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Abstract

C. elegans models of neurodegenerative disease.

elegans

Background: Accumulation of protein aggregates are a major hallmark of progressive neurodegenerative disorders
such as Parkinson’s disease and Alzheimer's disease. Transgenic Caenorhabditis elegans nematodes expressing the
human synaptic protein a-synuclein in body wall muscle show inclusions of aggregated protein, which affects
similar genetic pathways as in humans. It is not however known how the effects of a-synuclein expression in C.
elegans differs among genetic backgrounds. Here, we compared gene expression patterns and investigated the
phenotypic consequences of transgenic a-synuclein expression in five different C. elegans genetic backgrounds.

Results: Transcriptome analysis indicates that a-synuclein expression effects pathways associated with nutrient storage,
lipid transportation and ion exchange and that effects vary depending on the genetic background. These gene
expression changes predict that a range of phenotypes will be affected by a-synuclein expression. We confirm
this, showing that a-synuclein expression delayed development, reduced lifespan, increased rate of matricidal
hatching, and slows pharyngeal pumping. Critically, these phenotypic effects depend on the genetic background
and coincide with the core changes in gene expression.

Conclusions: Together, our results show genotype-specific effects and core alterations in both gene expression
and in phenotype in response to a-synuclein expression. We conclude that the effects of a-synuclein expression
are substantially modified by the genetic background, illustrating that genetic background needs to be considered in
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Background

Dementia is a growing global problem affecting large
numbers of people. The most common causes of dementia
are associated with neurodegeneration, such as that result-
ing from Alzheimer’s disease (AD) and Parkinson’s disease
(PD) [1-3]. These neurodegenerative dementias share
neuroanatomical and biochemical similarities and result
from protein misfolding. A major difficulty in determining
the mechanisms that produce neurodegenerative dementia
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is that the underlying cellular-level pathology varies greatly
among patients (reviewed in [4, 5]). These differences in
pathology allow for genome-wide association studies
(GWAS) of PD patients, identifying genetic risk-variants
and demonstrate the complex genetic architecture of neu-
rodegenerative dementia [6-8].

Model organisms, such as the nematode Caenorhabditis
elegans, are of great value for studying neurodegenerative
diseases [9-13]. This is due to their experimental tract-
ability and to the broad and general conservation of
genetic pathways across species. Importantly, C. elegans
allows for sophisticated genome-wide genetic screens,
which are much less complex than similar studies on
mammals. In C. elegans, most of these screens have
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sought to identify loci that represent potential candidate
diagnostic and therapeutic targets, or to understand the
underlying pathological processes. For example, analysis
of transgenic C. elegans expressing the human amyloid-3
peptide — the main component of the amyloid plaques
found in AD - linked toxicity to insulin/insulin-like
growth factor (IGF), dietary restriction and the heat shock
response [9, 10, 12, 14-16]. Similarly for PD, analysis of
worms expressing a-synuclein identified associations with
ageing and insulin-like signalling [17] and with autophagy
and lysosomal function [18].

Most C. elegans studies are however limited to the
canonical Bristol N2 genetic background, and therefore
do not provide insight into how genetic variation be-
tween individuals might affect disease-associated traits.
This is a major issue as it is clear, both specifically in C.
elegans (e.g. [19-22]) and more generally in other sys-
tems [23-25], that the phenotype of any given mutation,
transgene or allele can vary depending on the genetic
background [26]. For C. elegans, natural genetic variation
is known to result in extensive phenotypic variation (e.g.
[27, 28], and see [29, 30] for reviews for older studies) and
differentially affects both the proteome [31, 32] and tran-
scriptome [22, 31, 33—37]. Therefore, only studying muta-
tional effects in a single genetic background biases our
understanding of disease phenotypes, and represents a
missed opportunity to elucidate disease mechanisms.

Exemplifying this pattern of a reliance on a single gen-
etic background, only one study has, to date, looked at
protein misfolding disease in multiple wild isolate genetic
backgrounds of C. elegans [38]. Crucially, this showed that
natural genetic variation can uncouple different pheno-
typic effects of polyglutamine (polyQ40) expression [38].
This strongly suggests that similar important variation be-
tween genetic backgrounds will be found for other protein
misfolding diseases. Given that for protein misfolding
diseases the nature of the modifying alleles segregating
within human populations remain largely elusive [39], the
experimental tractability of C. elegans in combination with
genetic variation makes the species an excellent system in
which to address this issue.

In C. elegans, expression of an a-synuclein and yellow
fluorescent protein (YFP) fusion in the body wall muscle
results in an age-dependent accumulation of inclusions
[17]. These inclusions of a-synuclein form aggregates in
aging worms that are similar to the pathological inclusions
seen in humans with PD [17]. This therefore represents an
appropriate model of a-synuclein toxicity [40]. To investi-
gate the effect of genetic background on the consequences
of a-synuclein expression, we have created introgression
lines (ILs) containing this a-synuclein and YFP transgene in
the background of four wild isolates of C. elegans. Our ana-
lyses of these new ILs, and of a-synuclein in an N2 genetic
background, identify both general and genotype-specific
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changes in gene expression. These changes predict a range
of phenotypic effects that we then experimentally confirm.
Importantly, given the reliance on N2 in C. elegans re-
search, we show both that some effects are N2-specific
and that for other phenotypes the analysis of other genetic
backgrounds uncovers substantial variation not seen in N2.
Our approach therefore evaluates how genetic background
conditions transgene effect(s), and specifically illus-
trates how the consequences of ectopic overexpression
of a-synuclein depends on genetic background.

Results

Introgression line construction and validation

We introgressed the pkls2386 transgene [unc-54p:a-sy-
nuclein:YFP + unc-119(+)] from NL5901 [17], which has
an N2 genetic background, into the genetically divergent
wild isolates JU1511, JU1926, JU1931, and JU1941 (see
[35] for information on genetic distance between these
lines). The pkls2386 transgene results in «-synuclein
expression in the body wall musculature and the vulval
muscles. After back-crossing and selfing, four new ILs
were obtained, SCH1511, SCH1926, SCH1931, and
SCH1941, with for example, SCH1511 containing the
transgene in a JU1511 background. In combination with
N2 and NL5901 as controls, we were therefore able to in-
vestigate the phenotypic and genomic effects of a-synuclein
in five genetic backgrounds (N2, JU1511, JU1926, JU1931,
and JU1941). An additional IL, SCH4856, was subsequently
created in which the transgene has been introgressed into a
CB4856 background. SCH4856 was used to test for the
effects of N2 alleles (see below).

We sought to identify the site of the introgression and
to determine how much of the N2 genome surrounding
the transgene had also been introgressed into the wild
isolates. PCR-based genotyping located the transgene in
chromosome IV, indicating that the homozygous intro-
gressions in the new ILs spanned between 4.2 and 13.2Mb
of chromosome IV (Additional file 1). By using the set of
genetic markers from Volkers et al. [35], we identified
significantly differential expressed genes on chromo-
some IV of the a-synuclein lines, and also identified an
additional introgression on chromosome V in SCH1931
(Additional file 2). PCR-based genotyping together with
the transcriptomic analysis indicated a consistent gen-
omic location for the a-synuclein transgene in each of
the genetic backgrounds, but did not allow detection of
the precise introgression boundaries.

Transcriptome effects of the a-synuclein introgression
depend on the genetic background

The effects of a-synuclein expression on gene expression
was measured in five different genetic backgrounds, with
three biological replicates per genotype (see Additional file 3
and ArrayExpress accession E-MTAB-6960 for details).
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Analysis of genome-wide transcriptional changes in the
a-synuclein expressing worms indicated that there were
differences in developmental rate between the ILs. Vari-
ation between ILs in developmental rate was also ob-
served during IL construction. We therefore estimated
the age of the samples by their gene expression profile
(as in [41, 42]) and used principal component analysis
(PCA) on genome-wide expression levels to investigate
differences between isolates and the effects of a-synuclein.
This analysis revealed separation between the wild isolates
and their corresponding transgenic ILs (Fig. 1a). Although
genotypes were more scattered on these first two PCA axes,
this indicated that developmental delay and reduced
lifespan were associated with the introgressed a-synuclein
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Fig. 1 Gene expression varies with genetic background in C elegans ILs
constitutively expressing a-synuclein. a Principal component analysis on
gene expression differences, with genotypes represented by shape and a-
synuclein (aS) expressing ILs indicated with a black point. Estimated age
difference is shown by the colour gradient. Here, developmental age was
determined based on the expression levels of class | age responsive genes
from Snoek et al. [41], which show a linear increase in expression during
development between 46 and 54 h. This indicated a maximum
developmental difference of a 2.5 h between genotypes. b Venn diagram
of differentially expressed genes that are specific to aS, Genotype, Age

and aS x Genotype including both induced and repressed genes
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transgene (Fig. 1a). A large part of the global gene expres-
sion differences are therefore explained by slower develop-
ment in the a-synuclein lines. Hence, many of the genes
identified as responding to a-synuclein in the different
backgrounds were likely to be associated with their differ-
ential age. Using a threshold of -log10(p) > 3.4 (FDR < 0.05)
we found 3521 genes affected by Age, 1509 affected by
Genotype, 646 by a-synuclein and 428 by an interaction
between Genotype and a-synuclein (Fig. 1b, Add-
itional file 4). Genes affected by a-synuclein or the
interaction between a-synuclein and age were most
often also affected by genotype. The overlap among these
four factors yielded 78 genes highly specific for a-synuclein
relative to both Age and Genotype (Additional file 4). This
showed that both genotype-specific and universal (genotype
independent) changes in gene expression were induced by
a-synuclein expression, i.e. we identified a core set of genes
of which the expression was altered in all genetic back-
grounds and others that were genotype-specific. Strikingly,
many genes were not expressed and/or regulated in the
same way in wild isolate genetic backgrounds compared
with N2. These data therefore indicate that the transcrip-
tome effects of the a-synuclein introgression depend on the
genetic background.

Gene expression enrichment analysis

Gene ontology analysis (GO) of differentially expressed
genes revealed the molecular, cellular, and biological
processes affected by development, a-synuclein and gen-
etic background (Table 1, with full results in Additional
file 4). Genes that change expression in response to gen-
etic background were enriched for genes involved in the
innate immune response and oxidation-reduction process
(Additional file 4) as was previously found by [35]. Wide-
spread changes in genes related to muscle function were
observed (Table 1), an expected response given the
changes in cellular environment induced by expression
of a-synuclein in the body wall muscle. This analysis
also identified changes in genes involved in pharyngeal
pumping (Table 1).

As expected there were also changes in various path-
ways associated with cellular stress responses (Table 1),
and protein homeostasis (Additional file 4). Taking the
effect of both a-synuclein and age into consideration,
genes associated with metabolic processes, transporters
of ions and lipids, and kinase activities for ATP were
enriched (Additional file 4).

Phenotypic effects of a-synuclein expression vary among
genetic backgrounds

Expression of a-synuclein slows development in some
genetic backgrounds

Gene expression analysis indicated that a-synuclein lines
were developmentally delayed. To test this directly, we
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Table 1 The top-20 enriched GO-terms with 5 or more genes with an a-synuclein effect

GO_ID Description All Genes  a-synuclein Genes  Type p-value  adjusted p
GO:0005576  extracellular region 329 54 CcC 3.99E-06 8.29E-04
G0:0030246  carbohydrate binding 288 48 MF 8.12E-06 1.13E-03
GO:0005861  troponin complex 8 5 CcC 121805  1.26E-03
GO:0055120  striated muscle dense body 93 21 CcC 1.77E-05  1.48E-03
GO:0045087  innate immune response 300 47 BP 5.16E-05 3.06E-03
GO:0010332  response to gamma radiation 10 5 BP 7.77E-05  3.59E-03
GO:0006869  lipid transport 26 8 BP 2.74E-04  1.12E-02
G0O:0098869  cellular oxidant detoxification 52 12 BP 5.12E-04  1.29E-02
GO:0030017  sarcomere 22 7 cC 4.10E-04  1.29E-02
GO:0006936 muscle contraction 17 6 BP 393E-04 1.29E-02
G0O:0016810  hydrolase activity acting on carbon-nitrogen (but not peptide) bonds 13 5 MF 5.02E-04  1.29E-02
GO:0071949  FAD binding 18 6 MF 594E-04 1.37E-02
GO:0008652  cellular amino acid biosynthetic process 20 6 BP 1.238-03  2.57E-02
G0O:0043050  pharyngeal pumping 16 5 BP 1.85E-03  2.96E-02
G0O:0016787  hydrolase activity 818 9% MF 2.24E-03  345E-02
GO:0016311  dephosphorylation 63 12 BP 336E-03  3.49E-02
G0:0030170  pyridoxal phosphate binding 48 10 MF 2.88E-03  3.49E-02
GO:0031430 M band 28 7 CcC 246E-03  3.49E-02
G0O:0003993  acid phosphatase activity 28 7 MF 246E-03  3.49E-02
G0O:0099132  ATP hydrolysis coupled cation transmembrane transport 23 6 BP 3.08E-03  3.49E-02

CC cellular component, MF molecular function, BP biological process

scored development time, i.e. the time to the first ap-
pearance of eggs. Analysis of these data indicated that
development was affected by a-synuclein (aS, p < 2e-8),
genetic background (Genotype, p < 2e-8) and the inter-
action between a-synuclein and genetic background (aS
x Genotype, p <0.0002). In most a-synuclein expressing
lines development was delayed compared to the corre-
sponding wild isolate (Fig. 2a), with SCH1941 and
SCH1926 showing significantly longer larval develop-
ment time periods than the corresponding wild type
controls (p <le-6, and p <0.008 for SCH1941 and
SCH1926, respectively) (Fig. 2a).

As found in the phenotypic assay, the transcriptomic
samples of the a-synuclein lines were estimated to be
younger than the corresponding wild isolate and so
showed delayed development (Fig. 2b, ANOVA model
Estimated_Age ~ aS*Genotype; aS p <6e-5), which was
independent of the genetic background (Genotype, p =
0.72) and of the interaction between a-synuclein and
genetic background (aS x Genotype, p =0.84). Compar-
ing the WT and a-synuclein lines for each individual
line showed that SCH1931 and JU1931 again displayed
the smallest developmental difference as found in the
phenotypic assay. Overall, we therefore conclude that
the a-synuclein introgression had a genotype-specific
impact, differentially decreasing the developmental rate
in each genetic background.

Expression of a-synuclein decreases pharyngeal pumping
rate in some genetic backgrounds

Given the observation of differential expression of genes
with a function in pharyngeal pumping (Table 1), we
measured pharyngeal pumping rate in all lines 48 and 72
h after recovery from L1 arrest (Fig. 3). No significant
differences were seen at 48 h, but 72 h after recovery
from L1 arrest pharyngeal pumping was affected by
a-synuclein (aS, p <3e-16), by the genetic background
(Genotype, p <3e-10) and by the interaction of
a-synuclein with genetic background (aS x Genotype,
p <0.004; Fig. 3b). At this point, the pharyngeal pumping
rate at 72 h in the a-synuclein expressing lines had slowed
down compared to their corresponding wild isolate
(Fig. 3b; N2 p =0.93; JU1511 p < 5e-4; JU1926 p < 2e-5;
JU1931 p = 0.54; JU1941 p < 1e-8). These data therefore
indicated that the presence of an a-synuclein introgression
had a noticeable genotype-specific impact on pharyngeal
pumping rate. As pumping rate primarily reflects pharyngeal
muscle activity, a tissue in which the a-synuclein transgene
is not expressed, these changes reflect an indirect systemic
effect of a-synuclein expression.

Expression of a-synuclein decreases movement in some
genetic backgrounds

Given the site of a-synuclein expression and the detec-
tion of changes in the expression of genes involved in
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Fig. 2 Development time varies with genetic background in C. elegans ILs constitutively expressing a-synuclein. a Boxplot of development
measured by time until first egg-laying showing developmental delay of a-synuclein expressing lines and variation between genotypes (ANOVA:
as effect p < 2e-8; Genotype p < 2e-8; aS x Genotype Interaction p < 0.0002; Tukey HSD: N2 p =0.96; JU1511 p = 0.88; JU1926 p < 0.008; JU1931
p =098; JU1941 p < 1e-6, with significant differences between genotypes indicated by the stars). b Scatterplot of the relation between estimated
age at transcriptomics sampling and the development time. Estimated age difference was determined based on the expression levels of class |
age responsive genes from Snoek et al. [41], which show a linear increase in expression during development between 46 and 54 h. The points
represent the mean and the lines indicate the standard error

muscle structure and function (Table 1) we tested for
differences between lines in movement. Here, we assayed
movement of worms in liquid (Fig. 3c). These data indi-
cate that N2 and NL5901 show similar movement rates
and that the a-synuclein expressing lines expression
show reduced activity in comparison to their corre-

genotype-specific impact, likely a direct consequence of
a-synuclein expression in the body wall muscles.

Expression of a-synuclein decreases lifespan in some
genetic backgrounds
Given the age-related changes in pharyngeal pumping

sponding wild isolate. These data therefore indicate that
the presence of an a-synuclein introgression produces a

rate and enrichment of genes associated with aging and
stress response pathways in response to a-synuclein
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expression, we hypothesised that the introgressed o-sy-
nuclein transgene could affect longevity. Therefore, we
measured lifespan in all lines (Additional file 5). Compari-
son of N2 and NL5901 (a-synuclein in an N2 background)
showed that lifespan was not affected by a-synuclein ex-
pression in the N2 genetic background (Fig. 4; N2 log-rank
p =0.14, mean age p =0.99). However, in the other genetic
backgrounds, lines containing the a-synuclein introgression
displayed significantly accelerated death (Fig. 4a) and a
shortened lifespan (Fig. 4b), a global effect of a-synuclein
expression on animal physiology and function. These data
also indicated that the a-synuclein introgression in the wild
isolate genetic backgrounds resulted in increased rates
of maternal hatching (bagging) (Additional file 6, Fig. 5).
Given that the a-synuclein transgene is expressed in
the vulval muscles this result mirrors the direct effect
of a-synuclein expression on muscle function seen for
thrashing (Fig. 3c). These observations indicate that
a-synuclein expression lowers lifespan in some geno-
types, but not others.

Genetic background affects the outcome of a-synuclein
expression

Comparison of phenotypic effects across the genetic
backgrounds tested suggests that the phenotypes associ-
ated with the a-synuclein transgene introgression vary
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between genotypes in a consistent manner (Fig. 5). Mul-
tiple phenotypes were affected by a-synuclein in the
JU1511, JU1926, and JU1941 background, whereas they
were less affected in the JU1931 and N2 backgrounds.
This suggests a shared genetic component across many
of the phenotypes we have observed, but does also indi-
cate that there is genotype-specific variation, e.g. no pair
of lines shows the same pattern of phenotypic effects
(Fig. 5). These data also indicate that there are both local
effects — e.g. bagging and trashing, where effects can be
directly attributed to expression of a-synuclein in the
muscles — and global effects on the whole animal.

As alleles from different C. elegans backgrounds can
produce a range of synthetic deleterious effects resulting
in full or partially genomic incompatibilities between
their genomes [43, 44], we sought to test if the N2 re-
gion alone replicated the phenotypes we observed here.
We therefore introgressed the pkls2386 transgene into a
CB4856 genetic background, generating the SCH4856
line and undertook comparisons of this line with
CB4856 and CBN93, a line with an introgression of the
N2 genome spanning the 3.3-12.8Mbp region on
chromosome IV in an CB4856 background (Additional
file 1). This control was undertaken as deleterious inter-
actions between alleles from N2 and those from CB4856
are well characterized [43, 44]. Comparisons of pumping
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rate and of development time between these lines indi-
cated that the expression of a-synuclein in SCH4856
produced effects not seen in CBN93 (Fig. 6) and that
these effects mirror those seen in the other genetic back-
grounds. This provides strong support for the view that
the phenotypic effects we observe were a consequence
of a-synuclein expression and not the introgression of
the N2 region.

Discussion

We have introgressed a transgene that results in the ex-
pression of a-synuclein in the body wall and vulval mus-
cles into different genetic backgrounds of C. elegans.
Analysis of these newly created a-synuclein ILs indicates
that genetic background effects both the response of the
animals to a-synuclein expression at the level of gene
expression and in terms of the phenotypic consequences.
Further, this can be seen at both a local and global level,

with effects seen in traits associated with muscles in
which a-synuclein is expressed (bagging and thrashing)
and traits that represent a global, whole organism, ef-
fects (pumping, development rate and lifespan). Our
gene expression analysis identifies a range of changes
associated with a-synuclein expression. Many of these —
particularly those involved in muscle function and in
various stress responses — matched expectations given the
site of expression and the known effects of a-synuclein ag-
gregation on cellular function. We also identify changes in
lipid metabolism (Table 1 and Additional file 4), an im-
portant result given that this has been previously linked to
a-synuclein pathology in a yeast model [45] and that there
is evidence of a direct association between «-synuclein
and lipid droplets [46]. Changes in lipid levels of C. ele-
gans expressing a-synuclein in the muscles have previ-
ously been observed [47], our results therefore provide a
set of candidate genes to investigate how «-synuclein
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Fig. 6 Phenotypic effects observed in a CB4856 genetic background depend on a-synuclein expression rather than N2 alleles. Here comparisons
are made between N2 (N2 WT and AS) and CB4856 (CB4856 and IL AS) genetic backgrounds with and without the a-synuclein introgression and
with CBN93 (IL WT), a line with an introgression of the N2 genome spanning the 3.3-12.8Mbp region on chromosome IV in an CB4856
background. a A box-plot of the average pumping rate in 30 s of worms 48 and 72 h after recovery after L1 arrest, and b Time from recovery of
L1 arrest to first egg lay. The black dots represent outliers (outside two times the interquartile range). Letter codes denote lines that differ
significantly (p < 0.05)
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expression may mediate lipid metabolism. We also show
that such effects can be expected to vary across C. elegans
genetic backgrounds.

On a phenotypic level we found that, in comparison to
the corresponding wild isolates, the a-synuclein express-
ing lines: developed more slowly; suffered an increased
rate of decline in pharyngeal pumping; exhibited a
shorter lifespan; and died from matricidal hatching of
eggs at an increased rate. Similar phenotypic effects are
observed in other C. elegans models of protein misfold-
ing disease. For example, transgenic worms expressing
polyQ proteins and AP both show a significantly short-
ened lifespan [38, 48]. A reduced lifespan could there-
fore be a general toxicity phenotype, providing an
indirect measure of organismal dysfunction caused by
misfolded protein aggregations in the body wall.

Many of the phenotypic changes we see are either only
found in wild isolate genetic backgrounds or are more
pronounced in these backgrounds (Fig. 5). This demon-
strates that there is variation between isolates that ap-
pears to differently affect local and global consequences
of a-synuclein expression. Previously, only a single C.
elegans study has directly investigated the effect of gen-
etic background in the context of protein misfolding dis-
ease. That study found complex variation in polyQ40
aggregation and toxicity in three wild isolate back-
grounds and in a panel of 21 recombinant inbred lines
(RILs) [38]. The RIL analysis also showed that the vari-
ous effects of polyQ40 expression could be uncoupled
[38]. In this study, we also show some evidence that nat-
ural genetic variation in C. elegans can uncouple differ-
ent effects of a-synuclein expression (Fig. 5), suggesting
that this may be a general pattern.

A caveat with this interpretation is however that a
range of incompatibilities between alleles from different
C. elegans genomes have been identified [43, 44] and
that the region surrounding the site of the a-synuclein
transgene contains a number of mapped quantitative
trait loci affecting various life history traits. For example,
ILs with introgressed regions of chromosome IV from
CB4856 in an N2 genetic background have identified
QTLs affecting lifespan and pumping rate that partially
overlap our introgression [49]. Similarly, a complex
interaction between alleles from the N2 and CB4856
genomes has been found on chromosome IV [44]. How-
ever, little is known about the frequency of such syn-
thetic deleterious effects between other genotypes of C.
elegans. Proteomic analysis of age-dependent changes in
protein solubility by Reis-Rodrigues et al. [50] also indi-
cates that the genes encoding proteins that become in-
soluble with age are enriched for modifiers of lifespan.
Additionally, a heat-stress specific QTL for recovery [51]
as well as an eQTL-hotspot have been identified on the
left arm of chromosome IV (IV: 1.0-2.5 Mb) [36], while
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a QTL for maternal hatching rate is at the position of
the introgression (chromosome IV ~6M) [52]. That such
effects might alter disease-related processes complicates
the interpretation of both our results here and the previ-
ous work of Gidalevitz et al. [38]. To experimentally ad-
dress this caveat, we introgressed the «o-synuclein
transgene into a CB4856 genetic background and under-
took comparisons with a line that contains a comparable
region of the N2 genome, but no transgene, in a CB4856
background. These comparisons indicated that the N2
introgression alone does not recapitulate the phenotypic
effects seen in the a-synuclein expressing line (Fig. 6).
As these comparisons again show that the expression of
a-synuclein in a CB4856 genetic background results in
different and more severe effects than those seen in an
N2 background, this strongly supports the view that
genetic background needs to be considered more gener-
ally when C. elegans is used as a disease model. A move
to the use of more defined modifications in a range of
genetic backgrounds that limited the introduction of
other alleles — perhaps via the use of CRISPR to intro-
duce the relevant transgenes — would therefore be ideal.
It would also be of interest to determine the extent to
which genotype-specific were observed in other models,
for example where a-synuclein is expressed in neurons
[45]. As there is extensive variation between isolates of
C. elegans in lifespan and in various stress responses and
in lifespan, and that variation has now been identified
for two protein misfolding diseases such a development
would facilitate the systematic analysis of the role of nat-
ural variation in such diseases.

Methods

C. elegans maintenance and growth conditions

Worms were maintained at 20°C on nematode growth
medium (NGM) plates seeded with Escherichia coli
OP50 [53] and all assays were undertaken at 20°C. As-
says were initiated using eggs isolated from gravid adults
treated with sodium hypochlorite and NaOH [54]. For
the microarray analysis of gene expression and for the
pharyngeal pumping assays, these synchronized eggs
were allowed to hatch on NGM plates seeded with E.
coli overnight at 20°C, i.e. these worms were not arrested
at the L1 stage. After 48 h, worms in all strains had
reached the L4 stage. For the lifespan, development, and
thrashing activity assays, the synchronized eggs were
hatched on NGM plates without E.coli, in order to ob-
tain synchronized L1 larvae. When they reach L4 stage,
these assay were then measured or setup will all lines.

C. elegans lines
The C. elegans wild types JU1511, JU1926, JU1931, JU1941,
CB4856 (Hawaii), canonical strain N2 (Bristol), and the
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transgenic strain NL5901, which contains the pkls2386
transgene [unc-54p:a-synuclein:YFP + unc-119(+)], were
obtained from the Caenorhabditis Genetics Center. To
introgress the a-synuclein:YFP transgene into the wild
backgrounds, NL5901 hermaphrodites were mated with
wild type males, then five to ten F1 fluorescent males were
mated with wild type hermaphrodites. Fluorescent males
were then isolated in the F2 progeny of this cross and used
to backcross to the relevant wild type. This backcrossing to
the wild type background was repeated until generation
F7 was reached. At this point, worms were allowed to
self-fertilise to obtain homozygotes lines and then cryo-
preserved. This crossing design was used to produce
the strains SCH1511, SCH1926, SCH1931, SCH1%41,
and SCH4856, with for example, SCH1511 containing
the transgene in a JU1511 background.

Five genetic backgrounds — N2, JU1511, JU1926,
JU1931, and JU1941 — were used to investigate the
phenotypic and genomic effects of a-synuclein expres-
sion. SCH4856 was used in separate assays to test the ef-
fect of N2 alleles surrounding the transgene integration
site. Here, comparisons were made to the CBN093 strain
which contains a comparable region of the N2 genome
introgressed into CB4856, but no transgene. CBN(093
was constructed by back-crossing WNO071 [55] with
CB4856. The strain was back-crossed followed by segre-
gation for 11 generations until a single homozygous
region on chromosome IV was obtained. Thereafter, the
strain was inbred for 11 generations and the genotype
confirmed by sequencing (SRP154243; https://www.ncbi.
nlm.nih.gov/sra) using the approach [56, 57].

IL genotyping

PCR-based genotyping

DNA was isolated from the lysates of 5 individual adults
from each line, and then was used for genotyping PCRs.
Genotyping primers utilized insertions/deletions be-
tween the CB4856 and N2 genomes, with 41 primer
pairs covering the genome used (see Additional file 1 for
details of primers and marker locations) [57]. PCR was
carried out with the GoTaq DNA polymerase kit (Pro-
mega) according to the manufacturer’s recommenda-
tions. The sizes of amplified products were assessed by
electrophoresis in 1.5% agarose gels stained with Eth-
idium Bromide. This allowed the size of the introgres-
sions to be determined, with these regions shown in
Additional file 1.

Hybridization markers

Marker genes found by DNA hybridizations in Volkers
et al. 2013 [35] were used to find the genomic position
of the a-synuclein introgression in each genetic back-
ground. We tested which genomic region was missing

Page 9 of 12

markers for the wildtype background, this region then
must be from the NL5901 background.

Sample preparations and RNA microarray analysis

mRNA microarrays

In total three independent replicates of the four JU
strains and their corresponding transgenic ILs, as well as
N2 and NL5901, were analysed. Worms were assayed at
48 h from egg isolation (see details above) and all strains
were at the L4 stage. Worms were therefore the same
chronological age, and at the same larval stage, but this
design would allow the detection of effects of genetic
background, a-synuclein expression and the interaction of
these effects on development. At this point worms were
generated by hatching alkaline hypochlorite-purified eggs
and then harvested by centrifugation, washed with M9
buffer, frozen in liquid N2, and stored at — 80 °C until use.
The Maxwell® 16 Tissue LEV Total RNA Purification Kit
was used for mRNA isolation, following the manufac-
turer’s protocol with a modified lysis step. In addition to
the lysis buffer, proteinase K was added and the sample
was incubated at 65°C while shaking at 1000 rpm for 10
min. Thereafter the standard protocol was followed. PolyA
RNA was used to generated Cy3 and Cy5-labeled cRNA
samples, which were then hybridized to 4X44K slides V2
(Agilent) C. elegans whole genome GeneChips, processed,
and scanned (full microarray data in ArrayExpress with
accession E-MTAB-6960). RNA microarray statistical
analysis and data processing were performed using the
Limma package for the R software environment [58].
To find the genes affected by a-synuclein, genotype and
age, these terms were used as explanatory factors in a
linear model (gene expression ~ age+aS * genotype).
Significance thresholds were determined by permutations of
all spots on the array. In the permutations, the RNA
hybridization intensities were randomly distributed over the
genotypes and batches. Therefore, the p-value that gave a
min ratio of false positives/true positives of 0.05 (=-
log10(p) > 3.4) was set for convenience, i.e. an FDR at 0.0186
for a-synuclein effect, 0.0249 for genotype effect and 0.073
for the interaction between a-synuclein and genotype.

Enrichment

Enrichments were done on genes groups divined by their
significance from the linear model a -loglO(p) >2 was
used, then a hyper geometric test in R was used to test
each GO term for enrichment.

PCA

To partition the variation in gene expression a PCA was
done on the transcription profiles (the log2 ratios with
the mean) of all samples. The first two axis were used
for visualisation.
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Age estimation

Age estimation of the worms sampled for transcripto-
mics was done by comparing the class I age responsive
genes from Snoek et al. [41], as done by van der Bent et
al. [42] and Jovic et al. [59]. These genes show a linear
increase during development between 46 and 54 h and
can therefore be used to estimate the relative differences
in development between samples/populations by their
transcriptomes. The a-synuclein expressing SCH lines
developed more slowly than the JU lines and none of the
lines had started moulting at 48 h, so there were no
adults on the plates.

Phenotypic assays

Lifespan

Nematodes were cultured on OP50 bacteria without
fluorouracil deoxyribose (FUdR) from synchronised L1
juveniles until young adults. When setting up the experi-
ment, in total 100 worms per strain were randomly se-
lected from the population and transferred onto 10
plates (i.e. each plate contains 10 worms). Then, they
were transferred away from their progeny every day dur-
ing the vigorous reproductive period and every other
day during the reduced reproductive period. From the
young adult stage, worms were examined for signs of life
daily. Individuals that were not moving or twitching after
gentle stimulation, followed by vigorous stimulation, or
that did not exhibit pharyngeal pumping for 30 s, were
considered dead. Individual worms that had died from
internal hatching of progeny (bagging), or that had
crawled off the plates, were censored from lifespan result
but were used for maternal hatching analysis. Two bio-
logical replicates were done for lifespan assay. Data ana-
lysis was performed in R using the ‘survival’ package.
The rates of bagging from these assays were also com-
pared to determine if this was affected by a-synuclein
expression.

Development time

Synchronised L1 juveniles were obtained by allowing
eggs to hatch in M9 buffer after three washes in M9
after hypochlorite treatment. Arrested Lls were then
transferred to NGM plates, which fed with E. coli OP50
and were incubated at 20°C. Tracking observations and
inspections were done at regular time intervals. Develop-
ment time was defined as the period between worm in-
oculation and the moment at which the first appearance
of eggs and the period until the reproductions reach
peak level. Three biological replicates were done for this
assay.

Pharyngeal pumping
To avoid the effect of short term starvation after inocu-
lation on pharyngeal pumping rate, synchronized eggs,
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isolated as described above, were allowed to hatch on
NGM plates with E.coli (t = 0 h). Individual worms were
then isolated and observed at the L4 stage (t = 48 h, day
2) and as young adults (t= 72 h, day 3). The number of
contractions in the terminal bulb of pharynx was
counted for 30 s (n =19 per genotype) for the L4s, and
for 60 s for 3 day-old worms (n =30 per genotype).
Three biological replicates were done for this assay.

Thrashing

Synchronized starved L1 juveniles were inoculated on
NGM plates with E.coli at 20°C. When N2 worms were
observed to have reached the L4 stage, worms were
transferred into the wells of a 96-well-plate, where each
well contained 50pl of M9 buffer [54]. Three biological
replicates were undertaken, with 10 worms per well for
3-5 wells per genotype in each of the replicates. Activity
was then measured in an 30 min period using a WMi-
croTracker (PhylumTech). Here, worm movements in
the wells are detected as they interfere with an array of
micro beams of infrared light and the number of inter-
ference events is counted — hence a higher score repre-
sents more activity.

Statistical analysis

Phenotypic differences between the lines were tested
using an ANOVA (model: phenotype~ aS * GB) to test
for overall effects and Tukey HSD to test for lines spe-
cific differences. Survival curves were tested by log-rank
test from the “survival” package in R.

Additional files

Additional file 1: Markers used in the genotyping of the a-synuclein ILs.
(XLSX 22 kb)

Additional file 2: A figure of gene expression markers across the
genome. Determination of the a-synuclein introgression in the four wild
isolate backgrounds. Marker genes with different expression between N2
and the wild isolates (All) were used to detect the a-synuclein introgression
and N2 border regions. The marker genes missing in the a-synuclein lines
indicate the N2 border regions and position of the a-synuclein introgression
(aS Missing). Different genetic backgrounds are indicated by the different
colours. The position(s) where all lines have missing markers show the likely
a-synuclein locus, the extra missing markers on chromosome V show a
possible extra introgression in SCH1931. (DOCX 201 kb)

Additional file 3: A matrix containing the microarray data and significance
values from the linear model (TXT 3344 kb)

Additional file 4: Gene ontology analysis (GO) of genes identified as
affected by Age, Genotype (GB), a-synuclein (aS) and the interaction
between genotype and a$, and the details of genes shown in Fig. 1b
including the p values and average log2 ratios with the mean per
genotype for the 78 genes highly specific for aS relative to both Age
and GB. (XLSX 246 kb)

Additional file 5: Lifespan assays in a-synuclein ILs and relevant wild
isolates. (TXT 2 kb)

Additional file 6: Rates of matricidal hatching in a-synuclein ILs and
relevant wild isolates. (TXT 574 bytes)
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