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Abstract

Background: Microglia are multifunctional cells that are key players in brain development and homeostasis. Recent
years have seen tremendous growth in our understanding of the role microglia play in neurodegeneration, CNS
injury, and developmental disorders. Given that microglia show diverse functional phenotypes, there is a need for
more precise tools to characterize microglial states. Here, we experimentally define gene modules as the
foundation for describing microglial functional states.

Results: In an effort to develop a comprehensive classification scheme, we profiled transcriptomes of mouse microglia
in a stimulus panel with 96 different conditions. Using the transcriptomic data, we generated fine-resolution gene
modules that are robustly preserved across datasets. These modules served as the basis for a combinatorial code that
we then used to characterize microglial activation under various inflammatory stimulus conditions.

Conclusions: The microglial gene modules described here were robustly preserved, and could be applied to in vivo as
well as in vitro conditions to dissociate the signaling pathways that distinguish acutely inflamed microglia from aged
microglia. The microglial gene modules presented here are a novel resource for classifying and characterizing
microglial states in health and disease.
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Background
1Microglia have relatively recently emerged as important
regulators of brain homeostasis, with roles in neuronal
survival and proliferation, synaptic pruning, and immune
response [1–4]. Microglia actively survey the environment
in their basal state, and upon encountering a stimulus
change their gene expression and secretory profiles [5].
An increasing appreciation of microglia in health and

disease has led to a significant therapeutic interest in
microglia and neuroinflammation. Given microglia’s
malleable phenotype, characterizing microglia activation
states in disease has become a key issue [6]. Our ability to
detect and classify microglia activation states is rap-
idly evolving. Initially, microglia were classified as ‘ac-
tivated’ or not, mainly based on morphology. The
idea of anti-inflammatory and pro-inflammatory states

was introduced to the field of microglia in 2006 by
Butovsky et al., and the M1/M2 classification originating
from macrophages was adopted by subsequent publica-
tions [7, 8]. More recently, studies have uncovered states
that do not align with the conventional M1/M2 paradigm,
implying that a binary classification is insufficient and that
there are additional microglia states [9–11]. Therefore,
there is a clear need for an improved classification scheme
that can adequately define and help describe the molecu-
lar basis for microglial phenotypes.
Analysis of co-expression patterns from genome-wide

transcriptional profiling datasets provides a powerful
means to dissect the molecular basis of cellular behavior
and state [12]. For example, a recent study of alveolar
macrophages used 28 different treatments to generate 49
gene modules [13]. The modules were then applied to
macrophage transcriptomes of healthy and Chronic
Obtsructive Pulmonary Disease (COPD) patients, and* Correspondence: ccho@ionisph.com
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the authors identified a loss of inflammatory module
signatures in the COPD patients that was distinct from
the canonical M1 signature. Having a similarly compre-
hensive resource for microglia would allow us to obtain
cell-type-specific modules that form the basis of under-
standing microglial activation in disease.
In this study, we induced a broad spectrum of activa-

tion states in mouse microglia by using a stimulus panel
of 96 different treatments. Gene expression changes
were organized into 33 modules by Weighted Gene
Correlation Network Analysis (WGCNA) [14]. The
modules were highly reproducible and had the reso-
lution to distinguish between closely related signaling
pathways. We developed a combinatorial code based
on the modules, and used it to distinguish between
microglia in numerous activation states. Additionally,
we identified transcription factors whose known binding
sites were enriched within gene modules. In vivo, we used
modules to characterize aging, the dominant risk factor
for many neurodegenerative diseases. The results of this
study will serve as a new resource for classifying microglial
activation, and provides a foundation for manipulating
microglial phenotypes in disease.

Results
A panel of stimuli elucidates microglial gene modules
Microglia can take on a variety of states, characterized
by altered gene expression, morphology, and function. In
order to induce a diverse array of microglial states, we
constructed a stimulus panel comprising 96 different
conditions. The panel consisted of 37 unique stimuli
including cytokines, pharmacological inhibitors, and
molecules known to act in the brain milieu such as ATP
and dopamine. Stimuli were applied to microglial samples
individually and in combination at 4, 24 and 72 h. A full
list of stimulus conditions and number of replicates is
available in Additional file 1: Table S1 and Additional file
2: Table S2, respectively.
Following stimulation, 890 samples were profiled

by transcriptome sequencing. Of these, 784 samples
passed quality control metrics (see Methods). Sam-
ples showed high within-condition correlation, con-
firming the reproducibility between samples (mean
Pearson R = 0.937, min = 0.85, max = 0.994). Add-
itionally, we found reduced correlation between
many of the known inflammatory stimuli, indicating
there was a variety of activation states in our sam-
ples (Fig. 1a). Canonical stimuli such as LPS and IL4
showed upregulation of the expected markers (Fig.
1b). There were also a number of stimuli that did
not induce a response, such as CCL7, nicotine, and
LiA. This result was not surprising, given that our
panel included stimuli that have not been shown to
affect microglia directly. A full dose titration of each

stimulus would be necessary to conclude that micro-
glia are unresponsive to a given stimulus.
In order to identify sets of co-regulated genes, we used

WGCNA to cluster 6215 highly-varying genes across
stimulus conditions. WGCNA is a robust hierarchical
clustering method that employs weighted correlation
matrices and adaptive branch cutting to delineate
modules of genes that co-vary across samples [14].
The initial clustering step distinguished between the
stimulus conditions with the greatest differences, such
as IFN and TLR stimuli. We then performed a sec-
ond clustering step using only the conditions associ-
ated with each module (Fig. 2a). This second step
allowed us to resolve nuanced gene expression pat-
terns, such as those that distinguish between inter-
feron (IFN) type I and type II stimuli. The two-step
clustering method yielded a total of 37 modules, ran-
ging in size from 20 to 148 genes.
We assessed the reproducibility of each module by

measuring the intra-module correlation score, which
reflects the degree of correlation between the genes that
comprise the module (Fig. 2b, Methods). The defining
feature of a module is the correlated expression of its
constituent genes; as such, only the 33 modules showing
high intra-module correlation over 100 bootstrapped
datasets were used for downstream analyses. A full list
of modules and their member genes can be found in
Additional file 3: Table S3.
The activity of a module can be represented by the

module eigengene. The eigengene is computed as the
first principal component of the genes that make up
the module [14], and depicts the dominant trend of
expression that is common to those genes. By com-
paring the module eigengene values across stimulus
conditions, one can determine the relative expression
of the genes in that module between different condi-
tions. A module was considered active if the module
eigengene was differentially expressed between control
and test conditions (p < 0.05 with Bonferroni correc-
tion). Module activity reflects co-regulation of its con-
stituent genes. A comparison of module eigengene
activity across conditions showed that all 33 modules
have a distinct pattern of regulation (Fig. 2c).
The genes from each module were analyzed by Gene

Ontology Enrichment Analysis [15, 16]. Many modules
were also associated with GO terms such as “response to
cytokine stimulus” and “immune response”, consistent
with the known functions of microglia. Furthermore, more
specific GO terms were linked to the expected module;
for example, “cellular response to interferon-gamma” was
exclusively linked to a module that was strongly respon-
sive to interferon gamma (“PI_turquoise”, Fig. 2c). A
module responsive to type I interferons (“BR_turquoise”,
Fig. 2c) was associated with GO terms such as “response
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to interferon-beta” and “response to virus”, in line with
the known anti-viral role of interferon signaling [17].
Not all modules were associated with a known GO
term. This is likely because (1) our modules are
microglia-specific whereas gene ontology is derived

from many different cell and tissue types, and (2) the
resolution of our modules goes beyond the biological
pathways that can be found in gene ontology data-
bases. Results for all modules are summarized in
Additional file 4: Table S4.
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Fig. 1 Stimulus panel induces a variety of transcriptomic states in microglia. a Hierarchically clustered heatmap of Pearson correlation coefficients
between stimulus conditions, based on 6215 most variable genes. b Differential expression of canonical markers of LPS (Tnf, Il1b) and IL4
stimulation (Arg1, Retnla). Log2 fold change relative to control. Error bars represent standard deviation. * p < 0.05
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Fig. 2 (See legend on next page.)
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A combinatorial code of module activation illustrates
distinct microglial states induced by IFN I, IFN II, TLR2
signaling
To characterize the transcriptional states in various in-
flammatory conditions, we compared the transcriptional
response to six different stimuli: IFN type I (IFNa and
IFNb), IFN type II (IFNg), TLR2 (polyIC), TLR3 (P3C),
and TLR4 (LPS).
Traditional inflammatory markers such as Tnf and

Il1b were upregulated primarily in response to P3C and
LPS (Fig. 3a), but were not sensitive to other stimuli as-
sociated with neuroinflammation, such as IFNa or IFNb.
In contrast, our modules captured responses from all six
stimuli, with a given stimulus regulating anywhere from 7
to 19 modules (IFN type I and LPS, respectively) (Fig. 3b).
Several modules showed a distinction between IFN I vs II
stimuli (BR_turquoise, PI_blue, PI_turquoise), while other
modules (CY_yellow, CY_blue, CY_brown, YE_turquoise
and TQ_brown) were only regulated by TLR 1/2 and 4
stimuli. Most modules showed regulation in two or more
conditions, but notably, no module was upregulated by all
six stimuli.
The overlapping patterns of activity could be described

by a combinatorial code. Comparing activation of just
four modules, such as BR_turquoise, PI_turquoise,
CY_turquoise, YE_turquoise, was sufficient to distin-
guish between the five types of stimuli (Fig. 3b). Note,
the two IFN type I stimuli did not show significant dif-
ference in any module.
To extend the applicability of these modules to fu-

ture experiments, we identified hub genes to be used
as markers for each module. In this context, hub
genes are defined as the genes that show high cor-
relation to the module eigengene and can thus serve
as biological markers of module activity (see
Methods for hub gene ranking and selection). Fig-
ure 3c illustrates how the expression of the hub gene
for each of the four modules, BR_turquoise, PI_tur-
quoise, CY_turquoise, YE_turquoise, can be used as
a combinatorial code to identify which of the
pro-inflammatory stimuli microglia had been exposed
to. Figure 3d tabulates the results of Fig. 3c to dem-
onstrate how different signaling pathways are associ-
ated with a specific combination of hub genes.

We challenged the robustness of our hub genes using
samples from several test conditions. The hub genes
were derived from conditions where the stimuli were
applied for 24 h. As our test case, we selected conditions
where the same stimuli were applied for 72 h, as well as an
additional combinatorial stimulus condition (Fig. 3e). Figure
3f compares the actual results to the results that would be
predicted based on the code established in Fig. 3d. Nearly
all conditions met their prediction; as expected, type I inter-
ferons (IFNa and IFNb) could be identified by the induction
of Ifit3 and absence of Naaa, while type II interferon (IFNg)
induced both Ifit3 and Naaa. Furthermore, combinatorial
stimuli that include P3C and IFNb induced signatures for
both stimuli. There was a discrepancy in LPS, in that Naaa
was induced when it was not predicted based on the
original combinatorial code. This is likely due to the
amplification of downstream signaling cascades in the 72 h
LPS stimulation condition; LPS is known to induce
interferon-gamma production in macrophages, and the
induction of Naaa is consistent with the presence of inter-
feron gamma [18].

Genes in IFN-associated modules are selectively down-
regulated by resveratrol
We further probed the modular transcriptional activity
by examining the effect of anti-inflammatory agents on
gene expression. We treated microglia for 24 h with LPS
alone or in combination with resveratrol, a natural phe-
nol, or rapamycin, a small-molecule inhibitor of the
mTOR pathway.
Nine modules were activated by LPS alone. Combining

rapamycin with LPS did not reduce activity in any of the
nine LPS-responsive modules. In contrast, combining
resveratrol with LPS reduced gene expression by over
50% in several modules. Notably, this reduction in
activity by resveratrol was restricted to some modules,
as several other modules still showed the same level of
activity as when treated with LPS alone (Fig. 4a). Median
decrease in gene expression in the four LPS-responsive
modules with greatest effects of resveratrol (BR_blue,
BR_turquoise, PI_blue, CY_yellow) was 1.74-fold (Fig.
4b, left). In comparison, there was no change in the
LPS-response in other modules such as CY_blue,
CY_turquoise, CY_brown (Fig. 4b, right). These results

(See figure on previous page.)
Fig. 2 Correlation network analysis reveals microglial gene modules. a WGCNA clustering scheme. 1st order clustering was performed on 6215 genes
across all core conditions [left]. Each resulting 1st order cluster was then run on WGCNA a second time (2nd order clustering). Example shows 2nd order
clustering using the 1st order BR module [center],which yields two 2nd order modules – BR_blue and BR_turquoise. Each 2nd order module comprises a
set of co-expressed genes [right]. b Mean intramodule correlation score in 37 modules. Red line represents cutoff threshold for reproducibility. Error bars
reresent standard deviation. c Heatmap of mean module eigengene values across 40 core stimulus conditions. Only modules passing quality control
criteria are shown. Heatmap scale is in arbitrary units; a red shade indicates that the module is activated in a given stimulus condition, with darker shades
corresponding to stronger activation. Blue indicates suppression of a module. Gray mask = n.s. compared to control, *p< 0.05
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demonstrate that the modules can be independently reg-
ulated, and likely represent genes in distinct biological
pathways.
We observed strong overlap between the modules reg-

ulated by resveratrol and those regulated by interferon
stimuli in Fig. 3b indicating potential suppression of the
IFN mediated pathways by resveratrol. Gene ontology

(GO) enrichment analysis confirmed that the subset of
genes regulated by resveratrol is enriched for genes in-
volved in interferon signaling (Table 1). Taken together,
this shows that co-stimulation with LPS and resveratrol
results in an intermediate activation state in which inter-
feron signaling is ameliorated but other inflammatory
signals remain high.
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Fig. 3 Module markers can be used in a combinatorial code to distinguish between inflammatory states. a Differential expression of canonical
M1 (Tnf, Il1b) markers upon stimulation with inflammatory stimuli. Log2 fold change relative to control. Error bars represent standard deviation.
*p < 0.05. b Heatmap of module eigengenes for inflammatory stimuli. Only modules active in at least one condition are shown. Gray mask = n.s.
compared to control, *p < 0.05. c Differential expression of module markers for BR_turquoise (Ifit3), PI_turquoise (Naaa), CY_turquoise (Clec4e),
YE_turquoise (Irak3) modules in 24 h stimulus conditions. Log2 fold change relative to control. Error bars represent standard deviation. *p < 0.05. d
Combinatorial code of hub gene induction for five different inflammatory stimuli. e Differential expression of module markers for BR_turquoise
(Ifit3), PI_turquoise (Naaa), CY_turquoise (Clec4e), YE_turquoise (Irak3) modules in 72 h stimulus conditions. Log2 fold change relative to control.
Error bars represent standard deviation. *p < 0.05. f Comparison of empirical and predicted induction of hub genes
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Regulatory factors associated with inflammatory modules
One mechanism by which genes are co-regulated is via
control by a common transcription factor. We used iRe-
gulon [19] to identify transcription factors that may be
acting as regulators of our gene modules. All modules
showed strong association (Normalized Enrichment
Score (NES) > 3 as defined by Janky et al., 2014) with at
least one transcription factor. Six of the modules,
BR_turquoise, BR_blue, PI_blue, CY_red, CY_turquoise
and CY_brown, had transcription factors with particu-
larly high NES (> 7), and these were predicted to regu-
late 72–87% of the genes in the module (Fig. 5, Table 2).

The remaining three modules had associated transcrip-
tion factors with 7 > NES > 5, and the transcription
factors were predicted to regulate 32–59% of the genes
in their respective modules. Notably, there was little
overlap in transcription factors between the modules.
This segregation presents a potential biological mechan-
ism for the modular nature of gene expression observed
in our data.

Modules are regulated in vivo
Studies comparing acutely isolated microglia to micro-
glia in culture have shown that there are a number of

BA

Fig. 4 A subset of LPS-induced modules are regulated by resveratrol. a Heatmap of median differential expression of module genes, normalized
to LPS response. Only modules activated by LPS are shown. b Line plots comparing differential expression of genes in modules strongly
regulated by resveratrol [left], or unaffected by resveratrol [right]. Each black line represents a single gene. Thick lines represent mean differential
expression for each module [red line: BR_blue module, orange line: CY_yellow module, magenta line: PI_blue module, purple line: BR_turquoise,
green line: CY_blue module, turquoise line: CY_turquoise module, blue line: YE_turquose module]

Table 1 GO terms associated with genes changed by resveratrol

GO biological process complete Fold-enrichment P-value

antigen processing and presentation of endogenous peptide antigen (GO:0002483) 48.94 6.92E-04

cellular response to interferon-beta (GO:0035458) 46.37 1.89E-20

response to interferon-beta (GO:0035456) 45.68 3.50E-24

cellular response to interferon-alpha (GO:0035457) 43.51 2.29E-02

response to interferon-alpha (GO:0035455) 41.22 3.17E-07

regulation of response to interferon-gamma (GO:0060330) 40.79 1.69E-03

antigen processing and presentation of endogenous antigen (GO:0019883) 40.79 1.69E-03

cellular response to exogenous dsRNA (GO:0071360) 32.63 5.04E-03

negative regulation of viral genome replication (GO:0045071) 30.12 1.49E-10

positive regulation of interferon-alpha production (GO:0032727) 29.37 6.76E-04

regulation of interferon-alpha production (GO:0032647) 27.41 8.74E-05

cytokine metabolic process (GO:0042107) 25.76 1.59E-02

positive regulation of response to cytokine stimulus (GO:0060760) 25.76 1.06E-07
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transcriptional changes induced by the environment
[20]. We wanted to see whether this would affect the
modular nature of microglial gene expression, or if the
same gene modules could be extended to an in vivo
context. Mice were injected i.p. with LPS or vehicle,
followed by isolation of microglia for transcriptional pro-
filing at 4 h post injection. Consistent with the literature,
comparison of the vehicle-treated in vivo samples to the
untreated controls in our in vitro samples showed that
there was induction of genes such as Gpnmb, Spp1, and
Msr1, and downregulation of genes such as Tmem119,
Olfml3, and Sall1 (data not shown).
If a module is preserved in vivo, we would expect the

genes to show correlated expression patterns across the
in vivo samples, just as we saw in the in vitro samples. It
is worth noting that only 15 of the 33 modules could be
assessed for preservation, because the remaining mod-
ules did not show expression changes in response to
LPS in vivo and most likely require a different stimulus.
Of the 15 active modules, four modules showed module
breakdown, where the module genes did not show corre-
lated expression patterns. The remaining 11 modules
were determined to be reproducible, that is, genes within

these modules showed correlated expression changes in
response to LPS in vivo. This indicates that, despite dif-
ferences in gene expression at baseline, the modular
architecture of gene expression was intact (Fig. 6a-b).
We expect true biological modules to be preserved

even at the single-cell level. To test whether our mod-
ules could translate to single-cell microglial transcrip-
tomes, we used a recent published dataset; Mathys et al.,
(2018). sequenced individual microglia from CK-p25
mice, an Alzheimer’s disease model with a rapidly pro-
gressing neurodegeneration phenotype, and identified
subsets of microglia associated with the various stages of
neurodegeneration [21]. They found distinct sets of
genes upregulated in microglia at different stages of dis-
ease. We overlaid the gene sets from Mathys et al., with
our modules to see whether their gene sets could be par-
titioned based on our modules. Figure 6c shows that
genes upregulated in microglia in early-stage disease fall
within a single one of our modules. Mathys et al., identi-
fied two different subsets of late-stage microglia, and
these were characterized by BR_turquoise and PI_tur-
quoise modules, respectively (Fig. 6c). Thus, we find that
our modules are preserved even at the single-cell level.
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Fig. 5 Candidate transcription factors (TF) strongly associated with a module. Green hexagon: TF. Blue circles: module genes with predicted
regulation by TF. Gray circles: module genes not predicted to be regulated by TF. a BR_turquoise module, (b) BR_blue module, (c) PI_blue
module, (d) CY_red module, (e) CY_turquoise module, (f) CY_brown module
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Microglia have distinct activation signatures in acute
inflammation and aging
Aging induces a primed phenotype in microglia [22],
which is thought to be associated with chronic
activation. We isolated microglia from 22-month old
mice and compared their gene expression to that of the
LPS-treated mice. Comparison of the most active mod-
ules in the two conditions revealed a differential
response; LPS treatment most strongly involved modules
CY_brown, CY_red, PU_turquoise, PI_blue, and CY_tur-
quoise, whereas in aging, the primary modules were
CY_yellow, BR_turquoise, and CY_turquoise (Fig. 7a,
left). Notably, this differential activation was also ob-
served in vitro with acute (4 h) or chronic (72 h) LPS
treatment respectively (Fig. 7a, right). Upon prolonged
exposure to LPS in vitro, the microglial transcriptional
response shifted from stronger activation of CY_red,
PI_blue, and PI_brown modules to activation of BR_tur-
quoise, CY_turquoise, and CY_yellow modules. To
determine whether other chronic stimuli could also
model the aged phenotype, we examined module activa-
tion in seven additional chronic stimulation conditions.
Heirarchical clustering shows that, with the exception of
LPS, no individual stimulus induced all three of the top
aging-associated modules. However, we observed that of
these three modules – CY_yellow, CY_turquoise, and

BR_turquoise – two are strongly induced by chronic
P3C stimulation and one is strongly induced by
chronic IFN type I stimulation, indicating that each
may contribute to part of the aging phenotype. In-
deed, when P3C and IFNb were both included in a
combined stimulus, this more closely recapitulated
the aged phenotype (Fig. 7b).
Pathway analysis revealed the biological processes as-

sociated with the top modules activated in each condi-
tion (Fig. 7c). Modules activated in microglia from LPS
treated animals were enriched for pathways related to
proliferation, chemotaxis, reactive oxygen species pro-
duction, and cytokine production. In contrast, modules
in aging microglia were enriched for IFNa and IFNb sig-
naling, and response to viral infection. Our analysis
demonstrates the utility of gene expression modules to
robustly detect different activation states of microglia in
vivo, in this case acute inflammation and aging. As mod-
ules correspond to known stimuli and defined transcrip-
tional activators, differences in module activation
provide information on signaling involved in each
microglia activation state (Fig. 8). Finally, we show that
some aspects of aged microglia in vivo can be recapitu-
lated during chronic stimulation in vitro.

Discussion
Here we present a framework for understanding micro-
glial states using gene expression modules. Using 96
stimulus conditions, we induced a wide variety of micro-
glial transcriptional programs and categorized a complex
transcriptional response into concise gene expression
modules using a clustering-based approach. We demon-
strate the utility of these modules in identifying numer-
ous microglial activation states.
Modular organization of gene expression has been

shown in other organisms and cell types [23–25]. Previ-
ous studies have identified co-expression modules in
microglia associated with aging, as well as different brain
regions [11, 26]. While these works provide us with a
useful way of understanding gene expression changes in
specific contexts, the small number of conditions in
these studies limits the level of the detail the modules
can provide; typically, these modules can only be associ-
ated with the age or disease status included in the
experiment. In contrast, we designed our stimulus panel
with the intention of isolating modules that are capable
of resolving individual signaling pathways implicated in
a broad spectrum of microglia-related pathologies. We
successfully identified 33 modules that distinguish
between closely related stimuli.
A small number of modules showed co-regulation in

vitro but not in vivo, which may be attributed to the
transcriptional changes that take place when microglia
are removed from the CNS environment. A greater

Table 2 Top transcription factors predicted for each module

Module TF NES predicted regulation (%)

BR_turquoise Irf9 20.4 73

Stat2 19.9 76

Irf7 9.5 52

BR_blue Irf5 16.4 72

PI_blue Irf8 12.7 80

Sp100 7.2 40

Irf1 6.8 55

Alx1 6.7 55

CY_red Relb 7.3 80

Rel 7 88

Nr1h3 5.1 32

CY_turquoise Bcl3 8.6 83

Irf2 6.5 50

Sfpi1 6.2 72

CY_yellow Sox10 5.6 59

CY_blue Srf 5.6 53

Irf4 5.2 38

CY_brown Nfkb1 10 87

Sox9 5.1 17

YE_turquoise Atf4 5.3 12

Ets2 5.2 32
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number of modules showed the same co-regulation in
vivo as they did in vitro, indicating that despite tran-
scriptional changes at baseline, the network connectivity
between these genes is unaffected. The fact that a subset
of these modules could be observed in an independent
single-cell dataset supports the idea that these modules
can be applied in vivo.

Using gene modules provides several advantages in de-
scribing microglial state. The use of single marker genes
such as Tnf and Arg1, while indicative of general activa-
tion, often cannot resolve different inflammatory states,
such as IFN-activated versus LPS-activated microglia.
We propose a combinatorial code of gene module activ-
ity to describe microglial states. As demonstrated, a

Control LPS

Control LPS

C

A

Control LPS

in vivo in vitro

Control LPS

in vitroin vivo

B

Early Response Genes

BL_turquoise

Late Response Genes - Antiviral 

BR_turquoise PI_blue CY_red

Late Response Genes - MHCII 

PI_turquoise

Fig. 6 Modules derived in vitro can be observed in vivo (a-b) Representative modules upregulated [A] and downregulated [B] by LPS treatment
in vivo and in vitro. Heatmaps show of differential expression for the genes in each module (log2 fold change relative to mean expression of
control samples). n > =4 samples per condition. c Module membership of genes from Mathys et al., (2018) that correspond to the early-response
microglia [left], late-response-interferon microglia [middle], and late-response-MHCII microglia [right]. Pie chart [top] shows the proportion of
genes from each list corresponding to a given module. Tables [bottom] show the list of genes and their module membership
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combinatorial module code robustly differentiated be-
tween type I IFNs, IFNg, PolyIC, LPS and P3C in vitro,
and acute LPS-induced inflammation and chronic
aged-induced inflammation in vivo (Fig. 8).
A descriptive system based on modules carries a sig-

nificant practical benefit: hub genes can be used to re-
port on the activity of their respective modules. Hub
genes offer the same tractability as the current individual
marker genes, but are representative of a defined set of
co-regulated genes and associated biological pathways.
Hub gene expression can thus be used, in lieu of

complete transcriptome sequencing, to characterize
microglia activation states. As an example, we show that
six pro-inflammatory conditions in vitro can be distin-
guished using four hub gene markers (Fig. 3c). For in
vivo work, this also opens up the possibility of using
multiplexed in situ hybridization to characterize micro-
glia activation states.
In addition to addressing the issue of characterizing

microglial activation states, our results give novel insight
into inflammatory signaling pathways. Although it has
long been known that IFN type I and type II signal
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through different receptors [27], the effect of each on
microglial gene expression was not fully known. We find
there is a group of genes commonly induced by both
types of interferons, which include Stat1 and Cd86. We
also find groups of genes that are preferentially induced
by type I or type II interferon signaling. Genes such as
Ifit1, C2, Lgals3bp and Irf7 were associated with type I
signaling, whereas genes such as Cxcl9 and Socs1 were
more strongly induced by type II signaling. Notably, the
group of genes including Naaa, Zyx and Clec9a were
highly specific to interferon type II response and was
not induced by any other stimulus tested.
These gene modules also provide a strong basis to un-

cover regulators that drive microglial states. The tran-
scription factors associated with each module present a
potential biological mechanism by which the modular
regulation may be achieved. Interestingly, several of
these, such as Irf8 and Nfkb1, have been previously iden-
tified as Signal Dependent Transcription Factors that
may regulate microglial phenotype in neuropathic pain
and neurodegeneration, respectively [28, 29]. It will be
interesting to see whether the microglia in these disease
scenarios correspond to upregulation of the modules
found in our study. Additionally, the transcription fac-
tors identified here could be tested for use as therapeutic
targets to downregulate modules of interest. For mod-
ules that did not show strong association with any par-
ticular transcription factor, microRNAs or other factors
may be acting to further regulate subsets of genes. Fu-
ture studies should examine potential regulatory regions
shared by genes in a given module.

Chronic activation phenotypes are of particular rele-
vance to the pathological role of microglia. Indeed, this
is a central consideration when interpreting the role of
microglia in various neurological conditions that become
more prevalent with age, such as Alzheimer’s disease
and Amyotrophic Lateral Sclerosis [30–33]. Here, we
profiled microglia from aged wild-type mice to study the
microglial priming phenotype. The gene expression pat-
tern in aged mice corresponded to the up-regulation of
three gene modules, BR_turquoise, CY_turquoise and
CY_yellow. Our stimulus panel shows that the BR_tur-
quoise module was activated by IFN type I stimuli (Fig.
3), in line with results from previous studies that have
shown upregulation of IFN type I signaling with aging
[34]. The other two modules, CY_turquoise and CY_yel-
low, were activated by the TLR3 stimulus in our panel
(Fig. 3). Furthermore, pathway analysis results compar-
ing the BR_turquoise module and the CY_turquose +
CY_yellow module show that former is responsible for
activating the viral response, IFN-alpha and IFN-beta
pathways, whereas the latter is associated with innate
immune response and migration (Fig. 7c). In effect, we
have successfully dissected the microglial aging signature
further into two separate components; one, a known
interferon type I signal, and the other, a previously
uncharacterized gene signature induced by TLR3 signal-
ing. This analysis provides testable hypotheses for re-
versing age-induced molecular changes in microglia.
Comparison of aging and acute inflammation in vivo

revealed that distinct sets of modules dominate the
microglial response in these two perturbations (Fig. 7a,

Fig. 8 Gene modules distinguish between many different microglial states. Module activation patterns characterize microglia in various states.
Hub gene markers of each modules can be used in a combinatorial code that distinguishes between states. The constituent genes from each
module were used to predict transcription factors that may regulate each state
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left). Pathway analysis showed upregulation of prolifera-
tion and migration during acute inflammation, which
was not seen in aged microglia, pointing to different
functional properties in acutely vs chronically inflamma-
tory microglia. This is an important point from a thera-
peutic viewpoint – anti-inflammatory drugs targeting
canonical inflammatory cascades may not counteract the
chronic inflammation seen in aged microglia.
We were able to recapitulate portions of the

aging-associated module activation pattern in several of
our in vitro conditions. Comparison of 4- and 72-h LPS
stimulation showed a similar distinction to that of acute
LPS-treatment and aging in vivo, respectively (Fig. 7a,
right). In the case of 72-h LPS stimulation in vitro, we
found induction of one additional module, CY_brown,
that was not prominent in aging in vivo. This module
may be unique to LPS, or may reflect the limitations of
recapitulating the aged phenotype in vitro. Despite this
difference, our results indicate that aged microglia may
be modeled in part by chronic LPS stimulation in vitro,
providing a useful way to model certain aspects of
microglial priming in a short time span. Additionally, we
observed that chronic stimulation with IFNb or P3C in-
duced non-overlapping subsets of the aging-associated
modules, suggesting that interferon type I and TLR1/2
signaling could both contribute to the aging phenotype.
Future experiments should address which of these mod-
ules can be associated with microglial dysfunction.
Microglia stimulated by LPS are known to release a

plethora of cytokines that in turn activate other recep-
tors besides TLR4 [35–37]. As such, gene expression
changes in our 72-h stimulus conditions may represent a
response to endogenous signals released by microglia,
rather than a response to the exogenous stimulus itself.
This raises the possibility that the aged phenotype of
microglia in vivo is similarly a response to autonomous
signaling in response to chronic activation.

Conclusions
This work provides a comprehensive dataset that can be
used as the basis for classifying microglial phenotypes.
First and foremost, we find that microglial gene expres-
sion is modular in nature, and the gene modules derived
here can be used to characterize microglial states both
in vitro and in vivo. The combinatorial code of module
activity can distinguish between states induced by a
variety of stimulus types and treatment durations;
distinct transcriptional activation states were induced by
IFN type I, IFN type II, TLR2, TLR3 and TLR4 signaling.
The in vitro stimulus panel itself supplements traditional
pathway and regulator analysis, as it is a microglia-specific
resource with experimentally validated annotations that
link gene co-expression to stimulus. Utilizing this feature,
we show that aging microglia are in an activation state

that is dominated by IFN type I and TLR3 signals, provid-
ing new insight for targeting senescence of the
neuro-immune system. In summary, our data provide a
novel resource for elucidating microglial states.

Methods
Primary cell culture
Primary neonatal mouse microglia (Sciencell, Cat#M1900–
57) were cultured in poly-lysine coated 96-well plates with
Microglia Medium (Sciencell, Cat #1901). Cultures were
kept in an incubator at 37 °C, 5% CO2. Media was
refreshed 24 h after plating. 4 days after plating, media was
removed and replaced with fresh media containing a
stimulus.

Animals
Animal studies were conducted under a protocol ap-
proved by the Ionis Institutional Animal Care and Use
Committee (IACUC) in an Association for Assessment
and Accreditation of Laboratory Animal Care (AALAC)
approved animal facility. For the LPS-stimulation experi-
ment, female C57BL/6 mice (Jackson Laboratories), 2
month old, were injected intraperitoneally with 2 mg/kg
LPS (Sigma, strain 0111:B4) formulated at 0.5 mg/ml in
PBS (n = 4). At 4 h post dosing, microglia were isolated
as described below. For comparison of aged and young
mice, we isolated microglia from male C57BL/6 mice at
22-month and 2-months of age respectively (n = 12).

Microglial isolation
Mice were deeply anesthetized by isoflurane inhalation
(4% in air carrier gas) in an induction box and main-
tained on a deep plane of anesthesia using a nose cone.
The anesthetized animals were perfused with ice-cold
PBS and whole brains were collected in 1X HBSS
+HEPES buffer. Brains were finely minced with a razor-
blade and digested in Accutase (EMD Millipore, Cat
#SCR005) at 4 °C for 45 min. Following successive tritur-
ation with clipped pipette tips of decreasing diameter,
cells were washed with 1X HBSS+HEPES and filtered
with a 250 uM mesh filter. Tissue homogenates were
centrifuged over a 30% Percoll gradient to remove mye-
lin. Microglia were isolated by Magnet Activated Cell
Sorting (MACS) using a CD11b antibody (Miltenyi).
While Cd11b is expressed on peripheral monocytes in

addition to microglia, our method of perfusion removes
blood contamination from the CNS and thus minimizes
peripheral monocyte contamination of our sample from
peripheral monocytes. We confirmed the purity of this
method using flow cytometry. Previous studies have
shown that flow cytometry analysis of CD45 levels
distinguishes between CD11b-positive microglia and
macrophages, with microglia expressing CD45 at low
levels and macrophages expressing it at high levels [38].
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Our flow cytometry analysis shows that 97.3% of the
cells in our CD11b-isolated microglial samples are
CD45-low, and only 1.4% are CD45-high (Add-
itional file 5: Figure S1).
Furthermore, we examined cell-type specific marker

expression of the microglial samples used in our analyses.
Our samples show high expression of the microglia-specific
markers, while having little to no expression for markers of
other immune cell types (Additional file 6: Figure S2). The
markers for each cell-type were derived by single-cell
analyses from brain immune cell populations [39], which
have none of the confounding effects of contaminated pop-
ulations, as well as other seminal papers that have focused
on differentiating microglia from other CNS immune cell
types [40, 41].

RNA extraction, library preparation
RNA extraction was performed using Qiagen RNeasy
kits. 0.5–1 ng of total RNA was used as template for the
initial reverse transcription, which included 0.27 uM of
barcoded primer, containing a T7 promoter sequence.
48–96 cDNA samples were pooled, followed by a 8 hT7
amplification. 50 ng of the resulting aRNA was used as
input for library generation using the Quantseq aRNA
kit (Lexogen, Cat #043.24.V0.1).

Next generation sequencing
NGS libraries were sequenced as 75 bp fragments with a
median depth of 6.1 million reads per sample on an Illu-
mina NextSeq500. Transcript quantitation was per-
formed with Salmon (ver 0.7.1) using quasi-mapping
based mode with automated libtype detection [42]. Gene
level TPM was computed by summing read counts of all
associated transcript isoforms and normalizing by total
number of mapped reads. Gene model indexes were
generated from Ensembl Mus musculus build 81 [43].
The median alignment rate through salmon was 81.5%.
Samples with less than 1 million mapped reads or less
than 6500 genes expressed (TPM> 5) were discarded.
Differential gene expression was assessed by comparing
against a negative binomial error model based on gene
expression in control microglia samples. Gene-specific
p-values were computed for each biological replicate and
median-aggregated. Genes having a minimum p-value
less than or equal to 0.05 in all replicates within a group
were considered significant and used in downstream
analysis.

Weighted gene correlation network analysis (WGCNA)
analysis
A group of 6215 genes were selected based on top 4000
genes that were highly variable across all conditions and
an additional 2215 genes that were differentially
expressed in at least one condition. Of the 96 conditions

tested, we selected 40 core conditions as input to the
WGCNA analysis. Many of the 96 conditions consisted
of LPS combined with a potential modulator (ie., rapa-
mycin), and we excluded these from the input. As the
WGCNA method relies on variability between samples,
the inclusion of all LPS +modulator conditions would
drive WGCNA to primarily detect the LPS response and
lose sensitivity to more subtle responses from other
stimulus conditions. Hence, our input conditions were
designed to prevent biasing WGCNA results towards
the LPS response. Each condition had a minimum of
four replications from two different experimental days,
for a total of 373 samples. It is well known that gene ex-
pression is distributed as a Negative Binomial distribu-
tion -genes with a higher expression level typically
exhibit higher variability in expression than expected
from Poisson behavior [44]. Clustering algorithms as-
sume Gaussian noise around cluster centers and under-
lying distance measures reflect this assumption. In order
to mitigate the dependence of variance on mean expres-
sion we transformed the expression level by using the
function for Negative Binomial distribution, such that
the transformed variable is Gaussian distributed -a
process known as variance stabilization [45]. The func-
tion for Negative Binomial distribution, and this stabi-
lized expression matrix was used as input for WGCNA
(ver 1.51).
For the first round of clustering, the adjacency matrix

was calculated with a soft power of 4. The soft power was
selected based on the standard connectivity analysis for
WGCNA; briefly, we chose the lowest soft power value
where the scale-free topology threshold is met [14]. The
cutreeDynamic function was run with the following pa-
rameters: deepSplit = 1, PAMstage = True, minClusterSize
= 20, method = hybrid. The mergeCloseModules function
and was run with a cut height of 0.25. The resulting 14
modules were clustered in a second round, using matrices
consisting of the genes in a given first order module and
the samples associated with the module. The cutreeDy-
namic parameters for the second-round clustering were as
follows: deepSplit = 4, PAMstage = False, minClusterSize
= 20, method = hybrid. Three of the first order modules
remained as a single module after the second round of
clustering, indicating that additional modules were not
forced in cases where the 1st order cluster was already
optimal.

Module quality analyses
Module reproducibility was determined by the
intra-module correlation score. We derived the score by
first ranking all genes in a given module according to
their mean Pearson correlation coefficient against other
genes in the module. The correlation coefficient of the
gene at the 75th percentile was then selected as the
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intra-module correlation score. We repeated the meas-
ure on 100 independent subsets of the data, which were
obtained by randomly selecting half of the samples in
each condition. The resulting scores were used to com-
pute mean and variance. Modules with a mean score
greater than 0.35 were considered reproducible.
The in vivo status of modules was assessed by quanti-

fying activation and reproducibility. Activation was de-
fined as a 1.5-fold change in gene expression compared
to control. Modules in which less than a third of the
genes did not meet the activation threshold were catego-
rized as inactive, and these modules excluded from fur-
ther analysis. Reproducibility was defined as an
intra-module correlation score greater than 0.35 based
on the active genes in a given module.

Hub gene selection
Genes in each module were first ranked by correlation
to the module eigengene—the module eigenegene is de-
fined as the first principle component in the gene space
of a given module [14]. Of the ten genes with the highest
correlation, the gene with the lowest coefficient of vari-
ance and minimum expression of at least 5 TPM was se-
lected as the hub gene for the module.

Network and pathway analysis
We used the web-based application gProfiler [46] to ob-
tain significantly enriched GO biological process and
Reactome pathways, excluding electronic GO annota-
tions. The resulting pathways were then displayed
using the Enrichment Map app in Cytoscape 3.0
using Jaccard similarity coefficient with an FDR cutoff
of 0.0001 [47, 48].
For transcription factor prediction, we used the cytos-

cape plugin GeneMANIA to first create networks be-
tween the genes in each module [49]. The network was
analyzed using the cytoscape plugin iRegulon (‘Predict
regulators and targets’ function, motif collection = 10 K
(9213 PWMs)) to rank motifs around the 20 kb centered
around the transcriptional start site. TFs were predicted
with maximum FDR of 0.001 in motif similarity.

Statistical analysis
Mann-Whitney U tests were performed using the
Python scipy package. p < 0.05 after Bonferroni correc-
tion was considered significant.

Additional files

Additional file 1: Table S1 List of conditions used in microglia stimulus
panel. Table containing stimulus identity, supplier, stimulus duration and
concentration for all conditions used in the stimulus panel. (CSV 3 kb)

Additional file 2: Table S2 Number of replicates in each stimulus
condition. Table showing the number of biological replicates in each
condition. (CSV 2 kb)

Additional file 3: Table S3 Lists of genes in each module. Each column
shows the full list of genes in a given module. (CSV 13 kb)

Additional file 4: Table S4 Gene Ontology (GO) terms associated with
each module. Columns show the GO term and corresponding q-value
associated with each module. Some modules did not yield any significant
GO terms. (CSV 9 kb)

Additional file 5: Figure S1 Flow cytometry shows enrichment of
CD45low cells in Cd11b-MACS samples. (A) Flow cytometry of Cd45 in a
representative Cd11b-MACS sample [left] and a positive control containing
all CNS immune cell types [right]. (PDF 426 kb)

Additional file 6: Figure S2 Cd11b-MACS samples express microglia-
specific markers. (A) Expression of various in immune cell markers in
MACS-Cd11b samples. Error bars represent standard deviation. (B) Table
listing the cell type associated with each marker gene. (PDF 493 kb)
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