp 6,772,101 –
7,683,220; including the NAV3 gene)
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mechanisms in order to decrease the number of adult
worms and of FEC. A mixed Th1/Th2 response follows
infections with D. viviparus in cattle [85]. An interesting
finding was made in Nelore cattle, where the immune re-
sponse to the GIN species Cooperia punctata and Hae-
monchus placei was probably mediated by Th2 cytokines
in the resistant cattle group and induced by Th1 cytokines
in the susceptible ones [86, 87]. Thus, variations in identi-
fied immunological pathways might be expected when
applying GWAS based on a stringent case-control (resist-
ance and susceptible groups) design. The CDH2 and
PCDH15 genes on BTA 24 and 26 for rFLC-DV coded for
adhesion molecules, and they were expressed in the cattle

selected for either resistance or susceptibility to nematode
parasites [88].

Correlations between SNP effects for endoparasite traits
Differing correlations for SNP effects between rFEC-
GIN, rFEC-FH and rFLC-DV indicate the complexity of
resistance against different infectious agents. In most
cases, negative SNP effect correlations were observed
between rFEC-FH and rFEC-GIN, implying that
genomic selection on improved resistance to F. hepatica
infections simultaneously increased the susceptibility to
GIN. The pedigree-based genetic correlations ranged
from − 0.10 to 0.17 between different GIN and liver fluke

A

C

B

Fig. 4 SNP effect correlations between the residuals of endoparasite traits and the residuals of test-day traits somatic cell score (SCS) and milk
yield (MY) for the identified genomic regions of potential physiological significance (candidate gene position plus 5 kb up- and downstream) for
a rFEC-GIN, b rFEC-FH and c rFLC-DV
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trait definitions [15, 20]. One explanation for the negative
correlations on a genomic scale between rFEC-FH and
rFEC-GIN and for the divergent marker associations as
well as gene annotations might be due to the variations in
immune response mechanisms for different endoparasite
species. In cattle, the specific immune response for F. hep-
atica (antibody response of the IgG1, the cellular response
associated with the cytokines interleukin IL4, IL10,
TNF-ß) differs from those for GIN and D. viviparus [89],
where the immune response is predominantly mediated
by IgA, IgE, IgG and IgM [90, 91].
The correlations based on the SNP effects between the

two nematode traits rFEC-GIN and rFLC-DV were posi-
tive for most of the identified ROI, confirming the esti-
mates from a quantitative-genetic study [15]. High
positive genetic correlations between the different endo-
parasite species were reported in sheep [92, 93], which
simplifies selection strategies.

Correlations between SNP effects for endoparasite and
test-day traits
The SNP effect correlations between rFEC-GIN and rMY
were negative for three of the five identified ROI, corre-
sponding to the estimates from pedigree-based random
regression models [15]. Twomey et al. [20] detected gen-
etic correlations close to zero between milk yield and anti-
bodies for Ostertagia ostertagi, the most common GIN
species in cattle. In our study, mostly negative SNP corre-
lations were inferred between rMY and rFLC-DV. Thus,
on a genomic scale, breeding for higher milk production
reduces larvae shedding of the bovine lungworm. Highly
positive SNP effect correlations between rFLC-DV and
rMY were detected for ROI on BTA 5 and 21, indicating a
coregulation of both traits in these regions. Another possi-
bility is that the genes affecting FLC for D. viviparus and
MY were in a low linkage disequilibrium.
Regarding the associations between endoparasite traits

and SCS, the SNP effect correlations between rFEC-GIN,
rFEC-FH and rFLC-DV with rSCS for the ROI partly re-
flect quantitative-genetic estimates. May et al. [15] esti-
mated positive (i.e., favorable from a breeding perspective)
genetic correlations between FEC-GIN and SCS through-
out lactation. In contrast, for most of the identified ROI,
correlations based on SNP effects were unfavorable be-
tween rFEC-GIN and rSCS, but the SNP effect correla-
tions between rFLC-DV and rSCS were positive (i.e.,
favorable from a breeding perspective). The negative SNP
effect correlation between rFEC-FH and rSCS for the ROI
on BTA 1 (including the ALCAM gene) reflects the
pedigree-based estimates, i.e., the negative genetic correla-
tions in the course of lactation [15]. Hence, breeding for
reduced FEC for GIN or F. hepatica induces an increase
in SCS. Vice versa, breeding on low somatic cells implies
increasing FEC for GIN and F. hepatica. Such findings

have practical relevance when developing breeding pro-
grams with a focus on both disease resistance and tolerance
[94]. In particular, the antagonistic relationship between
SCS and egg or larvae counts for endoparasite traits put
into question the suitability of SCS as an indicator for
udder health. Only moderate phenotypic and genetic corre-
lations between SCS and clinical mastitis, as well as major
pathogen susceptibility for cows with extremely low SCS
[39], are a further justification in this regard. Mechanisms
that decrease somatic cells in milk do not necessarily elim-
inate the causative pathogens during mastitis [95]. Pheno-
typically, the correlations between F. hepatica infections
and SCS were close to zero (− 0.04 to 0.03 for different
test-days around the parasitological examination date),
reflecting the results from previous studies in HF dairy cow
populations [6, 96]. Association analyses between ectopara-
site and endoparasite infections with milk composition
traits were of great interest in previous studies [20, 97].
Nevertheless, to our knowledge, this is the first approach
focusing on the underlying genetic background between
endoparasite infections and host defense mechanisms to
further pathogen infections (e.g., increase in somatic cells).

Conclusions
The 2-step approach using precorrected phenotype data
based on a larger dataset of related genetic lines was a
valid approach to estimating SNP marker effects and to
inferring possible candidate genes and biological pathways
for endoparasite resistance in a small sample of genotyped
dual-purpose DSN cows. Such a methodological approach
might be suitable for genomic studies with a focus on
novel traits in small populations. In total, 23 potential can-
didate genes were annotated to SNP marker associations
for rFEC-GIN, rFEC-FH and rFLC-DV. A shared ROI (in-
cluding the NAV3 gene) was only identified for GIN and
D. viviparus on BTA 5. Five of the identified possible can-
didate genes were directly involved in immune response
mechanisms. The inferred estrogen signaling pathway is
involved in host-parasite interactions, and it appears to be
specific for rFEC-GIN. Functional gene annotations iden-
tified a common immunological pathway (e.g., cell adhe-
sion molecules pathway for rFEC-FH and rFLC-DV) for
different endoparasite traits. The SNP effect correlations
between rFEC-GIN and rFLC-DV were quite large for
most of the ROI, indicating a partly joint genetic basis for
traits representing the same biological order. The negative
SNP effect correlation between rSCS and rFEC-FH is in
agreement with pedigree-based genetic correlations, and it
indicates an antagonistic association between disease re-
sistance for udder and endoparasite infections. Generally,
we demonstrated that resistance to the nematodes GIN
and D. viviparus and to the trematode F. hepatica is under
polygenic control through a large number of loci with
moderate to small effects. The SNP effect correlations for
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specific endoparasite ROI provided deeper insight into
trait associations and contributed to physiological expla-
nations of possible genetic antagonisms between disease
resistance and productivity. Predominantly negative SNP
effect correlations between GIN or F. hepatica with SCS
indicate the complexity of immune response mechanisms
but also raise critical questions regarding breeding strat-
egies on low somatic cell scores.
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