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Genome-wide signatures of local adaptation
among seven stoneflies species along a
nationwide latitudinal gradient in Japan
Maribet Gamboa* and Kozo Watanabe

Abstract

Background: Environmental heterogeneity continuously produces a selective pressure that results in genomic
variation among organisms; understanding this relationship remains a challenge in evolutionary biology. Here, we
evaluated the degree of genome-environmental association of seven stonefly species across a wide geographic
area in Japan and additionally identified putative environmental drivers and their effect on co-existing multiple
stonefly species. Double-digest restriction-associated DNA (ddRAD) libraries were independently sequenced for 219
individuals from 23 sites across four geographical regions along a nationwide latitudinal gradient in Japan.

Results: A total of 4251 candidate single nucleotide polymorphisms (SNPs) strongly associated with local adaptation
were discovered using Latent mixed models; of these, 294 SNPs showed strong correlation with environmental
variables, specifically precipitation and altitude, using distance-based redundancy analysis. Genome–genome
comparison among the seven species revealed a high sequence similarity of candidate SNPs within a geographical
region, suggesting the occurrence of a parallel evolution process.

Conclusions: Our results revealed genomic signatures of local adaptation and their influence on multiple, co-occurring
species. These results can be potentially applied for future studies on river management and climatic stressor impacts.
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Background
Understanding the influence of natural selection on gen-
omic variation in natural populations is one of the primary
goals for addressing questions regarding adaptive evolu-
tion. Principally, divergence selection derived from natural
selection may result in allele frequency shifts at loci under
selective pressures, such as heterogeneous climatic factors,
to maximize fitness in local environment [1]. Therefore,
the capacities of organisms to respond to changing select-
ive pressures (such as climate) may widely vary due to
their potential pending genetic adaptation and the rate at
which new genomic variations arise [2, 3].
Studies investigating the genomic basis of adaptation

often compare genomic information of populations along
heterogeneous environments [2]. First, the genome was
screened for outliner loci by determining associations

between allele distributions and environmental variables
that were presumed to be selection drivers [4–6]. Then,
correlations among environmental variables combined
with population genomic approaches (i.e., fixation index
and inbreeding coefficient) may complement each other
in terms of power and accuracy [7]. However, discerning
the relative contribution of environmental conditions in
shaping genetic diversity remains a challenge. Identifying
factors such as natural selection, genetic drift, and disper-
sion that modify patterns of genomic variation remains
difficult [8].
Genome–environmental association analysis along en-

vironmental gradients [9] provides an opportunity to
examine the influence of environmental conditions in
shaping genetic variation of natural populations. Environ-
mental information, as a combination of landscape effects
[10] and environmental clines [11], provides stronger evi-
dence for examining adaptive divergence. This type of
analysis considers the effect of population structure and
geographical scale and expects that genome signatures of
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selection become more pronounced with increasing geo-
graphical scale (isolation by distance) owing to larger en-
vironmental gradient differences [12]. Genetic response to
environmental gradients has been evidenced in a wide
range of taxa, e.g. including plants [13, 14], fish [15], and
invertebrates [16, 17]. Overall, reported studies have
highlighted that the selective pressure resulting from en-
vironmental changes can be explained by the evolutionary
response of population along these gradients. However,
these studies investigating this association have been
based on a single species [14, 15, 18, 19], thus neglecting
the potential effect of this association on multiple species
that co-occur in the same habitat.
The occurrence of multiple species in a community re-

mains another challenging aspect of determining the in-
fluence of environment on genomic variation. Adaptive
genomic variation is strongly influenced by the complex
dynamics between environmental and community effects
[20]. Due to evolutionary dynamics, the assessment of
genomic variation in organisms that co-occur with other
species may not match that predicted using single species
approaches [21] because of the effect of competition,
predation, and co-evolution. For example, using multiple-
species observations, it is possible to observe genome–
genome interactions (e.g., hybridization and mutualistic),
genome–environment interactions (e.g., parallel adapta-
tion, recombination rate, and demography), and
genome-genome-environment interactions (e.g., interac-
tions among species) [20] between organisms. Data on the
impact of environmental change on evolutionary pro-
cesses at the community and ecosystem scale is lacking
[20]. In order to gain a better understanding of adaptive
genomic variation, genetic consequences of co-existing
species in a local community should be studied [22].
Aquatic insects are ideal organisms for observing gen-

ome–environment interactions. Stoneflies (Plecoptera)
are aquatic insects that exhibit limited airborne dispersal
within stream corridors and their dispersal is mainly
dominate by in-stream drift [23]. Stoneflies are consider-
ably more sensitive to environmental changes, such as
low oxygen concentration and high water temperature,
than other aquatic insects [24]. Until now, studies evalu-
ating genome–environmental association in aquatic in-
sects have often used mitochondrial DNA sequences
with a particular molecular marker (Sanger sequencing)
[25], microsatellite [26], or Amplified Fragment Length
Polymorphism makers [27]; however, NGS data has been
scarcely used except for in few studies such as those on
damselfly [16] and chironomidae [17].
In this study, we examined the genome-wide signatures

of adaptive divergences in seven species of stoneflies using
a double-digest restriction-site-associated DNA protocol
(ddRAD). Several techniques have been applied for the de-
tection of adaptive genes, such as direct sequencing of

genomic regions of interest [28], genome re-sequencing
[18], genotyping by sequencing (GBS; [14]), transcripto-
mics [19], and restriction site associated DNA sequencing
(RAD-Seq; [15]). Among these techniques, RAD-Seq al-
lows the analysis of multiple organisms at the same time
[29] and the genomic analysis of organisms without a
reference genome [30]. In addition, it allows for the identi-
fication of thousands of genetic markers randomly distrib-
uted across the genome [31], which further increases the
chances of detecting loci under natural selection. There-
fore, RAD-Seq has been employed for understanding the
pattern of genetic structure of populations across environ-
mental heterogeneity (e.g. [32]).
Here, we performed population and landscape gen-

omic studies using ddRAD so as to screen imprints of
selection on a national-wide scale in Japan archipelago.
We primarily aimed to evaluate the relative strength of
selection in influencing the distribution of genomic vari-
ation at different spatial scales, to identify putative envir-
onmental drivers, and to observe their effects on the
community. We hypothesized that organisms living
under similar meteorological and hydrological condi-
tions would experience similar genomic evolution in
their adaptive genes, and therefore, similar patterns of
adaptive divergence appear among co-inhabiting species.
For this, we collected samples along a nationwide latitu-
dinal gradient in Japan with varying meteorological and
hydrological conditions. We applied an individual-based
Latent Factor Mixed Model (LFMM) and a multivariate
redundancy analysis (RDA) to identify putative single
nucleotide polymorphisms (SNPs) under selection and
the main environmental population differentiation
driver. The resulting species-specific association of SNPs
with environmental variables were compared to deter-
minate the degree of nucleotide changes (i.e., nucleotide
substitution rate) among the seven species so as to pos-
sibly explain their local adaptation. Although the use of
SNPs has been the standard method to determine loci
putatively under selection, integrating environmental
gradients and multiple species can be reliably used to
identify such loci and selective agents underlying the ob-
served patterns either in a population or community.

Methods
Sample collection
We ad hoc collected a total of 47 species. Of these, eight
species that commonly occurred throughout four re-
gions in Japan were shortlisted to test the potential effect
of climatic variation in these regions. The eight species
of stream stoneflies selected (Perlodini incertae, Haplo-
perla japonica, Nemoura ovocercia, Rhabdiopteryx ja-
ponica, Obipteryx femoralis, Isoperla nipponica,
Amphinemura longispina, and Stavsolus japonicus) have
different biological requirements, such as feeding
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behavior, and habitat preferences. An average of 31
stonefly nymphs per species were collected in January–
March 2014 along a latitude cline in Japan using
D-flame nets (mesh size = 250 μm). Collected specimens
were identified using the taxonomic key of Japanese
aquatic insects [33].
Sampling of stonefly nymphs was carried out at 23 sites

across four regions with different climatic conditions,
including: Matsuyama (6 sites), Gifu (4 sites), Sendai (6
sites), and Sapporo (7 sites) (Fig. 1, Additional file 1:
Tables S1 and S2). Sampling sites in Matsuyama located in
Ehime Prefecture in Shikoku Island, South of Japan (geo-
graphical distance to other regions ranged 404–1295 km)
has a mean temperature of 17 °C and an altitude range of
154–277m above sea level (masl). The Gifu region, situ-
ated in Gifu prefecture at the central area of Japan
(geographical distance to other regions range 374–959
km) has a mean temperature of 15 °C and an altitude
range of 251–720 masl. The Sendai region, located in
Miyagi prefecture in the northeast area of Japan (geo-
graphical distance to other regions range 374–895 km)
has a mean temperature of 12 °C and an altitude range of
261–394 masl. The sampling sites in the Sapporo region,
in Hokkaido prefecture positioned at the Northern most
part of Japan (geographical distance to other regions range
418–1295 km) has a mean temperature of 7 °C and an alti-
tude range of 95–298 masl.
Data on precipitation (annual mean value of the amount

of rainfall that occurs over a unit area; unit mm), river
water level (annual mean value of the level of the water of

a river above a horizontal surface used as zero point of
measurement of water level; unit m), discharge (annual
mean volume of water flowing through a river channel;
unit m3/s), water temperature (annual mean temperature
of the water; unit °C), air temperature (annual mean
temperature of atmospheric air; unit: °C), and depth of
snow cover (annual mean value of the total amount of
snow that accumulates on the ground; unit cm) for the
sampling sites (Additional file 1: Table S1) were obtained
from the Ministry of Land, Infrastructure, Transport and
Tourism of Japan (http://www1.river.go.jp/) and the
NASA Giovanni website (https://giovanni.sci.gsfc.nasa.
gov/giovanni/) within standard NASA estimate algo-
rithms. Environmental data for each sampling site was
collected from a different meteorological station. The lo-
cations of the meteorological stations were situated within
2.5–19.8 km in Matsuyama, 7–52 km in Gifu, 1.3–16 km
in Sendai, and 17–103 km in Sapporo regions.
Geographic distances between sampling sites were cal-

culated from the transformation of GPS coordinates [34]
using great-circle distances calculated for the Vincenty
Ellipsoid in geosphere package of R v.3.3 [35] and used
for principal components analysis (PCA) using the stats
package in R v.3.3 (R Core Team, https://www.r-projec-
t.org/). The results obtained from PCA were used to sta-
tistically separate geographical regions.

ddRAD library preparation and sequencing
A total of 270 stoneflies belonging to eight species (aver-
age = 31 individuals per species; range = 20–52

Fig. 1 Map depicting areas of Japan used for sampling stonefly nymphs for this study. Filled circles indicate the four geographical regions (left)
included in the study, and open circles indicate the sampling sites within each region (right). The map was prepared using QGIS v 2.18 under the
GNU free documentation License with area boundaries from the Global Database of Administrative Areas (https://gadm.org/)
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individuals per species) were used for RAD-Seq. All indi-
viduals were washed thrice with ethanol to eliminate any
contamination. Genomic DNA was extracted from each
individual using DNeasy tissue kit (Qiagen GmbH, Hilden,
Germany) following manufacturer’s instructions. The
whole body of the specimen was fully submerged in lysis
buffer (Qiagen GmbH, Hilden, Germany) and incubated
at 56 °C overnight. This DNA extraction method involved
the use of the whole body without any destruction of the
specimen, thus reducing the probability of contamination
(gut content contamination). ddRAD libraries were con-
structed as previously described [29] with slight modifica-
tions. Briefly, 100 ng genomic DNA per sample was
digested with restriction endonucleases, SbfI (NEB) and
HaeIII (Takara) at 37 °C for 3 h. Restriction fragments of
each sample were ligated to a unique 6-mer adaptor.
Ninety samples with equimolar DNA concentrations were
combined and electrophoresed on agarose gels. Subse-
quently, 300–500 bp fragments were excised and purified
using MinElute Gel Extraction Kit (Qiagen).
Purified DNA samples were PCR amplified using two

sequential PCRs. The first PCR was carried out in a 20 μl
reaction, consisting of 12 μl of Phusion High-Fidelity PCR
Master Mix with HF buffer (NEB), 2 μl DNA template,
2 μl of each forward and reverse primers specific to Illu-
mina adaptors, 1 μl of Betaine (Sigma), 1 μl of DMSO
(NEB), and 2 μl of water, using the following conditions:
initial denaturation at 98 °C for 1min, followed by 18 cy-
cles of 98 °C for 10 s, 62 °C for 30 s and 72 °C for 30 s, and
a final extension at 72 °C for 10min. The second PCR was
carried out to eliminate non-specific sequences using 4 μl
of Phusion HF buffer (NEB), 2 μl of dNTPs (Promega),
and 2 μl of each forward and reverse Illumina sequencing
primers, using the following conditions: 98 °C for 3min,
60 °C for 2min, and 72 °C for 12min.
Five PCR replicates were pooled to form a single li-

brary. Each library was quantified using KAPA library
quantification kit (Roche). Three DNA libraries each
comprising 90 individuals were sequenced per lane using
HiSeq 2500 Illumina sequencer (paired end, 2 × 100 bp)
at the Beijing Genomics Institute, China. One species
(Perlodini incertae, 51 individuals) was removed from
the analysis because of its low read recovery (< 8,000,000
total reads). Therefore, we used seven species (219 indi-
viduals) in the analysis.

Data processing
Forward and reverse raw data (789,587,765 reads) were
screened for tags and adapters using CUTADAPT [36]
(Additional file 1: Figure S1). A phred-type quality score
of Q20 was used to trim sections of the reads using
FASTX toolkit v.0.0.13 (http://hannonlab.cshl.edu/fas
tx_toolkit/). Reads shorter than 50 bp were excluded.

The number of reads was reduced to 675,870,356 (86%
of the total reads).
RAD sequences were processed using a pipeline in

STACKS v 2.0 that incorporates a maximum likelihood
statistical model to identify sequence polymorphisms
[37]. Sequences were demultiplexed and quality filtered
using the process_RADtags program. Reads shorter
than 50 bp with a quality read score of < 20 or with
ambiguous barcodes (i.e. erroneous barcodes) were re-
moved. The number of reads was reduced to
675,100,758 (85% of the total reads).
De novo assembly of short paired-end reads was per-

formed independently using three programs in the
STACKS software package. The ustacks program uses a
set of reads as input and aligns them into exactly match-
ing (i.e. 100% nucleotide sequence identity) putative al-
leles. Different parameter combinations were evaluated
(Additional file 1: Appendix S1, Tables S3 and S4). The
analysis revealed similar genomic comparisons [i.e. ob-
served and expected homozygotes and heterozygotes,
fixation index (Fst, Additional file 1: Table S5), and in-
breeding coefficient (Fis)] but different number of loci
(Additional file 1: Table S4). For the following analysis,
parameter combinations with a high number of poly-
morphic loci with a depth read coverage ranging from
30X to 60X were used. We applied the following condi-
tions as previously recommended by [38, 39]: minimum
read depth to create a putative allele group = 3, number
of mismatches allowed between putative alleles within
individuals = 2, and number of mismatches allowed be-
tween putative alleles within a putative allele group = 2.
Reads that failed to meet these criteria were removed.
This process reduced the number of reads to
499,574,561 (63% of the total reads).
The output file from ustacks was a catalog of putative

alleles per individual. This catalog was used as an input
file for the cstacks program implemented in STACKS.
This program merges putative alleles together and creates
a set of consensus putative loci. The default parameters,
namely permitting mismatches between putative alleles of
two nucleotides and removing putative alleles considered
unique alleles were applied. This process reduced the
number of reads to 310,722,904 (41% of the total reads).
The output list of consensus putative loci was used as

an input file for the sstacks program implemented in
STACKS. This program matches each individual putative
locus list against the consensus putative loci for each
species. The default parameters were applied, following
the base matching on the alignment position, which
allowed the detection of sequences errors. Consensus
putative loci for each species that were found among all
individuals were retained. The tsv2 and gstacks pro-
grams were implemented in STACKS to assemble and
merge paired-end reads. These processes reduced the
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number of reads to 100,980,315 (16% of the total reads)
among 50,514 loci (Additional file 1: Figure S1).
Following de novo assembly, we performed an add-

itional data-filtering step per species using the popula-
tions program implemented in STACKS. Consensus
putative loci were excluded from the study using the fol-
lowing criteria: 1) present in < 80% of individuals; 2)
minor allele frequency < 0.05; 3) <30X – >60X read
coverage; and 4) > one SNP per locus. We examined
whether a high read depth affected our data in the filter-
ing as well as the downstream analysis (Additional file 1:
Appendix S1) as previously reported [40]. A cut-off fil-
tering process was employed using vfilter by examining
whether the high depth coverage reads affected our data
(https://github.com/bcbio/bcbio-nextgen) following a pre-
vious study’s suggestion [40] (the output removed 0.001%
of the total reads). The number of reads was reduced
to 64,502,837 (8% of the total reads, Additional file 1:
Table S6) among 24,318 loci (Additional file 1: Table S7
and Figure S1).
The observed (Ho) and expected heterozygosity (He), Fis,

and Fst were estimated per region and per species using
popGenome package in R v3.3 [41]. The significance of
pairwise Fst values was tested using 10,000 permutations.
Population genetic structure was explored using fas-

tSTRUCTURE [42] without a priori information of the
geographical origin of each sample. Analyses were per-
formed using the admixture model with correlated allele
frequencies and a burn-in period of 200,000 MCMC in-
teractions, followed by 300,000 interactions per run
using the logistic parameter. We selected a number of K
(putative populations) ranging from 1 to 12 with all loci.
Five replicate analyses were performed for each putative
population (K). The number of cluster was inferred
using the complexity model of fastSTRUCTURE. The
results of 5 replicates of the selected K values were
pooled into a single result using CLUMPAK web version
(http://clumpak.tau.ac.il/index.html) and their consistency
was examined following [43] recommendations using
CLUMPP V. 1.1.2 [44] by the Greedy algorithm.

Power analysis
To determine the power of RAD datasets to resolve
population structure, we performed a power analysis
using POWSIM v. 4.1 [45]. This program estimates the
statistical power of genetic homogeneity in individual
species. To reflect our sampling design, we set the num-
ber of subpopulations to four, with 5–10 samples per
subpopulation for SNPs (based on the distribution of the
individuals per sampling site; Additional file 1: Table S2).
We set the effective population size of the subpopula-
tions to 1000, 2000, and 3000, and we adjusted the
generation time (t) to assess power at multiple Fst values
(10 and 20 generations) as previously described [46]. FST

in Powsim assumes the independence of the subpopula-
tions [45]. Power was expressed as the proportion of sig-
nificant outcomes for 1000 replicates and a statistically
significant test (p < 0.05).
Additionally, the power of our SNP data to the environ-

mental association was determined using Quanto v.1.2.4
[47]. We adjusted the parameters based on our sample
size (Additional file 1: Table S5) and implemented inde-
pendent individuals for the gene-environment interaction,
a marginal effect, a population mean of 20 per region, and
a marginal R squared model.

Genome-environmental associations
The latent factor mixed model (LFMM; [48]) was used
to identify local adaptations among stonefly populations.
LFMM detects correlations between environmental vari-
ables and genetic variation through the estimation of la-
tent factors and regression coefficient. For LFMM
analysis, data on SNPs, population structure, and envir-
onmental variables and spatial eigenvectors among sam-
pling sites (8–22 (mean, 14.4) sites per species;
Additional file 1: Table S2) were used with the LEA
package in R v.3.3 [49]. To ensure that the selected can-
didate SNPs were not due to an erroneous false positive
detection, we employed Benjamin Hochberg false dis-
covery rate (FDR) algorithm to partial LFMM results of
randomly selected three locations among the regions
and three species (i.e. Rhabdiopteryx japonica, Obipteryx
femoralis, Isoperla nipponica). We compared three FDR
q-values calculated from three different expected
q-values, 0.01, 0.05, and 0.10 (i.e., 0.01 represents a crit-
ical threshold above which 1% of loci are false positives)
using a G-test implemented in the q value package in R
v.3.3 [50]. The calculated FDR q-values were not signifi-
cantly different from the expected ones for the three
species (Rhabdiopteryx japonica, G = 2.0, d.f. = 2, P = 0.4;
Obipteryx femoralis, G = 1.98, d.f. = 2, P = 0.41; and Iso-
perla nipponica, G = 1.8, d.f. = 2, P = 0.39), supporting the
fact that there is no influence of false positive selection of
candidate SNPs. Following the manual of LEA package,
we applied a FDR of 0.10 to all species [49]. Multidimen-
sional scaling (MDS) of all candidate SNPs generated
using LFMM and their correlation with environmental
variables was examined to determine the proportion of
genomic variation affected by environment. Candidate
SNPs were extracted using VCFtools v.0.1.14 [51] and
used to calculate the allele frequencies (identity by state;
IBS) at each site using Hamming distance matrix with
PLINK v.1.9 [52]. The IBS matrix was used for Principal
Coordinate Analysis (PCoA). The resulting eigenvalues of
PCoA were used for the subsequent distance-based re-
dundancy analysis (db-RDA; [53]). Statistical significance
of db-RDA models was tested using ANOVA. The
db-RDAs were conducted using capscale and ordistep
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functions and by plotting MDS1 and MDS2 in the vegan
package in R v3.0.2 (R Core Team; [54]). MDS analysis
was also used to enable the identification of a SNP associ-
ated with the respective environmental variable; therefore,
we examined correlations between environmental
variables and individual candidate SNPs using MDS and
db-RDA.
In order to determinate if the genome variation of can-

didate SNPs were affected by isolation by distance, we
conducted mantel test using the vegan package in R
v.3.2.2 [54]. We compared matrices of pairwise geo-
graphic distances (refer methods: sample collection) and
pairwise genetic distance (IBS) among individuals. We
conducted separate analyses for each species with 10,000
permutations to obtain corrected p-values.

Adaptive genetic variation among species
To determine the degree of adaptive genetic variation in
stonefly genomes, sequences of loci of seven stonefly
species harboring candidate SNPs were aligned using
bowtie2 v.2.3 [55]. Default parameters were used in
end-to-end alignment that allowed up to two mis-
matches per 90 base reads. Subsequently, the best match
sequences for each locus were identified. Additionally,
these sequences under putative selection were used to
compute mean nucleotide substitution rate within spe-
cies (i.e., individuals within species) and within or be-
tween geographical regions (i.e., species per region) by
pooling the seven species [41]. Mean nucleotide substi-
tution rate was calculated using pairwise nucleotide sub-
stitution rate, where the expected value ranged from 0
(similar) to 1 (dissimilar).
We identified the gene function of the sequences of

the candidate loci using web version of tBLASTx against
the nucleotide databases of GenBank, EMBL, DDBJ,
PDB, RefSeq, PDB, SwissProt, PIR, and PR in NCBI
(http://blast.ncbi.nlm.nih.gov) under default parameters.
Sequences with an e-value ≤1e-5 and ≥ 90% sequence
similarity were used in Gene Ontology analysis using web
service Uniprot database (https://www.uniprot.org). We
excluded a possible contamination and an erroneous gene

function in our sequences by processing our DNA se-
quences against the entire NCBI database using DeconSeq
web interface (http://deconseq.sourceforge.net/).

Results
Data filtering
RAD-Seq generated a total of 789,587,765 raw reads with
an average of 263,195,922 reads per library, 1,802,711
reads per individual, and 3,527,060 per species per region.
The length of raw reads ranged from 90 to 100 bp with an
average length of 98 bp. In total, 113,717,409 (14%) reads
with low quality, ambiguous barcode and short length
were discarded. On an average, 3,606,439 reads per indi-
vidual (range: 2,600,058–4,016,315 reads) with an aver-
age length of 98 bp (range = 90–100 bp) were
successfully aligned generating 53,835 consensus loci
(Additional file 1: Figure S1). After loci identification
and SNP calling, a dataset of 50,154 loci representing
16% of the total reads was generated, which was equiva-
lent to 222–4359 loci per species (Additional file 1:
Figure S1). After final data filtering (i.e., removing con-
sensus putative loci that were present in less than 80%
of individuals), 24,318 SNP loci were identified with
202–2167 SNP loci per species (mean = 868 SNP loci
per species, Additional file 1: Table S7) and an average
45-fold coverage per species (range = 30–60-fold).
The statistical power of our SNP dataset to population

structure (POWSIM program) and to gene-environmental
association (Quanto program) was evaluated. Both pro-
grams provided consistently high power to detect genetic
differences (90% mean statistical significance) and detec-
tion of association (57% average chance of detection)
among the populations.

Population structure
Population statistics are summarized in Table 1. Fixation
index (Fst) and inbreeding coefficient (Fis) within species
varied between 0.043–0.123 and 0–0.032, respectively.
Expected heterogeneity (He) was an average of 0.33 for all
species without spatial differentiation between regions.

Table 1 Summary of sample size and molecular metrics. Where: n, number of individuals; Ho, average observed heterozygosity;
He, average expected heteozygosity; Fst, mean genetic divergence of average pair geographical locality; Fis, inbreeding coefficient

Species n Total reads Total loci Ho He Fst Fis

Nemoura ovocercia 20 2,532,235 10,448 0.71 0.3 0.106 0.032

Haploperla japonica 32 495,817 1624 0.75 0.20 0.078 0

Stavsolus japonicus 52 798,464 7018 0.77 0.22 0.043 0.027

Rhabdiopteryx japonica 22 2,320,398 9248 0.75 0.27 0.093 0.014

Obipteryx femoralis 31 3,318,488 12,411 0.80 0.20 0.069 0.011

Isoperla nipponica 32 942,014 3086 0.70 0.29 0.081 0.003

Amphinemura longispina 30 572,899 6319 0.70 0.26 0.120 0.050
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Based on fastSTRUCTURE analysis, bayesian cluster-
ing analysis revealed 3 to 6 populations (K) as the most
parsimonious partitioning of individuals within species.
Whereas K = 3 in H. japonica [ln(K) = − 0.079] and S.
japonicus [ln(K) = − 0.040]; K = 4 in A. longispina
[ln(K) = − 0.044], O. femoralis [ln(K) = 0.038], R. japon-
ica [ln(k) = 0.013], and N. ovocercia [ln(K) = − 0.003];
and K = 6 in I. nipponica [ln(K) = 0.008).

Genome-environmental association
Of the 24,318 SNPs, 4251 (18%) candidate SNPs
(148–1910 SNPs per species) identified by LFMM were
potentially associated with regional environment (Fig. 2,
Table 2). The highest number of SNPs associated with
environmental variables was identified in R. japonica
(1910 candidate SNPs), followed by N. ovocercia (922
candidate SNPs).
Multidimensional scaling (MDS) of all candidate SNPs

showed genomic variation affected by environment
(Fig. 2). The average amount of genotypic variation ex-
plained by the first two MDS axes was 76% for seven
species. MDS2 (overall species average of 33% of the
variation) discriminated between genomic variation in
H. japonica and O. femoralis. A combination of MDS1
and MDS2 discriminated between the genomic variation
in N. ovocercia, S. japonicus, A. longispina, R. japonica,
and I. nipponica. Environmental variables, including alti-
tude, water level, water temperature, and precipitation
significantly affected the genomic variation in five of
seven species (N. ovocercia, H. japonica, R. japonica, O.
femoralis, and A. longispina) (p < 0.05). No correlation
was observed between candidate SNPs and environmen-
tal variables for the remaining two species, S. japonicus

and I. nipponica. Highest genomic variation was detected
in Gifu region along a spatially structured environmental
gradient, whereas the least was detected in Sendai region.
We found no significant correlations between geograph-
ical and genetic distance for all species (Mantel test, H. ja-
ponica r = 0.2, P = 0.98; N. ovocercia r = 0.04, P = 0.75;
R. japonica r = 0.068, P = 0.67; O. femoralis r = 0.075,
P = 0.68; I. nipponica r = 0.2, P = 0.98; A. longispina
r = 0.3, P = 0.98; and S. japonicus r = 0.15, P = 0.99),
which indicated that the genome variation of the candi-
date SNPs was not affected by geographical distance.
db-RDA analysis of allelic variation revealed 294 SNPs

(6–92 SNPs per species) significantly associated with six
environmental variables (p < 0.05; Table 2). Thirteen
SNPs were correlated with more than one environmental
variable. Overall, precipitation and altitude were the
most frequently selected environmental variables by the
db-RDA models (Table 2), and showed strong correla-
tions with 65 and 47 SNPs, respectively, except in the
case of H. japonica and I. nipponica. Among the seven
species, I. nipponica displayed the highest number of
correlations between environmental variables and SNPs.

Comparative genome analysis
Multiple sequence alignments of candidate SNPs se-
quences using bowtie revealed an average of 98% nu-
cleotide sequence similarity among the seven species.
Mean nucleotide substitution rate within species per
geographical region (Table 3) ranged from 0 to 0.137
(mean = 0.091), where S. japonicus had the largest intra-
specific genetic variation throughout the four studied re-
gions (overall mean for four regions = 0.137). Six of
seven species showed the highest mean nucleotide

Fig. 2 Genome-wide multivariate genome-environmental associations. Panels show the multidimensional scaling analysis (MDS1 and MDS2) of
4251 candidate SNPs of seven stoneflies species across four regions of Japan. Colored circles represent different regions: red, Matsuyama; black,
Gifu; green, Sendai; and blue, Sapporo
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substitution rate in Gifu region (Table 3). Mean nucleo-
tide substitution rate within geographical regions (range
= 0.046–0.160, mean = 0.089) for seven species was sig-
nificantly lower than that between geographical regions
(range = 0.094–0.300, mean = 0.19) (p < 0.05). The Gifu
region showed the highest mean nucleotide substitution
rate between species (0.16) compared with other regions
(range = 0.046–0.075).
DNA sequences of 4251 candidate SNPs were sub-

jected to tBLASTx search using the NCBI database in
order to identify their gene functions. Of these, 3868 se-
quences (91% sequences of the candidate SNPs, 4% of
the total loci) were found to have matched with func-
tional gene regions of other organisms (such as Dros-
ophila and Lepidoptera, > 90% similarity) based on Gene
Ontology analysis using the UNIPROT database.
We identified an average of 205 SNPs unique to each

geographical region (range = 1–98 SNPs per species per
region) (Table 4). Across all species, the highest number
of unique SNPs occurred in Gifu (133 SNPs) and the
lowest number in Sendai (10 SNPs). Among the seven
species, R. japonica in Gifu showed the highest number
of unique SNPs (98 SNPs) (Table 4). Unique SNPs
showed high mean pairwise nucleotide substitution rate
within species ranging from 0.223 in H. japonica to
1.012 in S. japonicus.

Discussion
Genome-wide RAD-Seq analysis of seven stream stone-
fly species conducted in this study successfully identified
candidate SNPs associated with environmental condi-
tions along a nationwide latitudinal gradient in Japan. A
total of 4251 candidate SNPs in the stonefly genome
were potentially associated with local environmental var-
iations, of which 294 SNPs were significantly associated
with six environmental variables and 205 were unique
for a particular geographical region.
A substantial proportion (> 70%) of genomic variation

at the candidate SNPs was shaped by environment con-
ditions for five of the seven species of stoneflies. Precipi-
tation and altitude were most commonly correlated with
allelic variation at candidate SNPs. Precipitation in the
Japanese archipelago is abundant throughout the islands
all year round [56]. Regions in southern Japan, such as
Matsuyama, experience the highest amount of rainfall in
summer, whereas those in northern Japan, such as Sen-
dai and Sapporo, experience homogenous rainfall
throughout the year (Japan Meteorological Agency,
www.jma.go.jp). Precipitation has been acknowledged as
one of the principal environmental variables that shape
aquatic insect distribution and diversity [57]. Precipita-
tion is also known to influence adaptive genetic diver-
gence among populations in a variety of plants (e.g.
Sorghum bicolor, [14]) based on SNPs analysis. Our re-
sults showed that precipitation explained a substantial
proportion of SNP variation, which was likely associated
with the local adaptations of stonefly populations.
In addition to precipitation, altitude of the geograph-

ical regions was also associated with the genomic differ-
entiation of stonefly species. Altitude is a long-term
studied environmental variable implicated in the
distribution [24] and genetic differentiation [58] of
stoneflies species. In this study, sampling sites within a
geographical region were located at different altitudes
(Additional file 1: Table S1). It is, therefore, possible that
population differentiation and local adaptation of

Table 2 Summary of candidate SNPs analysis results and their correlation with environmental variables for each species. Where: H,
number of haplotypes; k, number of populations; spatial and environmental correlation: a, altitude; p, precipitation (mm); wl, water
level (m); d, discharge (m3/s); sc, snow cover (cm); wt, water temperature (°C); at, atmospheric temperature (°C)

Species SNPs H k Candidate Unique Correlated Spatial and environmental correlation

SNPs SNPs SNPs a p wl d sc wt at

Nemoura ovocercia 5073 51,230 4 922 30 66 24 5 5 11 5 5 11

Haploperla japonica 943 5987 3 261 8 6 3 3

Stavsolus japonicus 3283 58,180 3 309 16 10 2 6 2

Rhabdiopteryx japonica 4572 71,510 4 1910 113 52 4 12 4 4 12 12 4

Obipteryx femoralis 6445 18,320 4 303 8 24 4 5 3 3 5 4

Isoperla nipponica 1434 24,405 6 398 8 92 31 31 30

Amphinemura longispina 2568 17,512 4 148 22 44 10 6 10 8 10

Table 3 Mean nucleotide substitution rate within seven species
distributed across four regions of Japan based on 4251 candidate
SNPs. Numbers in bold indicate the highest values

Species Matsuyama Gifu Sendai Sapporo

Nemoura ovocercia 0.015 0.058 0.018 0.069

Haploperla japonica 0 0.317 0 0

Stavsolus japonicus 0.315 0.092 0.058 0.197

Rhabdiopteryx japonica 0.028 0.247 0.009 0.008

Obipteryx femoralis 0.018 0.115 0.026 0.004

Isoperla nipponica 0.116 0.301 0 0.259

Amphinemura longispina 0.035 0.213 0.037 0.013
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stonefly species were affected by altitude variation within
a region. Similar results have been commonly observed
in aquatic insects based on mitochondrial DNA se-
quence variation [59], and in other taxa, including ane-
monefish [15] and sorghum (Sorghum bicolor; [14])
using SNP genotyping. Together these data suggest that
environmental requirements of stoneflies species play an
essential role in their local adaptation and consequently,
in adaptive genetic variation.
Among the four sampling regions of Japan, Gifu demon-

strated the highest intraspecific genomic variation of can-
didate SNPs for six of seven species (range, 0.09–0.3).
Much higher nucleotide substitution rates has been re-
ported for the genomes of human [60], bacteria [60], and
insects [61], ranging from 0.8 to 0.9, as a consequence of
coding region sequences. Additionally, Gifu harbored 67%
of total unique SNPs observed. This suggests that Gifu
harbors a high level of genetic diversity. Geographically,
Gifu is located in the middle of Japan surrounded by the
Japanese Alps. This region has high insect diversity be-
cause of the geological formation history of the Japanese
islands [56, 57]. Ancestral Japanese landmasses were lo-
cated along the borders of two major tectonic plates,
namely the Eurasian (south Japanese landmass) and North
American (north Japanese landmass) plate [62]. Both land-
masses had independent geological histories until their
union approximately 20 million years ago [63] and the
consequent formation of the Japanese Alps. The formation
of the Japanese Alps has greatly contributed to the evolu-
tionary process (species diversification) of Japanese
aquatic insects [56] and the proteome variations of stone-
flies species [64]. However, no prior studies explored the
geographic effect on intra-specific evolutionary patterns.
Our findings provide an invaluable resource for the identi-
fication of genes associated with diverse traits of environ-
ment importance. Natural SNP variation influenced by
environmental conditions has helped to detect genes asso-
ciated with domestication [65] and climate change [66].
Thus, multiple-species studies at the molecular level have
the potential to detect hotspots of genetic diversity,
thereby having implications for future research on river

management and climate change. Moreover, multiple-spe-
cies approaches may be useful in understanding how
environmental pressure acts to shape genomic variation
of a community in a region rather than that of an iso-
lated species.
Genome–genome comparison of the candidate loci

among the seven species showed high genomic similarity
(98% nucleotide sequence similarity) and low mean nu-
cleotide substitution rate (0.089) within their geographical
regions. An evolutionary process that could lead to similar
genomic profiles as a consequence of environmental con-
ditions is parallel evolution [67]. Parallel evolution occurs
when phenotypes evolve in the same way in different spe-
cies descending from the same ancestor because of their
adaptation to similar habitats, and is a strong evidence of
natural selection in adaptive evolution [68–70]. Parallel
divergence could reflect similar selective pressures acting
on regions in different localities, geographically non-asso-
ciated genetic traits, and dependent genetic drift [68, 70].
Previous studies have demonstrated that similar environ-
mental pressure can lead to parallel evolution of the genes
under selection. For example, similar pattern of local
adaptation of two stick insect populations under similar
conditions of nutritional balance (Timema cristinae; [68]),
similar expression patterns of latitude-driven genes (as
cytochrome b) in two Drosophila species (D. melanogaster
and D. hydei; [69]), and genes associated with morpho-
logical traits (as body shape, etc.) in two populations of
three-spined stickleback (Gasterosteus aculeatus; [70])
were reported. It is considered that mutations and evolu-
tionary forces, as stabilizing selections that are invoked to
maintain the genetic polymorphism among populations,
will only play a role in maintaining genetic stability in spe-
cies in a stable environmental over long periods of time
[71].
Of the candidate loci sequences, 27% showed signifi-

cant similarity to coding sequences of known proteins.
This low proportion may be due to incomplete align-
ment matching with the genome of model organisms
(fruit flies and butterflies) and poor representation of in-
sects proteins in public databases. Functions of most of

Table 4 Numbers of unique SNPs to each geographical region per species and mean nucleotide substitution rate of the unique
SNPs within species

Species Matsuyama Gifu Sendai Sapporo Mean nucleotide substitution
rate within species

Nemoura ovocercia 6 6 4 14 0.407

Haploperla japonica 0 8 0 0 0.223

Stavsolus japonicus 8 6 0 2 1.012

Rhabdiopteryx japonica 6 98 2 7 0.331

Obipteryx femoralis 0 5 0 3 0.363

Isoperla nipponica 1 6 0 1 0.903

Amphinemura longispina 4 9 4 5 0.511
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these genes include metabolism (i.e., cellular amino acid
metabolism, catabolism, small molecule metabolism, cel-
lular nitrogen metabolism, organic substance metabol-
ism, biosynthetic metabolism, cellular catabolism, and
primary metabolism) and magnesium and citrate trans-
port in the cuticle. Interestingly, the candidate SNPs se-
quences correlated with water temperature and
discharge showed functional annotation to magnesium
and citrate transport in the cuticle as previously ob-
served [64]. The remaining annotated sequences showed
similar metabolism functionality among species and geo-
graphical regions. High degree of candidate loci sharing
same or similar functions is commonly observed on
RAD-seq studies, such as in snails [72], and sunflowers
[73]. The identical descriptions of many annotated candi-
date loci sequences may be associated to biological func-
tions with related biological pathways. Moreover, RAD-seq
method focusses on less expressed genome regions than
transcriptome methods. Overall, confirming the expression
of these functions in the insect genome requires additional
examination along with other approaches, such as gene ex-
pression analysis and proteomics.

Conclusions
Our study demonstrated that local environmental condi-
tions and ecological requirements of organisms play key
roles in their evolutionary adaptation. Given the advantage
of RAD-Seq, as finding similar genome regions [38, 39]
and the repeatability of the experiments on multiple-spe-
cies, we could affirm that our approach could detect sig-
nals of genome variation throughout local adaptation and
could be used in future studies. To further understand the
influence of environmental conditions in the genetic vari-
ation of locally adapted species, studies incorporating a
larger number of samples and /or environmental variables
combined with gene expression analysis should be con-
ducted. Additionally, we recommend that future studies
also include further tests based on a regional scale sam-
pling design with a local environmental condition, and in-
clude further observations on the potential effect of
variability of the environmental variables on the selection
of candidate loci that may provide clearer insights into the
genetic responses of stoneflies to local environmental
conditions.

Additional file

Additional file 1: Table S1. Sampling sites and associated meteorological
data. Table S2. Number of individuals per sampling site. Geographical
Regions: M, Matsuyama; G, Gifu; S, Sendai; and Sa, Sapporo. Sampling site
codes are shown as described in Additional file 1. Appendix S1. de novo
assembly filtering and post-assembly filtering. Table S3. Number of loci by
different parameter combinations evaluated for the de novo assembly.
Table S4. Number of loci after final data filtering using the population
program of the STACKS program. Table S5. Fst values after final data

filtering using the population program of the STACKS program. Table S6.
Numbers reads per species per region using the parameter combination
m3 M2 n2 for the de novo assembly after the population program by
STACKS. Table S7. Numbers of loci per species per region using the
parameter combination m3M2 n2 for de novo assembly after population
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