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Genome-wide analysis of Mycobacterium

tuberculosis polymorphisms reveals lineage-
specific associations with drug resistance
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Abstract

Background: Continuing evolution of the Mycobacterium tuberculosis (Mtb) complex genomes associated with
resistance to anti-tuberculosis drugs is threatening tuberculosis disease control efforts. Both multi- and extensively
drug resistant Mtb (MDR and XDR, respectively) are increasing in prevalence, but the full set of Mtb genes involved
are not known. There is a need for increased sensitivity of genome-wide approaches in order to elucidate the genetic
basis of anti-microbial drug resistance and gain a more detailed understanding of Mtb genome evolution in a context
of widespread antimicrobial therapy. Population structure within the Mtb complex, due to clonal expansion, lack of
lateral gene transfer and low levels of recombination between lineages, may be reducing statistical power to detect
drug resistance associated variants.

Results: To investigate the effect of lineage-specific effects on the identification of drug resistance associations, we
applied genome-wide association study (GWAS) and convergence-based (PhyC) methods to multiple drug resistance
phenotypes of a global dataset of Mtb lineages 2 and 4, using both lineage-wise and combined approaches.
We identify both well-established drug resistance variants and novel associations; uniquely identifying associations for
both lineage-specific and -combined GWAS analyses. We report 17 potential novel associations between antimicrobial
resistance phenotypes and Mtb genomic variants.

Conclusions: For GWAS, both lineage-specific and -combined analyses are useful, whereas PhyC may perform better in
contexts of greater diversity. Unique associations with XDR in lineage-specific analyses provide evidence of diverging
evolutionary trajectories between lineages 2 and 4 in response to antimicrobial drug therapy.
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Background
Despite clonal expansion and a lack of lateral gene transfer
in Mycobacterium tuberculosis (Mtb), the evolution of drug
resistance is threatening tuberculosis disease (TB) control
efforts. Resistance to all anti-Mtb drugs has been observed,
usually evolving relatively shortly after their introduction.
Drug-resistant TB is phenotypically categorised as
multi-drug resistant (MDR) when resistant to two first–line
drugs, rifampicin and isoniazid; extensively drug-resistant
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(XDR) occurs when MDR Mtb have additional resistance
to fluoroquinolones and at least one second-line injectable.
Only 50% of patients receiving treatment for MDR TB, glo-
bally, were successfully treated in 2014 [1].
De novo emergence of drug resistance has been observed,

with the presence of multiple unfixed drug-resistance mu-
tations and selective sweeps in Mtb populations within pa-
tients [2–4]. Additionally, transmission of resistant strains
is frequently observed [5, 6]. Indeed, many mutations asso-
ciated with antimicrobial resistance have been identified
[7], some have been associated with no fitness cost and
others with additional compensatory mutations that may
increase fitness and enable transmission [8]. These poly-
morphisms include both point mutations, for example,
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single nucleotide polymorphisms (SNPs) such as in rpoB
[9] and structural variants such as the dfrA-thyA double de-
letion linked to para-aminosalicylic acid resistance [10].
Genes involved in resistance to some drugs are well known;
for example, mutations for rifampicin (in rpoB and rpoC)
and isoniazid (in katG) are well characterised [7]. However,
the mechanisms for ethambutol (embB), pyrazinamide
(pncA) and second line drug resistance are not fully known.
As whole genome sequencing of Mtb becomes more rou-
tinely applied [11], association approaches using genomic
variation have the potential to provide new insights into
these resistance mechanisms. Compensatory mutations
such as those in rpoA and rpoC, associated with the rpoB
rifampicin resistance mutations, have been associated with
transmission of drug resistant strains [12]. Furthermore, as
patients receive a cocktail of anti-Mtb drugs, multiple con-
comitant resistance can arise naturally, and this complicates
the analysis of phenotype-genotype relationships [13].
The genome-wide association study (GWAS) approach

has been widely used in human genetics; for example, to
identify variants in the class II human leukocyte antigens
(HLA) region associated with susceptibility to TB infection
[14]. However, it is increasingly being applied to pathogen
research and shows great promise [13, 15, 16]. It allows the
identification of variants across the genome, associated
with specific phenotypes. In order to prevent spurious as-
sociations, pathogen GWASs face the need to deal with
the much higher levels of population structure seen in bac-
teria compared to humans, whilst maximising sensitivity
[17, 18]. This is especially important for Mtb due to its
clonality. This clonality is consistent with a phylogenetic
tree structure and thus has led to the application of
convergence-based methods, which have identified resist-
ance mutations in Mtb [13, 19]. Such methods seek to
identify convergent evolution in genetically diverse strains
with similar resistance phenotypes. This happens when
mutations in the same gene or nucleotide position occur
repeatedly and independently become fixed, thus signaling
their positive selection for a particular phenotype.
However, there remain questions as to the importance

of historic genetic background variation in the evolution
of drug resistance, such as between Mtb lineages, which
have not been systematically explored [20]. The Mtb com-
plex is categorised into seven lineages, defined on the
basis of molecular typing, which are endemic in different
locations around the globe. These lineages are known to
have other distinctive features, with some persisting in
geographical regions (lineages 5 and 6 in West Africa) and
others spreading across continents (lineage 2- East Asian
and lineage 4 – Euro-American strains). This observation
has led to the hypothesis that the strain-types are specific-
ally adapted to people of different genetic backgrounds
[21]. These lineages may vary in their propensity to trans-
mit, their virulence, site of infection and ultimately
propensity to cause disease [22–24], but results are incon-
sistent and there is considerable inter-strain variation
within lineages [25, 26]. Recent research into lineage 4 al-
ludes to this variation, suggesting different evolutionary
strategies are employed by different sublineages [27]. A
set of single nucleotide polymorphisms (SNPs) has been
identified that can be used to barcode sub-lineages [28],
leading to informatic tools that position sequenced sam-
ples within a global phylogeny [29]. Thus, lineage-based
genetic differences may also be important in resistance ad-
aptations to anti-Mtb drug exposure.
The current study applies lineage-specific and lineage-

combined GWAS, alongside convergence-based PhyC
methods, to gain insight into lineage-specific drug resist-
ance evolution. We focus on the modern lineage 2 and
lineage 4 isolates, which are known to be drug resistant
globally, and use a large dataset involving Mtb isolate se-
quences from more than 12 countries (n > 4400).

Results
Genomic variants and population structure
High quality SNP and insertion and deletion (indel) vari-
ants were characterised in relation to the H37Rv reference
genome, from raw sequence data from a convenience
sample of existing data for isolates in lineages 2 (n = 702)
and 4 (n = 3706). These isolates are within a global drug
resistance data set [13], which has been further comple-
mented by additional phenotypic data (see Methods).
After removing variants that are monomorphic within
each dataset, the final lineage-combined dataset consisted
of 157,726 SNPs, 5998 deletions and 2926 insertions
across the 4408 isolates (see Additional file 1). The median
number of SNPs per sample in the lineage 2 dataset, after
removing monomorphic variants, was 332 (range: 189–
386) and in lineage 4 was 724 (range: 10–870) (significant
difference between lineages with Wilcoxon test p-value <
minimum calculable (2.2 × 10− 16)). Lineage 4 contains the
H37Rv reference strain, but also has increased strain-type
diversity [13, 28]. The median number of indels per sam-
ple in lineage 2 was 31 (range: 7–42) and in lineage 4 was
40 (range: 2–61) (significant difference between lineages
Wilcoxon test: p-value < minimum calculable (2.2 × 10− 16))
(see Additional file 1). The majority of variants were rare,
with 75% of them found to have a non-reference variant
frequency (defined as the number of isolates with a
non-reference allele at a specific variant position divided
by the total number of isolates with a non-missing allele
at this position) of less than 0.0028 and 0.00054 in lineages
2 and 4, respectively (see Additional file 1 and
Additional file 2). A principal component analysis
(PCA) using the variants revealed the expected clus-
tering by lineage and greater diversity within lineage
4 (see Additional file 3). Within lineage 2, the first 10
principal components account for 71.9% of the variation
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(see Additional file 3 and Additional file 4) and the mean
pairwise variant distance was 1074 (range: 0–6270) (see
Additional file 3). Within lineage 4, the first 10 principal
components account for 88.9% of the variation (see Add-
itional file 3 and Additional file 4) and the mean pairwise
variant distance was 1458 (range: 0–11,780) (see
Additional file 3). There are 567 isolates with < 10 variants
different from at least one other isolate, indicative of
potential transmission events, which can confound an
association analysis. A phylogenetic tree constructed using
the variants mimicked the relationships observed in the
PCA, with isolates clustering by sublineage on both (see
Additional file 3 and Fig. 1).

Drug resistance phenotypes
Overall, analyses were conducted for 17 drug resistance
phenotypes, including for 12 individual drugs and 5 com-
posite phenotypes. The 12 individual drug resistance phe-
notypes with frequency of resistance ranging from 3.3%
(MOX in lineage 4) to 43.0% (STM in lineage 2), and the
composite phenotypes of MDR (lineage 2 35.7%; lineage 4
9.5%) and XDR (lineage 2 9.9%; lineage 4 1.2%). The com-
bined second-line drug resistance phenotypes for
resistance to any fluoroquinones (FQ) and resistance to
any aminoglycosides (AG) were also considered (see
Additional file 5). The completeness of drug-resistance
phenotype data is variable. Rifampicin was the most tested
for (tested for in 92.0% of isolates); while ciprofloxacin
was the least (tested for in 4.2% of isolates) (see
Additional file 6). Furthermore, there is evidence of mul-
tiple concomitant resistance with 44.1% of MDR isolates
also resistant to ethambutol.

Convergence-based analyses, variant-based GWAS and
locus-based identified known resistance conferring variants
We performed convergence-based analyses (PhyC),
GWAS across loci (locus-based) and GWAS on individual
variants (variant-based). Each were conducted in a
lineage-specific and lineage-combined manner. Due to the
close relatedness between some samples, for the GWAS
analyses, we applied specialized regression models with
random effects that have been implemented in a human
setting to handle “cryptic relatedness” [13] (see Methods).
In total, PhyC analysis of the combined lineages identi-

fied 53 variants in 20 different loci, with individual lineage
analyses identifying a subset of these loci (see Table 1,
Additional file 7). Eleven of these loci were not identified
by GWAS techniques, including eight loci with known in-
volvement in antimicrobial resistance; thyX-hsdS.1 (para-
aminosalicylic acid), rpoC (rifampicin), pncA-Rv2044c
(pyrazinamide), eis-Rv2417c (aminoglycosides), folC
(para-aminosalicylic acid), fabG1 (isoniazid), oxyR’-ahpC
(isoniazid) and gyrB (fluoroquinolones) (see Table 1,
Additional file 8).
Locus-based GWAS identified 23 different loci (see
Table 2, Fig. 2, Additional file 7). Fourteen such loci were
identified by locus-based GWAS exclusively; of these 14
loci, gid is known to be involved in streptomycin resist-
ance and inhA is known to be involved in isoniazid and
ethionamide resistance [30, 31] (see Additional file 8).
Variant-based GWAS identified eleven variants in nine
different loci. No known associations were identified by
variant-based GWAS exclusively; however, three novel as-
sociations were identified (RV0197, recF, argJ) (see Table 3,
Additional file 8). Three loci were identified by
locus-based GWAS and PhyC but not variant-based
GWAS: pncA (pyrazinamide), embC-embA and embB
(ethambutol) (see Fig. 3a and b, Additional file 8).

Effects of lineage-specific analysis on identifying known
resistance associated variants
Lineage 2 specific
Overall, for locus-based GWAS analyses across the 16
phenotypes, two loci were identified exclusively to lineage
2 specific analyses; rrs (KAN; p-value = 1.40 × 10− 22)
and Rv3128c-Rv3129 (MDR; p-value = 7.4 × 10− 22) (see
Fig. 2a). For locus-based GWAS, pncA was found in
association with XDR exclusively, however for lineage 4
pncA was found in association with PZA exclusively;
greater variation was found in the pncA locus for lineage 2
(see Fig. 3c and d). For the variant-based GWAS analyses
there were no lineage 2 exclusive associations. Further-
more, no lineage 2 exclusive associations were identified
by PhyC analyses.

Lineage 4 specific
Overall, for the locus-based GWAS analyses, seven loci
were identified exclusively by lineage 4 specific analyses
(inhA, fadB4-Rv3142c, tuf, cut5b-Rv3725, Rv3007c,
Rv2668, moeX) (see Fig. 2b). All of which were found in
significant association with the XDR phenotype. For
locus-based GWAS, gid was identified in association
with streptomycin by lineage 4 specific analyses and –
combined analyses but not lineage 2 specific analyses;
there is greater variation within the gid locus for lineage
4 (see Fig. 3e and f). The variant-based GWAS analyses
identified no lineage 4 exclusive analyses. Moreover, no
lineage 4 exclusive associations were identified by PhyC
analyses.

Lineages 2 and 4 combined
Four loci were solely identified through combined
lineage PhyC analyses; Rv3115-moeB2 (MDR, STM; min.
p-value = 6.7 × 10− 4), eis-Rv2417c (STM; min. p-value =
1.4 × 10− 05), whib6-Rv3863 (EMB; p-value = 9 × 10− 4) and
oxyR’-ahpC (INH, PZA; p-values = 6.8 × 10− 4, 9 × 10− 4, re-
spectively) (see Table 1). For each loci identified by PhyC,
there were consistently the same number or more



Fig. 1 Phylogenetic tree of all samples: coloured by phenotype, sublineage and genotype for novel variants alongside katG, rpoB and gyrA. From inner
to outer, each track is coloured by; drug-resistance phenotype, sublineage, variant genotype for; hadA (732110), Rv3115-moeB2 (3482717), whiB6-Rv3863
(4338594), Rv0197 (232574), recF (4047), argJ (1867614), katG (2155168); locus genotype for; Rv1313c-Rv1314c, fadB4-Rv3142c, Rv0526, espE-espF, tuf,
cut5b-Rv3725, Rv3007c, Rv2668, pip-Rv0841, moeX, lipJ-cinA, Rv3128c-Rv3129, rpoB, gyrA. Variant genotype is coloured in samples where a non-reference
variant is present with respect to H37rv reference and variant position is given in brackets. Locus genotype is coloured in samples with one or more
non-synonymous or intergenic variants at each locus with respect to H37rv reference, relative height of the bar reflects number of variants at each loci
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associations identified by the -combined versus the
lineage-specific analyses (see Table 1).
For locus-based GWAS, four loci were identified in

association with XDR by the combined lineages 2 and 4
analyses exclusively; Rv0526 (p-value = 8.70 × 10− 37;
thioredoxin protein) and three intergenic regions;
espE-espF (p-value = 5.70 × 10− 31), pip-Rv0841 (p-value
= 8.60 × 10− 23) and lipJ-cinA (p-value = 6.20 × 10− 22)
(see Table 2, Fig. 2c).
For variant-based GWAS, one locus was identified by the

combined lineages 2 and 4 analyses exclusively; argJ, in as-
sociation with XDR (p-value = 6.9 × 10− 26) (see Table 3).

Novel resistance-associated variants identified
Across all analyses, we report 17 potentially novel associa-
tions between antimicrobial resistance and genomic vari-
ants in Mtb; 7 such associations were identified exclusively
by lineage-specific analyses (see Tables 1, 2, 3). Twelve were
identified by locus-based GWAS, three were identified by
variant-based GWAS and two were identified by PhyC. All
novel associations identified by GWAS were found in asso-
ciation with the XDR phenotype. There was no overlap in
novel associations identified between methods.
Two potentially novel associations were identified by

PhyC; hadA (lineage 4, 2 + 4; INH, MDR and STM;
1.1 × 10− 4 < p-values< 4 × 10− 4) and Rv3115-moeB2
(lineages 2 + 4; MDR; STM, min. p-value = 6.7 × 10− 4)
(see Table 1, Fig. 1). The Rv3115-moeB2 variant displays
a different pattern of variation within lineage 2 than
within lineage 4 (see Fig. 1).
Twelve potentially novel associations were identified by

locus-based GWAS (see Table 1). Six loci were identified
exclusively in lineage 4 all in association with XDR;
fadB4-Rv3142c (p-value = 4.6 × 10− 38), tuf (p-value = 1.5 ×
10− 29), Rv3007c (p-value = 7.8 × 10− 24), cut5b-Rv3725
(p-value = 5.1 × 10− 27), Rv2668 (p-value = 1.3 × 10− 23) and
moeX (p-value = 5.5 × 10− 22). Rv1313c-Rv1314c was identi-
fied by both lineage 4 and lineage-combined analyses in as-
sociation with XDR (min. p-value = 1.4 × 10− 54). Four loci
were identified exclusively by lineage-combined analyses
in association with XDR; Rv0526 (p-value = 8.7 × 10− 37),
espE-espF (p-value = 5.7 × 10− 31), pip-Rv0841 (p-value =
8.6 × 10−23) and lipJ-cinA (p-value = 6.2 × 10−22). Rv3128c-
Rv3129 was identified exclusively by the lineage 2 ana-
lysis in association with MDR (p-value = 7.4 × 10− 22)
(see Table 2, Fig. 1).
Three potentially novel associations were identified by

variant-based GWAS, all in association with XDR; in the
Rv0197 locus (lineage 4, 2 + 4; min. p-value = 9.5 × 10− 62), in
the recF locus (lineage 4, 2 + 4; min. p-value = 1.2 × 10− 52,
respectively) and the argJ locus (lineages 2 + 4;
p-value = 6.9 × 10− 26) (see Table 3, Fig. 1).



Table 1 Significant associations between genomic variants and drug resistance phenotypes identified by PhyC

Locus Known Phenotype
Association [13]

Lineage Observed Phenotype Association (position; p-value) Total

rpoB RMP 2 INH(761,155;1.2 × 10− 06, 761,139;5.6 × 10− 06), MDR(761,155;1.5 × 10− 12, 761,139;1.4 × 10− 07,
761,140;5.5 × 10− 04), RMP(761,155;2.4 × 10− 11, 761,139;6.7 × 10− 09, 761,110;4.6 × 10− 04,
761,140;9.3 × 10− 04), XDR(761,155;2.6 × 10− 04, 761,139;7.5 × 10− 04)

11

rpoB RMP 4 AG(761,155;2.0 × 10−5), EMB(761,155;2.2 × 10− 14), INH(761,155;3.4 × 10− 32, 761,139;6.2 × 10− 11,
761,110;7.6 × 10− 08, 761,140;3.3 × 10− 07), MDR(761,155;2.1 × 10− 45, 761,139;2.8 × 10− 20,
761,140;1.3 × 10− 09, 761,110;1 × 10− 08, 759,939;2.8 × 10− 04), PZA(761,155;1.5 × 10− 12,
761,110;2.2 × 10− 06), RMP(761,155;5.7 × 10− 54, 761,139;9.7 × 10− 27, 761,110;2.6 × 10− 12,
761,140;3.4 × 10− 11, 761,998;1.1 × 10− 05, 761,109;7.3 × 10− 05, 759,939;4.9 × 10− 04),
STRx10P(761,155;2.1 × 10− 16, 761,110;7.5 × 10− 04), XDR(761,155;7.1 × 10− 14,
761,110;2.7 × 10− 05)

23

rpoB RMP 2 + 4 AG(761,155;2.3 × 10−5), EMB(761,155;3.8 × 10− 18, 761,140;6.3 × 10− 06, 761,110;1.1 × 10− 05,
761,139;2 × 10− 05), INH(761,155;2.3 × 10− 42, 761,139;3.5 × 10− 19, 761,140;2.3 × 10− 11,
761,110;1.1 × 10− 09, 761,161;1.5 × 10− 06), MDR(761,155;7.8 × 10− 63, 761,139;1.7 × 10− 31,
761,140;4.8 × 10− 15, 761,110;1.3 × 10− 13, 761,161;5.8 × 10− 05, 761,095;1.8 × 10− 04,
759,939;2.6 × 10− 04, 761,109;2.6 × 10− 04), PZA(761,155;5.6 × 10− 16, 761,110;2 × 10− 07,
761,139;5.8 × 10− 04), RMP(761,155;3.5 × 10− 70, 761,139;3.2 × 10− 38, 761,110;2.4 × 10− 17,
761,140;2.2 × 10− 15, 761,161;4.4 × 10− 07, 761,109;3.5 × 10− 05, 761,998;1 × 10− 04,
761,095;3.1 × 10− 04, 759,939;4.7 × 10− 04, 760,314;4.7 × 10− 04), STM(761,155;8.4 × 10− 21,
761,110;2.1 × 10− 07, 761,139;2.6 × 10− 07, 761,140;8.5 × 10− 05, 761,161;1.8 × 10− 04),
XDR(761,155;2.2 × 10− 18, 761,110;2.6 × 10− 08, 761,139;9.7 × 10− 08, 761,161;1.9 × 10− 06,
761,109;6.2 × 10− 05)

40

embB EMB 2 EMB(4,247,429;3 × 10− 07, 4,247,431;1.8 × 10− 04), INH(4,247,429;9.3 × 10− 10, 4,247,431;3.1 × 10–05),
MDR(4,247,429;2.5 × 10− 08, 4,247,431;1.1 × 10− 04), RMP(4,247,429;7.6 × 10− 09, 4,247,431;1.3 × 10− 04,
4,247,730;8.7 × 10− 04), STM(4,247,429;1 × 10− 05, 4,247,431;1.1 × 10− 04), XDR(4,247,429;4.3 × 10− 06,
4,247,431;1.2 × 10− 04, 4,247,730;1.2 × 10− 04)

14

embB EMB 4 AG(4,247,431;7.1 × 10− 4), EMB(4,247,431;3 × 10− 11, 4,247,729;3 × 10− 08, 4,247,730;1 × 10− 07,
4,248,003;1 × 10− 07, 4,247,429;1.5 × 10− 06, 4,247,574;8.1 × 10− 04), INH(4,247,431;6.6 × 10− 19,
4,247,730;1.4 × 10− 09, 4,247,429;1.7 × 10− 09, 4,247,729;6.3 × 10− 06, 4,247,574;1.8 × 10− 05,
4,248,003;2.8 × 10− 05), MDR(4,247,431;2.3 × 10− 21, 4,247,429;1.5 × 10− 09, 4,247,730;8.8 × 10− 08,
4,247,574;6 × 10− 07, 4,247,729;4.2 × 10− 06, 4,248,003;6 × 10− 04), PZA(4,247,431;1.2 × 10− 04,
4,247,730;2.2 × 10− 04, 4,248,003;5.3 × 10− 04), RMP(4,247,431;2.2 × 10− 18, 4,247,429;1.5 × 10− 10,
4,247,730;1.4 × 10− 08, 4,247,574;6.6 × 10− 05, 4,247,729;1.3 × 10− 04, 4,248,003;1.5 × 10− 04),
STM(4,247,431;1.5 × 10− 08, 4,247,729;3.6 × 10− 06, 4,247,574;7.2 × 10–04), XDR(4,247,429;1.3 × 10− 04)

31

embB EMB 2 + 4 AG(4,247,431;3.5 × 10−4), EMB(4,247,429;9.2 × 10−21, 4,247,431;1.5 × 10− 16, 4,247,729;2.1 × 10− 09,
4,247,730;6.4 × 10− 08, 4,248,003;2.8 × 10− 07, 4,247,574;1.4 × 10− 04, 4,249,518;1.9 × 10− 04),
FQ(4,247,730;9.5 × 10− 07), INH(4,247,429;2.7 × 10− 27, 4,247,431;1 × 10− 25, 4,247,730;8.4 × 10− 14,
4,248,003;1.2 × 10− 08, 4,247,729;1.4 × 10− 07, 4,247,574;1.7 × 10− 07), MDR(4,247,431;3.2 × 10− 26,
4,247,429;6.1 × 10− 26, 4,247,730;2 × 10− 12, 4,247,574;2.5 × 10− 09, 4,247,729;1.3 × 10− 07,
4,248,003;1.5 × 10− 07), PZA(4,247,730;6.3 × 10− 08, 4,247,431;2 × 10− 05, 4,247,429;2.9 × 10− 04,
4,248,003;4.6 × 10− 04), RMP(4,247,429;4.1 × 10− 29, 4,247,431;4.8 × 10− 24, 4,247,730;3.1 × 10− 13,
4,248,003;3.5 × 10− 07, 4,247,574;4.7 × 10− 07, 4,247,729;2.5 × 10− 06, 4,247,469;4.7 × 10− 04),
STRx10P(4,247,431;2.2 × 10− 14, 4,247,429;2.9 × 10− 13, 4,247,729;1.4 × 10− 05, 4,248,003;2.6 × 10− 05,
4,247,730;5.5 × 10− 05, 4,247,574;6.9 × 10− 05), XDR(4,247,429;4.4 × 10− 13, 4,247,431;8.9 × 10− 10,
4,247,730;2.6 × 10− 08)

41

katG INH 2 INH(2,155,168;2.7 × 10− 07), MDR(2,155,168;4.5 × 10− 08), RMP(2,155,168;5.7 × 10− 04),
STM(2,155,168;8.3 × 10− 04), XDR(2,155,168;4.1 × 10− 09)

5

katG INH 4 EMB(2,155,168;1.5 × 10− 07), INH(2,155,168;2 × 10− 63, 2,155,167;8.5 × 10− 05), MDR(2,155,
168;3 × 10− 58, 2,155,167;2.8 × 10− 04), PZA(2,155,168;1.5 × 10− 09), RMP(2,155,168;2.9 × 10− 29),
STRx10P(2,155,168;2.8 × 10− 11), XDR(2,155,168;1.8 × 10− 14)

9

katG INH 2 + 4 EMB(2,155,168;4.8 × 10− 11), INH(2,155,168;7.1 × 10− 72, 2,155,167;1.1 × 10− 04),
MDR(2,155,168;3.3 × 10− 68, 2,155,167;2.6 × 10− 04), PZA(2,155,168;1.7 × 10− 11),
RMP(2,155,168;2.5 × 10− 36), STRx10P(2,155,168;3.9 × 10− 18), XDR(2,155,168;3.5 × 10− 28)

9

rpsL STM 2 INH(781,687;5.9 × 10− 05), MDR(781,687;5.3 × 10− 05), RMP(781,687;4.8 × 10− 04),
STM(781,687;4.1 × 10− 08)

4

rpsL STM 4 AG(781,687;3.8 × 10− 4), INH(781,687;4.3 × 10− 15), MDR(781,687;3.9 × 10− 12),
PZA(781,687;6.1 × 10− 06), RMP(781,687;8.3 × 10− 10), STM(781,687;9.6 × 10− 14,
781,822;2.3 × 10− 04)

6

rpsL STM 2 + 4 AG(781,687;3.8 × 10− 5), EMB(781,687;3.5 × 10− 05), FQ(781,687;8.3 × 10− 05), INH(781,687;2.3 × 10− 26,
781,822;6.4 × 10− 05), MDR(781,687;2.3 × 10− 25, 781,822;4.1 × 10− 06), PZA(781,687;1.5 × 10− 08),
RMP(781,687;4.8 × 10− 22, 781,822;8.6 × 10− 06), STM(781,687;3.4 × 10− 30, 781,822;2.6 × 10− 07),
XDR(781,687;4.3 × 10− 09)

13
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Table 1 Significant associations between genomic variants and drug resistance phenotypes identified by PhyC (Continued)

Locus Known Phenotype
Association [13]

Lineage Observed Phenotype Association (position; p-value) Total

Rv1482c-fabG1 INH, ETH 2 INH(1,673,425;9 × 10− 06), MDR(1,673,425;5.7 × 10− 05) 2

Rv1482c-fabG1 INH, ETH 4 INH(1,673,425;2.2 × 10− 20), MDR(1,673,425;2 × 10− 07), XDR(1,673,425;3.9 × 10− 05) 3

Rv1482c-fabG1 INH, ETH 2 + 4 EMB(1,673,432;5.4 × 10− 05), ETH(1,673,425;7.6 × 10− 04), FQ(1,673,432;9 × 10− 04),
INH(1,673,425;6.4 × 10− 27, 1,673,432;8.3 × 10− 07), MDR(1,673,425;4.4 × 10− 14, 1,673,432;6.4 × 10− 05),
RMP(1,673,432;7.9 × 10− 06, 1,673,425;3 × 10− 05), STEP(1,673,432;8.5 × 10− 05, 1,673,425;3.6 × 10− 04),
XDR(1,673,425;8.7 × 10− 06, 1,673,432;1.2 × 10− 05)

14

gyrA FQ 2 EMB(7582;1.3 × 10− 05), ETH(7582;9.5 × 10− 04), FQ(7582;2.3 × 10− 09,
7570;7.6 × 10–06, 7581;4.1 × 10− 04), INH(7582;9.9 × 10− 06), MDR(7582;7.9 × 10− 05),
OFL(7582;1.4 × 10− 06, 7570;8.5 × 10− 04, 7581;8.5 × 10− 04), RMP(7582;2.6 × 10− 06, 7570;1.2 × 10− 04,
7581;9.3 × 10− 04), STM(7582;6.5 × 10− 04), XDRvMDR(7570;9.6 × 10− 04), XDR(7570;5.7 × 10− 07,
7582;7.5 × 10− 07, 7581;7.5 × 10− 04)

21

gyrA FQ 4 EMB(7570;1.2 × 10− 05), FQ(7570;1.9 × 10− 08, 7582;3 × 10− 06, 7581;2.1 × 10− 05),
INH(7570;3.2 × 10− 10, 7581;9.2 × 10− 05, 7582;1.1 × 10− 04), KAN(7570;1.5 × 10− 04),
MDR(7570;1 × 10− 08, 7582;4.2 × 10− 06, 7581;5 × 10− 05), OFL(7570;2.5 × 10− 04,
7582;5.6 × 10− 04), PZA(7570;1 × 10− 05, 7581;1.3 × 10− 04), RMP(7570;3.4 × 10− 11,
7582;5 × 10− 08, 7581;5.1 × 10− 06), XDR(7570;3.3 × 10− 10, 7582;2.7 × 10− 05, 7572;3.6 × 10− 04)

24

gyrA FQ 2 + 4 AMK(7570;6.5 × 10− 04), CAP(7570;9.9 × 10− 04), EMB(7582;4.2 × 10− 13, 7570;1.1 × 10− 08,
7572;3.7 × 10− 04, 7581;4.8 × 10− 04), ETH(7582;1.3 × 10− 04), FQ(7582;3.6 × 10− 18, 7570;4.1 × 10− 14,
7581;2.4 × 10− 09, 7572;6.1 × 10− 04), INH(7582;4.5 × 10− 15, 7570;4.2 × 10− 14, 7581;1.2 × 10− 08,
7572;8.3 × 10− 06), KAN(7570;5.7 × 10− 06, 7572;6.7 × 10− 05), MDR(7582;2.2 × 10− 15, 7570;1.8 × 10− 11,
7581;6.4 × 10− 07), OFL(7582;1.3 × 10–10, 7570;2 × 10–07, 7581;5.8 × 10− 06), PZA(7581;1.2 × 10− 07,
7570;2.4 × 10− 07, 7572;9.7 × 10− 05, 7582;4.6 × 10− 04), RMP(7582;2.3 × 10− 20, 7570;2.5 × 10− 17,
7581;1.8 × 10–10, 7572;1 × 10− 06), STM(7582;1.9 × 10− 10, 7570;1.5 × 10− 06, 7581;1.8 × 10− 04),
XDRvMDR(7570;4.2 × 10− 05, 7582;5.7 × 10− 04), XDR(7570;3.4 × 10− 19, 7582;3 × 10− 16,
7572;9.7 × 10− 08, 7581;2.9 × 10− 07)

44

rrs STM, AG 2 AMK(1,473,246;1.8 × 10− 04), CAP(1,473,246;5 × 10− 08), INH(1,473,246;5 × 10− 06),
KAN(1,473,246;1.3 × 10− 11), RMP(1,473,246;8.9 × 10− 06), STM(1,473,246;4.1 × 10− 04),
XDRvMDR(1,473,246;3.6 × 10− 05), XDR(1,473,246;7.4 × 10− 11)

8

rrs STM, AG 4 AG(1,473,246;2.6 × 10−7), AMK(1,473,246;4.6 × 10− 06), CAP(1,473,246;2 × 10− 06),
CIP(1,473,246;9.4 × 10− 04), EMB(1,473,246;7.1 × 10− 07), FQ(1,473,246;2.5 × 10− 04),
INH(1,473,246;3.2 × 10− 10), KAN(1,473,246;3.3 × 10− 10), MDR(1,473,246;4.6 × 10− 06),
PZA(1,473,246;9.4 × 10− 10), RMP(1,473,246;1.9 × 10− 16), STM(1,473,246;3.1 × 10− 05,
1,472,359;2.3 × 10− 04), XDRvMDR(1,473,246;1.9 × 10− 05), XDR(1,473,246;1.6 × 10− 13)

15

rrs STM, AG 2 + 4 AG(1,473,246;7.5 × 10−5), AMK(1,473,246;3.9 × 10− 11), CAP(1,473,246;7.2 × 10− 14),
CIP(1,473,246;6.5 × 10− 04), EMB(1,473,246;2.5 × 10− 11), FQ(1,473,246;3.5 × 10− 07),
INH(1,473,246;3.6 × 10− 20, 1,472,359;1.2 × 10− 05), KAN(1,473,246;7.9 × 10− 22),
MDR(1,473,246;1.8 × 10− 11, 1,472,359;4.4 × 10− 04), PZA(1,473,246;2.6 × 10− 10),
RMP(1,473,246;7.3 × 10− 26), STM(1,473,246;1.3 × 10− 11, 1,472,359;1.5 × 10− 08),
XDRvMDR(1,473,246;2.1 × 10− 09), XDR(1,473,246;7.9 × 10− 29, 1,472,359;1.5 × 10− 04)

18

thyX-hsdS.1 PAS 2 XDR(3,067,961;7.5 × 10−04) 1

thyX-hsdS.1 PAS 4 INH(3,067,961;4.9 × 10−04), STM(3,067,961;3.2 × 10− 04) 2

thyX-hsdS.1 PAS 2 + 4 EMB(3,067,961;1 × 10− 05), INH(3,067,961;1.4 × 10− 07), MDR(3,067,961;6.4 × 10− 05),
RMP(3,067,961;9.4 × 10− 05), STM(3,067,961;2.3 × 10− 07), XDR(3,067,961;1.2 × 10− 05)

6

rpoC RMP 4 EMB(764,817;2 × 10− 04), MDR(764,817;6 × 10− 07, 764,840;2.8 × 10− 04), PZA(764,817;8.3 × 10− 08),
RMP(764,817;3.6 × 10− 08, 764,840;4.9 × 10− 04, 767,123;4.9 × 10− 04), STM(764,817;3.4 × 10− 04)

8

rpoC RMP 2 + 4 EMB(764,817;1.9 × 10− 04), INH(764,817;1.1 × 10− 05, 764,840;1.1 × 10− 04), MDR(764,817;4.9 × 10− 10,
764,840;9.7 × 10− 06), PZA(764,817;2 × 10− 07), RMP(764,817;1.4 × 10− 09, 764,840;2.2 × 10− 05,
764,363;4.7 × 10− 04, 767,123;4.7 × 10− 04), STM(764,817;3.8 × 10− 06)

11

embC-embA EMB 2 EMB(4,243,217;1.7 × 10−04) 1

embC-embA EMB 4 EMB(4,243,221;3.7 × 10−04, 4,243,190;3.8 × 10–04), INH(4,243,221;8.5 × 10− 05),
MDR(4,243,217;4.6 × 10− 06, 4,243,221;4.6 × 10− 06, 4,243,190;3.6 × 10− 05),
RMP(4,243,221;1.1 × 10− 05, 4,243,190;4.9 × 10− 04)

8

embC-embA EMB 2 + 4 EMB(4,243,217;1.4 × 10−07, 4,243,190;3 × 10− 07, 4,243,221;1.3 × 10− 06), INH(4,243,217;4 × 10− 08,
4,243,221;2.3 × 10− 06, 4,243,190;3 × 10− 05), MDR(4,243,217;1.2 × 10− 09, 4,243,221;6.9 × 10− 08,
4,243,190;1.9 × 10− 06), RMP(4,243,221;2.2 × 10− 07, 4,243,217;6.1 × 10− 07, 4,243,190;4.8 × 10− 06),
STM(4,243,217;8.6 × 10− 04)

13

hadA Novel 4 INH(732,110;4 × 10−04), MDR(732,110;2.8 × 10− 04) 2
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Table 1 Significant associations between genomic variants and drug resistance phenotypes identified by PhyC (Continued)

Locus Known Phenotype
Association [13]

Lineage Observed Phenotype Association (position; p-value) Total

hadA Novel 2 + 4 INH(732,110;1.1 × 10−04), MDR(732,110;2.6 × 10− 04), STM(732,110;4 × 10− 04) 3

pncA PZA 4 EMB(2,288,868;3.8 × 10− 04), MDR(2,288,764;2.8 × 10− 04), RMP(2,288,764;4.9 × 10− 04) 3

pncA PZA 2 + 4 EMB(2,288,820;1.9 × 10− 04, 2,289,103;1.9 × 10− 04), MDR(2,289,207;2.6 × 10− 04),
PZA(2,289,207;9.7 × 10− 05), RMP(2,288,778;4.7 × 10− 04, 2,288,820;4.7 × 10− 04)

6

pncA-Rv2044c PZA 4 RMP(2,289,252;4.9 × 10− 04), XDR(2,289,252;3.6 × 10− 04) 2

pncA-Rv2044c PZA 2 + 4 INH(2,289,252;1.1 × 10− 04), MDR(2,289,252;5 × 10− 05), PZA(2,289,252;2 × 10− 07),
RMP(2,289,252;4.8 × 10− 06), XDR(2,289,252;6.2 × 10− 05)

5

Rv3115-moeB2 Novel 2 + 4 MDR(3,482,717;6.7 × 10− 04), STM(3,482,717;6.7 × 10− 04) 2

eis-Rv2417c AG 2 + 4 EMB(2,715,342;1.6 × 10− 05), FQ(2,715,342;1.7 × 10− 04), INH(2,715,342;1.1 × 10− 04),
KAN(2,715,342;5.4 × 10− 04), RMP(2,715,342;2.2 × 10− 05), STM(2,715,342;1.4 × 10− 05)

7

folC PAS 4 EMB(2,747,471;3.8 × 10−04) 1

folC PAS 2 + 4 EMB(2,747,471;3.7 × 10−04), INH(2,747,471;1.1 × 10− 04), STM(2,747,471;4 × 10− 04) 3

whiB6-Rv3863 Putative STM or
ETH

2 + 4 EMB(4,338,594;9 × 10− 04) 1

fabG1 INH [53] 4 INH(1,674,048;6.3 × 10− 06) 1

fabG1 INH [53] 2 + 4 INH(1,674,048;5.5 × 10− 06) 1

oxyR’-ahpC INH 2 + 4 INH(2,726,141;6.8 × 10− 04), PZA(2,726,141;9 × 10− 04) 2

gyrB FQ 4 RMP(6620;4.9 × 10− 04) 1

gyrB FQ 2 + 4 RMP(6620;4.7 × 10−04) 1

(p-values < 1E-3) Drug resistance phenotype abbreviations are as given in methods. ‘Total’ refers to the total number of significantly associated variants for the
locus and lineage in question. AMK = Amikacin-resistance, AG = Aminoglycoside-resistance, CAP = Capreomycin-resistance, CIP = Ciprofloxacin-resistance,
EMB = Ethambutol-resistance, ETH = Ethionamide-resistance, FQ = Fluoroquinolone-resistance, INH = Isoniazid-resistance, KAN = Kanamycin-resistance,
MDR =Multidrug-resistant, OFL = Ofloxacin-resistance, PAN = pan-susceptible (no known drug-resistance), PZA = Pyrazinamide-resistance, RMP = Rifampicin-resistance,
STM = Streptomycin-resistance, XDR = Extensively drug-resistant
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Discussion
Our results highlight that lineage specific analyses are able
to provide new insights into genetic associations with drug
resistance phenotypes, despite a smaller sample size than a
pan-lineage approach. Lineage specific associations were
found within lineage 2, such as the novel association be-
tween Rv3128c-Rv3129 and MDR. We also identified
lineage-specific novel associations within lineage 4, such as
the association between fadB4-Rv3142c and XDR. This in-
dicates biological differences between these lineages with
respect to drug resistance and perhaps in evolutionary tra-
jectory. Novel associations specific to combined analyses
indicate convergent evolution between lineages 2 and 4 at
the same loci, with variant frequency too low for
lineage-specific analyses to detect, that would most likely
be detected in larger scale combined analyses (as previ-
ously described13). Lineage-specific GWAS is complemen-
tary to lineage-combined approaches, with their
application in tandem potentially improving the power to
detect Mtb genomic variants evolving under differing evo-
lutionary dynamics.
Overall, despite conservative significance thresholds

based on permutation, 17 potential novel associations
were identified between antimicrobial resistance and Mtb
loci and thus warrant experimental validation. For GWAS,
15 novel associations were identified, one in relation to
the MDR phenotype and 14 in relation to the XDR pheno-
type; 7 were lineage specific. This might suggest an evolu-
tionary shift amongst XDR strains. It may be feasible to
consider XDR as a highly complex phenotype encompass-
ing transmissibility [32]; unless evolution of XDR from
pan-susceptible strains frequently happens within one pa-
tient, it is likely that XDR strains have gone through nu-
merous cycles of active disease, transmission and
treatment within recent history. The fact that many of
these associations are lineage specific lends weight to such
a hypothesis, suggesting differing evolutionary trajectories
between lineages 2 and 4. Genetic drift might contribute
to such divergence; there are numerous bottlenecks dur-
ing the natural infectious cycle for Mtb, driven by host im-
mune system, anti-TB drug therapy and transmission [33].
Some of the novel associated variants may be involved

directly in drug resistance such as hadA, whose gene
product, similar to InhA, is involved in fatty acid synthe-
sis type II (FAS-II)) and thus may be involved in isonia-
zid resistance [34, 35]. One of the novel associated loci,
Rv0197, identified here by variant-based GWAS in asso-
ciation with XDR, was previously identified through
PhyC in association with a transmissibility phenotype
[36]. EspE was identified by this previous analysis also
[36], and it remains possible that the espE-espF inter-
genic region, identified here by locus-based GWAS in



Table 2 Significant associations between loci and drug resistance phenotypes identified by locus-based GWAS

Locus Known Phenotype
Association [13]

Lineage Observed Phenotype Association P-value PhyC

rpoB RMP 2 XDR, RMP, MDR 1.9 × 10− 72, 5.2 × 10− 58, 1.4 × 10− 44 11

rpoB RMP 4 RMP, MDR, PZA, XDR, EMB 2 × 10− 94, 1.1 × 10− 35, 1.1 × 10− 33, 2.5 × 10− 30, 6.4 × 10− 23 23

rpoB RMP 2 + 4 RMP, MDR, XDR, PZA 1.6 × 10− 126, 4.1 × 10− 77, 4.1 × 10− 66, 2.1 × 10− 24 40

gyrA FQ 2 MOX, FQ, XDR, OFL 5.2 × 10− 117, 2.5 × 10− 45, 4.3 × 10− 23, 5.1 × 10− 22 21

gyrA FQ 4 FQ, CIP, XDR 4.1 × 10− 38, 5.4 × 10− 36, 6.5 × 10− 27 24

gyrA FQ 2 + 4 FQ, OFL, CIP 1.2 × 10− 63, 1.7 × 10− 32, 2.2 × 10− 26 44

pncA PZA 2 XDR 1.50 × 10− 25 0

pncA PZA 4 PZA 4.50 × 10− 103 3

pncA PZA 2 + 4 PZA, EMB, XDR 5.3 × 10− 101, 1.2 × 10− 29, 6.7 × 10− 22 6

embC-embA EMB 4 XDR, EMB 6.1 × 10− 69, 2.8 × 10− 26 8

embC-embA EMB 2 + 4 XDR, EMB 3.3 × 10− 37, 1.4 × 10− 23 13

katG INH 2 INH, MDR 3.6 × 10−34, 7.3 × 10−24 5

katG INH 4 INH 1.20 × 10−44 9

katG INH 2 + 4 INH, MDR 1.5 × 10−61, 1.5 × 10−36 9

embB EMB 2 EMB 7.20 × 10−27 14

embB EMB 4 EMB 1.80 × 10−56 31

embB EMB 2 + 4 EMB 3.30 × 10−55 41

gid STM 4 STM 7.40 × 10− 55 0

gid STM 2 + 4 STM 1.30 × 10−53 0

Rv1313c-Rv1314c 4 XDR 1.40 × 10−54 0

Rv1313c-Rv1314c 2 + 4 XDR 3.30 × 10−32 0

rpsL STM 2 STM 1.90 × 10−38 4

rpsL STM 4 STM 5.60 × 10−26 6

rpsL STM 2 + 4 STM 6.00 × 10−41 13

fadB4-Rv3142c 4 XDR 4.60 × 10−38 0

Rv0526 2 + 4 XDR 8.70 × 10−37 0

Rv1482c-fabG1 INH, ETH 4 INH 1.70 × 10−34 3

Rv1482c-fabG1 INH, ETH 2 + 4 INH 3.30 × 10−30 14

espE-espF 2 + 4 XDR 5.70 × 10−31 0

tuf 4 XDR 1.50 × 10−29 0

inhA INH, ETH 4 XDR 2.40 × 10−28 0

cut5b-Rv3725 4 XDR 5.10 × 10−27 0

Rv3007c 4 XDR 7.80 × 10−24 0

Rv2668 4 XDR 1.30 × 10−23 0

pip-Rv0841 2 + 4 XDR 8.60 × 10− 23 0

rrs STM, AG 2 KAN 1.40 × 10−22 8

moeX 4 XDR 5.50 × 10− 22 0

lipJ-cinA 2 + 4 XDR 6.20 × 10−22 0

Rv3128c-Rv3129 2 MDR 7.40 × 10−22 0

(P-values <1E-21) Novel associations are given in bold. ‘PhyC’ column refers to the number of associations identified through PhyC analysis for the locus and lineage in
question. AMK= Amikacin-resistance, AG =Aminoglycoside-resistance, CAP = Capreomycin-resistance, CIP = Ciprofloxacin-resistance, EMB= Ethambutol-resistance,
ETH = Ethionamide-resistance, FQ = Fluoroquinolone-resistance, INH = Isoniazid-resistance, KAN = Kanamycin-resistance, MDR = Multidrug-resistant,
OFL =Ofloxacin-resistance, PAN= pan-susceptible (no known drug-resistance), PZA = Pyrazinamide-resistance, RMP= Rifampicin-resistance, STM= Streptomycin-resistance,
XDR = Extensively drug-resistant
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Fig. 2 Locus-based GWAS results a Manhattan plot for locus-based GWAS for lineage 2. b Manhattan plot for locus-based GWAS for lineage 4 c
Manhattan plot for locus-based GWAS for lineages 2 and 4 combined. P-value threshold <1E-21. Phenotypes with which loci were found to be
significantly associated are given in brackets next to locus name. AMK = Amikacin-resistance, AG = Aminoglycoside-resistance, CAP = Capreomycin-
resistance, CIP = Ciprofloxacin-resistance, EMB = Ethambutol-resistance, ETH = Ethionamide-resistance, FQ = Fluoroquinolone-resistance, INH = Isoniazid-
resistance, KAN = Kanamycin-resistance, MDR =Multidrug-resistant, OFL = Ofloxacin-resistance, PAN = pan-susceptible (no known drug-resistance),
PZA = Pyrazinamide-resistance, RMP = Rifampicin-resistance, STM = Streptomycin-resistance, XDR = Extensively drug-resistant
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association with XDR, may be related by regulation to
espE. Additionally, both espE-espF and whiB6-Rv3863
have been linked to Esx-1 which has been implicated in
virulence regulation. The WhiB6-Rv3863 intergenic re-
gion, which was also identified through previous PhyC
analyses including our dataset [13], may additionally be
linked to the DosR regulon. This regulon is composed of
48 co-regulated genes and is considered essential for
persistence of latent Mtb [37–40]. Interestingly, the
whiB6-Rv3863 variant identified shows a markedly
different distribution between lineages 2 and 4, showing
greater frequency in lineage 2 (see Fig. 1).
Apart from Rv0197, a further two variant-based

GWAS SNPs were identified (recF and argJ), however
both are synonymous variants. These may be examples of
background variants ‘hitchhiking’ alongside causal vari-
ants, or may play a biological role. Notably, a number of
identified loci are potentially involved in molybdenum co-
factor biosynthesis; Rv3115-moeB2, moeX [41], and
Rv0197 (mycobrowser: Gene Ontology: molybdenum ion



Table 3 Significant associations between genomic variants and drug resistance phenotypes identified by variant-based GWAS

Variant
Locus

Variant
Position

Type Known Phenotype
Association [13]

Lineage Observed Phenotype Association (p-value) PhyC

rrs 1,473,246 inter STM, AG 2 CAP(2 × 10−31), KAN(1.1 × 10−37) 8

rrs 1,473,246 inter STM, AG 4 KAN(6.7 × 10−31) 15

rrs 1,473,246 inter STM, AG 2 + 4 AMK(2.4 × 10−39), CAP(3.9 × 10−48), KAN(6.5 × 10−69), XDRvMDR(5.3 × 10−27) 18

katG 2,155,168 NS INH 2 XDR(2.1 × 10− 42) 5

katG 2,155,168 NS INH 4 INH(6.1 × 10−65), MDR(6 × 10−45), XDR(1.5 × 10−29) 9

katG 2,155,168 NS INH 2 + 4 INH(4.4 × 10–56), MDR(7.4 × 10−25) 9

Rv0197 232,574 NS Novel 4 XDR(9.5 × 10−62) 0

Rv0197 232,574 NS Novel 2 + 4 XDR(232,574;3.8 × 10−51) 0

rpoB 761,155 NS RMP 2 XDR(3.5 × 10− 25) 4

rpoB 761,155 NS RMP 4 MDR(1.2 × 10−27), PZA(1.9 × 10−28), RMP(2.6 × 10− 42, 7.1 × 10−31, 761,139;3.4 ×
10−23), XDR(3.8 × 10− 57)

7

rpoB 761,139 NS RMP 4 RMP(3.4 × 10−23) 3

rpoB 761,155 NS RMP 2 + 4 MDR(5 × 10−23), PZA(6 × 10−26), RMP(2 × 10−38), XDR(1.3 × 10− 27) 7

rpoB 761,139 NS RMP 2 + 4 PZA(4 × 10− 23), RMP(2.2 × 10−29), 7

recF 4047 S Novel 4 XDR(1.2 × 10− 52) 0

recF 4047 S Novel 2 + 4 XDR(8.6 × 10−41) 0

Rv1482c-
fabG1

1,673,425 inter INH, ETH 4 INH(1.1 × 10−36) 3

Rv1482c-
fabG1

1,673,425 inter INH, ETH 2 + 4 INH(1.1 × 10− 35) 14

rpsL 781,687 NS STM 2 STM(3 × 10−27) 4

rpsL 781,687 NS STM 2 + 4 STM(6.3 × 10−28) 6

argJ 1,867,614 S Novel 2 + 4 XDR(6.9 × 10−26) 0

gyrA 7570 NS FQ 4 XDR(8.6 × 10−23) 24

gyrA 7582 NS FQ 2 + 4 CIP(1.3 × 10−24), FQ(4.6 × 10−22) 44

(p-values < 1E-22) NS = non-synonymous, S = synonymous, inter = intergenic region. Novel associations are given in bold. ‘PhyC’ column refers to the number of
associations identified through PhyC analysis for the locus and lineage in question; AMK = Amikacin-resistance, AG= Aminoglycoside-resistance, CAP = Capreomycin-
resistance, CIP = Ciprofloxacin-resistance, EMB = Ethambutol-resistance, ETH = Ethionamide-resistance, FQ = Fluoroquinolone-resistance, INH = Isoniazid-resistance,
KAN = Kanamycin-resistance, MDR =Multidrug-resistant, OFL = Ofloxacin-resistance, PAN = pan-susceptible (no known drug-resistance), PZA = Pyrazinamide-resistance,
RMP = Rifampicin-resistance, STM = Streptomycin-resistance, XDR = Extensively drug-resistant
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binding) (Mycobrowser). Molybdenum cofactor is found
in molybdenum enzymes, which are responsible for a
number of functions from dormancy regulation to energy
source metabolism [41, 42]. Interestingly, these three loci
were each identified by a different analyses type;
variant-based GWAS, locus-based GWAS and PhyC, re-
spectively. Functional studies may be useful in providing
further insight into the role of variants identified here.
Recognizing that drug resistance phenotypes may be

subtly different, depending on the genetic background of
the strain, could be important and might relate directly to
drug resistance, or to fitness more broadly, such as
through increased virulence and transmission. With the
recognition of XDR transmission [36, 43], our study sug-
gests that further critical information on lineage and
transmission clustering (obtained from the genome se-
quence) would also be important to determine the full im-
pact of specific mutations, that might lead to further
phenotypic descriptions related to transmission, virulence
and degree of drug resistance.
The results show the differing evolutionary insights of-

fered by locus- and variant-based GWAS, and
convergence-based methodologies. Both variant-based and
locus-based GWAS led to unique loci being identified. The
rrs locus was found in lineage 2 only locus-based GWAS
analyses, but for both variant-based GWAS and PhyC ana-
lyses, rrs was identified in both lineage-specific and
lineage-combined analyses. Neutral variation within the rrs
gene may be diluting the signal from causal drug resistance
variants in the lineage 4 locus-based GWAS analysis.
inhA was not identified by variant-based GWAS or

PhyC, only lineage 4 specific locus-based GWAS. A
sub-type of the Portuguese Lisboa (lineage 4) strain is
known to have inhA markers involved in isoniazid resist-
ance [44], and a different mechanism to other lineages.
Whilst inhA was not identified by lineage-combined
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Fig. 3 Locus maps showing variant-based GWAS results (on the left y-axis) and variant frequency (on the right y-axis): a lineage 2 ethambutol
analysis for embB; b lineage 4 ethambutol analysis for embB; c lineage2 XDR analysis for pncA; d lineage 4 XDR analysis for pncA; e lineage 2
streptomycin analysis for gid; f lineage 4 streptomycin analysis for gid
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GWAS, it is notable that Rv1482c-fabG1 and katG were;
both these loci also play a role in isoniazid resistance, sug-
gesting different mechanisms of resistance to these drugs
between lineage 2 and lineage 4.
In cases where drug resistance is driven by rare vari-

ants and genetic heterogeneity exists within a single
gene, such as in pncA, where multiple alleles can cause
pyrazinamide resistance, locus-based analyses may be
more powerful. Indeed, pncA was identified here by
locus-based GWAS but not variant-based GWAS.
Convergence-based PhyC analysis seems to have greater
sensitivity in combined-lineage analyses. Unlike GWAS, the
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success of PhyC in detecting antimicrobial resistance
associated variants is determined by the magnitude of
convergent evolution within the Mtb population
under question [19]. Indeed, there were important dif-
ferences between the GWAS and PhyC results out-
lined here. These differences might provide insight
into the relative importance of within patient evolu-
tion of antimicrobial resistance versus transmission of
antimicrobial resistant strains. In instances where a
mutation is highly transmissible and consequently in-
creases in frequency with only one or few mutation
events, it might be expected that GWAS would be a
more powerful analytical tool, due to the lack of
convergent-evolution.
It is notable that lineage 2 had a smaller sample size

than the lineage 4 dataset, this may contribute to the
greater sensitivity in lineage 4 specific analyses. In order to
assess the extent to which the lower significance levels in
the lineage 2 GWAS were as a result of smaller sample
size in comparison to lineage, it would be interesting to
repeat the GWAS analyses with a larger and perhaps more
geographically spread lineage 2 dataset. Additionally, stat-
istical power is potentially limited in the current analyses
by low resolution phenotypic data, with not all drugs
tested on all samples, primarily due to second line drugs
only being tested where there is multidrug resistance. For
example, for lineage 2 there were only 8 resistant and 120
susceptible isolates for moxifloxacin. Despite this, the
most significant gene-based GWAS result for lineage 2
was for gyrA, identified in relation to moxifloxacin resist-
ance, showing the sensitivity of the method. Nevertheless,
to identify variants with smaller effect sizes, increased
phenotypic resolution may prove useful. Further work
could explore the use of minimum inhibitory concentra-
tion values, where available, being incorporated into resist-
ance phenotypes.

Conclusions
In summary, GWAS and PhyC are sensitive, robust and
complementary methodologies in examining evolution
of antimicrobial resistance in Mtb. Within GWAS ana-
lyses, locus-based and variant-based approaches are
both useful and complementary, as are lineage-
combined and lineage-specific analyses. These different
methodological approaches can be used to detect differ-
ent evolutionary dynamics and thus their similarities
and differences are informative. Evidence presented
here suggests the importance of lineage- specific paths
of evolution towards drug resistance in Mtb. It will be
interesting to see how methodologies outlined here
might apply to other Mtb lineages and other pathogen
species in an anti-microbial resistance context, or in-
deed in relation to other phenotypes of interest such as
transmissibility.
Methods
Isolates, phenotypic methods, sequencing and variant calling
The raw sequence data used here (n = 4408) form part
of a subset of a larger dataset (n = 6465), which repre-
sents multiple populations from different geographic
areas (see Additional file 9), and is described elsewhere
[13]. In particular, only lineages 2 (n = 702) and 4 (n =
3706) from the larger dataset are used, with additional
phenotypic data for the samples collected in Portugal.
Drug resistance phenotypes were available for amikacin,
capreomycin, ciprofloxacin, ethambutol, ethionamide,
isoniazid, kanamycin, moxifloxacin, ofloxacin, pyrazina-
mide, rifampicin, streptomycin, resistance to any fluoro-
quinolone; levofloxacin, moxifloxacin, ciprofloxacin or
ofloxacin (FQ), resistance to any of the aminoglycosides;
kanamycin, amikacin, or streptomycin (AG), combined
isoniazid and rifampicin resistance, but not XDR
(MDR), MDR plus resistance to a fluoroquinolone (cip-
rofloxacin, levofloxacin, moxifloxacin) and to a second
line injectable (amikacin, kanamycin, capreomycin)
(XDR), and pan-susceptible, susceptibility to rifampicin
and isoniazid plus no other known resistance (PAN).
Isoniazid, rifampicin, ethambutol, streptomycin and
pyrazinamide are first-line drugs. Amikacin, capreomy-
cin, ofloxacin, para-aminosalicylic acid, moxifloxacin
and cycloserine are second-line drugs. Samples found
to be MDR, underwent testing for second-line drugs.
Para-aminosalycylic acid, levofloxacin, rifabutin and
cycloserine resistance phenotypes were excluded from
analyses due to lack of data. Where present, levoflox-
acin data was used in defining the aggregate pheno-
types of FQ; however, there was not enough
levofloxacin phenotypic data to use in individual
drug-resistance analyses.
All samples underwent Illumina sequencing generating

paired-end reads of at least 50 bp with at least 50-fold
average genome coverage. The raw sequence data were
aligned to the H37Rv reference genome (Genbank acces-
sion number: NC_000962.3) using the BWA mem algo-
rithm [45]. The SAMtools/BCFtools [46] and GATK
[47] software was used to call SNPs and small insertions
or deletions (indels) using default options. The overlap-
ping set of variants from the two algorithms was
retained for further analysis. Alleles were additionally
called across the whole genome (including SNP sites)
using a coverage-based approach [16, 28]. A missing call
was assigned if the total depth of coverage at a site did
not reach a minimum of 20 reads or none of the four
nucleotides accounted for at least 75% of the total cover-
age. The final dataset consisted of 157,726 SNPs, 2926
insertions and 5998 deletions across the 4408 isolates.
Monomorphic variants within each of the three datasets
(‘lineage 4-specific’, ‘lineage 2-specific’ and ‘lineages 2
and 4 combined’) were removed.



Oppong et al. BMC Genomics          (2019) 20:252 Page 13 of 15
Phylogenetic tree and PhyC
Sublineage was assigned based on SNPs (see Additional file 10).
PCA was conducted on the pairwise variant distance matrix
for lineages separately and combined. A maximum likeli-
hood phylogenetic tree was constructed for the 157,726
SNP sites present in lineages 2 and 4 isolates using ExaML
[48] using the standard model and rooted with M. canettii
as the outgroup. The ITOL v3 tool was used for visualisa-
tion [49]. PhyC [19] analysis was performed using an
in-house pipeline as described by Phelan et al. (2016) [16] .
A significance cut-off of < 10− 3 was applied, and this
threshold was established based on permutation analysis.

Association analyses
Genome wide association study (GWAS) analyses were
performed using GEMMA software [50]. The general pa-
rameters were; default missingness (< 0.05) and a minor
allele frequency cut-off of 0.001. Kinship matrices were
used to account for relatedness. Analyses were performed
based on SNPs and short indels (range: 1 to 70 bp) (“var-
iant-based”); and mutations aggregated over coding and
intergenic loci (“locus-based”). For coding loci, only
non-synonymous variants were aggregated. A linear mixed
model was used for both types of analysis, and a likelihood
ratio test was used to assess statistical significant of the
variants and loci. Each analysis considered a different drug
susceptibility phenotype, namely: amikacin resistant
(AMK) vs. non-amikacin resistant, AG resistant vs.
non-AG resistant, capreomycin resistant (CAP) vs.
non-capreomycin resistant, ciprofloxacin resistant (CIP)
vs. non-ciprofloxacin resistance, ethambutol resistant
(EMB) vs. non-ethambutol resistant, ethionamide resistant
(ETH) vs. non-ethionamide resistant, isoniazid resistant
(INH) vs. non-isoniazid resistant, kanamycin resistant
(KAN) vs. non-kanamycin resistant, moxifloxacin resistant
(MOX) vs. non-moxifloxacin resistant, ofloxacin resistant
vs. non-ofloxacin resistant (OFL), pyrazinamide resistant
(PZA) vs. non-pyrazinamide resistant, rifampicin resistant
(RMP) vs. non-rifampicin resistant, streptomycin (STM)
vs. non-streptomycin resistant, FQ vs. non-FQ, MDR vs.
PAN (“MDR”), XDR vs. PAN (“XDR”) and XDR vs. MDR
(“XDRvMDR”). Analyses were performed with lineage 4
only (n = 3706), lineage 2 only (n = 701, after removing 1
outlier identified by PCA) and lineages 2 and 4 combined.
Analyses were repeated accounting for different numbers
of principal components, from 0 to 5, to assess the effects
on significance. A significance threshold of < 10− 21 based
on permutation.
All statistical analyses, including PCA, were performed in

R software (r-project.org) and its qqman package [51] was
used to construct Manhattan plots and quantile-quantile
(qq)-plots. Pairwise variant distance between isolates was
calculated in R [52], using absolute distance between iso-
lates including all variants for lineage 2 and lineage 4.
Additional files

Additional file 1: Variant Summary Tables, Summary tables of variants
called in comparison to the H37rv reference, with monomorphic variants
removed for each dataset. a Total numbers of variants by lineage; b
Number of variants per sample; c Non-reference variant frequency summary;
variants called in comparison to the H37rv reference. (PPTX 39 kb)

Additional file 2: Non-reference variant frequency histogram, A histogram
showing log10(frequency + 1) of non-reference alleles compared to the
H37rv reference for a lineage 2 and b lineage4. (PPTX 69 kb)

Additional file 3: Population diversity within investigated strains, a
Principal component 1 (PC1) by principal component 2 (PC2) for lineage
2, The first 10 principal components account for 71.9% of the variation in
lineage 2; b Distance plot for lineage 2 showing pairwise number of
variant differences between samples; c Principal component 1 (PC1) by
principal component 2 (PC2) for lineage 4, the first 10 principal components
account for 88.9% of the variation in lineage 4. d Distance plot for lineage
2 showing pairwise number of variant differences between samples.
(PPTX 5650 kb)

Additional file 4: Scree plots for the principal component analyses,
Scree plots showing the proportion of variation accounted for by the first
ten principal components, calculated for the pairwise distances within a
lineage 4 and b lineage 2. (PPTX 142 kb)

Additional file 5: Drug-resistance phenotype frequency table,
Drug-resistance phenotype frequency table by lineage. ‘Totals’ shows the
number and percentage of each lineage with a known drug-resistance
phenotype. (PPTX 45 kb)

Additional file 6: Cross-resistance phenotype table, Cross-Resistance
Table upper diagonal shows proportion of samples phenotyped for both
vertical and horizontal phenotype, that test positive for vertical pheno-
type. Diagonal shows number of samples with each phenotype. Lower
diagonal shows number of samples with phenotype for both horizontal
and vertical phenotype. (PPTX 45 kb)

Additional file 7: Variant Position Table, Table detailing variants at all
positions with at least one non-synonymous variant found to be significantly
associated with a phenotype in any of the variant-based analyses.
(PPTX 52 kb)

Additional file 8: Locus Comparison Table, Locus comparison table
showing which analyses and in which lineage each loci was identified.
An ‘x’ indicates a locus which was not identified by the method of analysis
in question. Loci without a known association with the phenotype are
highlighted in bold. (PPTX 44 kb)

Additional file 9: Study frequency table, Study frequency table, showing
numbers and percentage of strains from each study by lineage. (PPTX 40 kb)

Additional file 10: Sublineage frequency table, Numbers and percentage
by lineage assigned to each sublineage. (PPTX 36 kb)
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