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Abstract

Background: Red-fleshed papaya is a good material to study the different carotenoids accumulation mechanism in
the peel and flesh. Although the peel and flesh of papaya closely integrated into one body, the flesh coloration
changing from white to red, while the exocarp coloration changing from green to yellow. In this study, the major
carotenoids accumulation and the expression patterns of key carotenoid biosynthesis pathway genes in the process
of papaya fruit ripening were studied, and the carotenoid biosynthetic pathways in the yellow peel and red flesh of
papaya were investigated.

Results: The carotenoid composition in papaya flesh and peel were different. The major carotenoids were lutein and β-
carotene in the peel, while lycopene in the flesh. The accumulation of carotenoids, including lycopene, β-carotene, and β-
cryptoxanthin were considered to cause the orange-red color of papaya cv. ‘Daqing No.10’ flesh. The color of
peel changed from green to yellow because of the fast degradation of chlorophyll and the appearance of
carotenoids such as lutein and β-carotene. Thirteen genes that encode enzymes in the carotenoid biosynthetic
pathway were detected in papaya fruit transcriptome: two phytoene synthase (PSY1, PSY2), two phytoene
desaturase (PDS1, PDS2), one ζ-carotene desaturase (ZDS), four lycopene cyclase (CYCB, LCYB1, LCYB2, LCYE), one β-
carotene hydroxylase (CHYB), one carotene ε-monooxygenase (LUT1), one violaxanthin de-epoxidase (VDE), and
one zeaxanthin epoxidase (ZEP). The results of RNA-Seq and RT-qPCR showed the expression of carotenoid
biosynthetic pathway genes was consistent with the change of carotenoid content. Carotenoid biosynthetic
pathways in the yellow peel and red flesh of papaya were analysed based on the major carotenoids
accumulation and the expression patterns of key carotenoid biosynthesis pathway genes. There was only a β-
branch of carotenoid biosynthesis in the flesh of papaya, while there were both α- and β-branch of carotenoid
biosynthesis in papaya peel. In the process of papaya fruit ripening, the α-branch was inhibited and the β-branch
was enhanced in the peel.

Conclusions: The differential carotenoid accumulation and biosynthesis pathway genes expression in peel and
flesh, lay a foundation for further study and provide further insights to control fruit color and improve fruit quality
and appearance.
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Background
Carotenoids are one of the most essential components
for human nutrition and health, mainly due to their
pro-vitamin A and antioxidant proportion. Humans are
not able to synthesize carotenoids and depend entirely
on natural sources or dietary supplements. Dietary
carotenoids are thought to provide health benefits in
decreasing the risk of disease, particularly certain can-
cers and eye disease [1, 2]. The most common dietary
carotenoids are α-carotene, β-carotene, β-cryptoxanthin,
lycopene, lutein, and zeaxanthin; α-carotene, β-carotene,
and β-cryptoxanthin are precursors of vitamin A, while
lycopene, lutein, zeaxanthin have no vitamin A activity
but can also act as antioxidants. Besides the nutritional
value of carotenoids, they are the main coloring pig-
ments of the yellow, orange, and red colors of fruits:
mango (Mangifera indica L.) [3], tomato (Lycopersicon
esculentum Mill.) [4], orange (Citrus) [5], banana (Musa
spp.) [6], papaya (Carica papaya L.) [7], and loquat
(Eriobotrya japonica L.) [8].
The biosynthetic pathway of carotenoids in high plants

has been gradually clarified by biochemical, classical
genetic and molecular genetic analysis. Plant carotenoids
are isoprenoid-derived molecules generally synthesized and
located in plastids. Two Geranylgeranyl pyrophosphate
(GGPP) molecules condense via phytoene synthase (PSY),
forming phytoene; phytoene forms lycopene via phytoene
desaturase (PDS) and ζ-carotene desaturase (ZDS); then the
biosynthetic pathway of carotenoids splits after biosynthesis
of lycopene into the α-branch and the β-branch: ① in
α-branch, lycopene cyclase (LCY) catalyzes the cyclization
of lycopene to form α-carotene; α-carotene is converted
into lutein by β-carotene hydroxylase (CHYB) and carotene
ε-monooxygenase (LUT1); ② in β-branch, LCY catalyzes
the cyclization of lycopene to form β-carotene, and CHYB
catalyzes the conversion of β-carotene to β-cryptoxanthin
and β-cryptoxanthin to zeaxanthin [9, 10]. Many carotenoid
synthesis genes including PSY, PDS, ZDS, and LCY have
been cloned successfully and genetically modified plants
with increased carotenoids levels have been obtained such
as rice, tomato, potato, and canola [11, 12].
Papaya is an important tropical and sub-tropical fruit

crop which is known for its high nutritional values like
vitamins A and vitamins C [13, 14]. There are two types
of papaya, red-fleshed and yellow-fleshed. The major
carotenoid in the pulp of red-fleshed papaya is lycopene,
while the major carotenoids in the yellow-fleshed papaya
are β-carotene and β-cryptoxanthin [15, 16]. It has been
documented that a 2-bp insertion is present in the
chromoplast specific lycopene β-cyclase (CYCB) gene
resulting in a recessive loss-of-function mutation, so as
to accumulate a large amount of lycopene which is
responsible for the red flesh [17]. Pigments in the flesh of
papaya are known, but pigments in the peel of papaya

remain unknown. The color of exocarp turns from green
to yellow and the color of the flesh changes from white to
red during the fruit ripening process in red-fleshed papaya.
The differential accumulation of carotenoids and differen-
tial expression of carotenoid synthesis genes were studied
in order to understand the different carotenoids accumula-
tion mechanism in the peel and flesh of papaya.

Results
Papaya coloration during papaya fruit ripening
C. papaya cv. ‘Da Qing No.10’ is a red-fleshed papaya.
During fruit ripening process, the most visible change of
papaya is the color of exocarp turning from green to
yellow and the color of flesh changing from white to
orange-red (Fig. 1). As seen in Fig. 1a, at green stage, the
peel is dark green and the flesh is white; at color break
stage, most of the peel is still green, but there are two
yellow stripes appear on the top of fruit, as well as the
flesh is red; at half yellow stage, the color of peel is half
green and half yellow; at full yellow stage, the color of
peel is full yellow; the flesh and peel closely integrated
into one body under the anatomical lens. The peel is not
as circumscribed from the flesh. Under a microscope,
the flesh cells are bigger than exocarp cells in FY
red-fleshed papaya. Yellow round-shaped elements are
abundant and well-distributed in peel cells with larger
yellow round-shaped and several red elongated contours
crystals present in flesh cells (Fig. 1b, c). Thus, the color
and shape of chromoplasts have a clear difference between
flesh and peel. These findings illustrated the differences in
carotenoid composition between peel and flesh.

Chlorophyll change and carotenoid accumulation
The content of chlorophyll and major carotenoids was
determined during the ripening of papaya fruit. The con-
tent of chlorophyll in the peel decreased during papaya
ripening, and there was almost no chlorophyll detected
in the flesh. The color of green stage in papaya was
green because of the high contents of chlorophyll, after
that the content of chlorophyll decreased sharply during
the process of papaya ripening (Fig. 2). A large amount
of lutein, β-carotene, as well as small amount of β-cryp-
toxanthin, zeaxanthin, lycopene were detected in the
peel. The content of β-cryptoxanthin, zeaxanthin, and
lycopene increased, while and the content of lutein and
β-carotene decreased in the peel during papaya ripening.
The presence of lutein, β-carotene, β-cryptoxanthin, zea-
xanthin and the simultaneous rapid loss of chlorophyll
caused a color shift from green to yellow during fruit
ripening.
Almost no chlorophyll, lutein, and zeaxanthin were

detected in the flesh, but a large amount of lycopene,
some β-carotene, and a small amount of β-cryptoxanthin
were detected in the flesh. In the process of fruit ripening,
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there was a sustained increase in carotenoids (lycopene,
β-carotene, β-cryptoxanthin) content. Therefore, the flesh
color changed from white to red. Except for lycopene, the
other carotenoids (lutein, β-carotene, β-cryptoxanthin,
zeaxanthin) content in peels were higher than that in
fleshes. This illustrates that exocarp is an important
source of carotenoids.

RNA-Seq analysis
The results of RNA-Seq are shown in Table 1 and Fig. 3.
Table 1 showed the clean reads number and the gene
number of the four samples. After removing low-quality
reads, adaptor sequences, and rRNA reads, we obtained

44,431,496 (PE1), and 41,487,992 (PE2), 44,812,308
(FL1), 52,110,632 (FL2) clean reads. Clean reads were
then mapped to the papaya reference genome. There were
18,941 (PE1), 18,242 (PE2), 18,315 (FL1), and 17,907 (FL2)
expressed genes detected, with the genes in the FL2 being
the least. More expressed genes at the green stage were
than those at color break stage. Figure 3 showed the
Differentially Expressed Genes (DEGs) in different sam-
ples. Compared with FL1, 2663 genes were up-regulated
and 4501 genes were down-regulated in FL2; in papaya
peel, there were 2317 genes up-regulated and 3749 genes
down-regulated. This demonstrates that a large number of
genes may participate in the process of fruit ripening.

A

B C

Fig. 1 Papaya coloration during papaya fruit ripening. a, The color of peel and flesh at the following stages of papaya fruit development: GS,
Green stage (the peel is dark green and the flesh is white); CB, Color break stage (most of the peel are still green, but there are two yellow stripes
appear on the top of fruit, as well as the flesh are red); HY, Half yellow stage (the color of peel is half green and half yellow); FY, Full yellow stage
(the color of peel is full yellow). b, The chromoplasts and flesh cells in FY stage; the red arrow in the legend indicates the red elongated contours
crystals. c, The chromoplasts and peel cells in FY stage; the red arrow in the legend indicates the yellow round-shaped elements. Small pieces of
flesh and peel of FY stage papaya were cut with a sharp razor blade to very thin sections, and the thin sections were used to observe
chromoplast with an Olympus IX51 (Tokyo, Japan)

Shen et al. BMC Genomics           (2019) 20:49 Page 3 of 11



Comparing with the peel, the number of down-regulated
genes is more than the up-regulated genes’ number in the
flesh.
The pathway enrichment analysis was carried out

using the KEGG pathway database. We focused on the
analysis of carotenoid biosynthetic pathway. Comparing
with FL1, the expression of PDS, ZDS, CYCB (chromoplast
specific lycopene β-cyclase), CHYB, and VDE (Violaxanthin

de-epoxidase) increased, while the expression of LCYB2
decreased in FL2 (Additional file 1: Figure S1). Also, the
expression of most carotenoid biosynthetic pathway genes
(PDS, ZDS, CYCB, LUT1, CHYB, VDE, and ZEP (zeaxan-
thin epoxidase)) in the peel increased with papaya ripening,
while the expression of LCYE decreased (Additional file 2:
Figure S2). Comparing of carotenoid biosynthetic genes in
the peel and flesh of papaya, we found that LCYE was the

Fig. 2 Content of major carotenoids and total chlorophyll in different papaya ripening stages. The content of total chlorophyll and major
carotenoids were measured at four stages of papaya fruit development: GS, Green stage; CB, Color break stage; HY, Half yellow stage; FY, Full
yellow stage. The green lines with rhombuses represent the content of chlorophyll or carotenoids in the peel, while the red lines with triangles
stand for the content of chlorophyll or carotenoids in flesh. Error bars on each column indicate SDs from three replicates

Table 1 The gene number of all samples

Sample Name Total Clean Reads No. Known Gene No.
(Known Gene Ratio)

New Gene No. All Gene No. All Reference Gene No.

PE1 44,431,496 17,748 (63.91%) 1193 18,941 27,769

PE2 41,487,992 17,062 (61.44%) 1180 18,242

FL1 44,812,308 17,141 (61.73%) 1174 18,315

FL2 52,110,632 16,737 (60.27%) 1170 17,907

The Known Gene Ratio = Known Gene No. / All Reference Gene No.
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only gene that had been enriched in FL2 by KEGG pathway
enrichment. The expression level of LCYE in FL2 was
significantly lower than that in PE2 (Additional file 3:
Figure S3). This indicated that the differential expression
of LCYE may be the key reason for the difference of carot-
enoid components between flesh and peel in color break
stage. As previously described, the major carotenoid in the
peel was lutein, but it was not detected in the flesh. There
was no lutein in the flesh because of non-detectable
expression of LCYE.

Screening carotenoid biosynthesis related genes in the
transcriptome
We analyzed the genes involved in carotenoid biosynthesis.
Thirteen papaya genes that encode enzymes in the caroten-
oid biosynthetic pathway were detected in papaya transcrip-
tome: two phytoene synthase (PSY1, PSY2), two phytoene
desaturase (PDS1, PDS2), one ζ-carotene desaturase (ZDS),
four lycopene cyclase (CYCB, LCYB1, LCYB2, LCYE), one
β-carotene hydroxylase (CHYB), one carotene ε-mono-
oxygenase (LUT1), one violaxanthin de-epoxidase (VDE),
and one zeaxanthin epoxidase (ZEP) (Additional file 4:
Table S1). The heat map of the carotenoid biosynthesis
related genes was drawn according to FPKM (Fragments
Per Kilobase of transcript per Million mapped reads)
values (Fig. 4). LCYB2 and LCYE were closely related in
a cluster, while the other ten genes are in a big cluster
(Fig. 4). Except for LCYB2 and LCYE, the expression of
most carotenoid biosynthetic pathway genes (PDS, ZDS,
CYCB, LUT1, CHYB, VDE, and ZEP) increased during
papaya ripening.

Fig. 3 Differential expression gene statistics. The number of up-regulated and down-regulated genes between samples is summarized. The red
rectangular columns represent the number of up-regulated genes while the green rectangular columns represent the number of
down-regulated genes

Fig. 4 Heat map diagram of expression levels for carotenoid
biosynthetic pathway genes analyzed by KEGG. The heat map was
drawn according to FPKM values. Columns and rows in the heat
map represent samples and genes, respectively. Sample names are
displayed below the heat map. Color scale indicates fold changes in
gene expression
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Phytoene synthase (PSY) is a key regulator in the
carotenoid biosynthetic pathway [18]; Two PSY genes
were detected in the transcriptome. The expression of
PSY1 increased in the flesh and peel, and no expression
of PSY2 was detected, thereby demonstrating that PSY1
was active in the carotenoid biosynthetic pathway in
papaya. Similar to papaya, PSY1 plays an important role
in tomato fruit tissue pigmentation too [19]. Two PDS
genes were detected, and the expression patterns were
the same, but the expression abundance between the
two genes was different. The expression of PDS1 in FL2
is 394.46, while that of PDS2 is 7.9 (Additional file 4:
Table S1). Because the abundant gene transcripts account
for more enzymatic activity participating in carotenoid
synthesis, PSY1 and PDS1 are the major genes involved in
the synthesis of carotenoid in fruit. The expression of two
genes (ZDS and CHYB) increased with papaya ripening.
Four lycopene cyclase genes were detected: LCYB1,
LCYB2, CYCB, and LCYE. LCYB1 and CYCB had been
cloned and characterized previously [20, 21]. We
didn’t analyze CYCB because there is a 2-bp insertion
in CYCB gene in red-fleshed papaya, CYCB is a func-
tional gene in yellow-fleshed papaya, but a pseudo
gene in red-fleshed papaya [17]. The expression of the
other three lycopene cyclase genes was different. This
showed that they may play different roles in carotenoid
synthesis.

RT-qPCR analysis of transcription levels of five carotenoid
biosynthetic pathway genes
The expression of five key carotenoid biosynthetic
pathway genes PSY1, LCYB1, LCYB2, LCYE, CHYB, in
different ripening papaya fruits and different organs
was studied using RT-qPCR analysis. The transcript
levels of PSY1 increased first and then decreased with
papaya ripening (Fig. 5b). The expression pattern of
PSY1 was similar in the flesh and peel. LCYB1 also
expressed in both flesh and peel, and the transcript
levels increased first then decreased too. The expres-
sion of LCYB2 and LCYE in the peel were higher than
that in the flesh, and the transcript levels were de-
creased with papaya ripening. The transcript level of
CHYB was higher in the peel than that in the flesh, and
the CHYB’s expression presented a trend of rising.
Figure 5b also shows the results of the relative tran-
script levels of the five carotenoid biosynthesis-related
genes in different organs (root, leaf, stem, and flower).
PSY1 expressed in leaf, stem, and ripening fruit; LCYB1
expressed in leaf, stem, fruit, flower, while almost no
expression was detected in the root; LCYB2 has a higher
expression in leaf, stem, and flower, a lower expression in
fruit. LCYE transcripts predominate in green color tissues,
such as green peel, leaf, and stem.

Carotenoid biosynthetic pathway in the yellow peel and
red flesh of papaya
Based on the major carotenoids accumulation and the
expression patterns of key carotenoid biosynthesis path-
way genes, the carotenoid biosynthetic pathway in the
yellow peel and red flesh of papaya were speculated
(Fig. 6). There were both α- and β-branch of carotenoid
biosynthesis in the peel of papaya, while there was only
β-branch in the flesh. A large amount of lutein, β-carotene,
as well as small amount of β-cryptoxanthin, zeaxanthin,
lycopene were in the peel. The most abundant carotenoid
in the flesh was lycopene, followd by β-carotene and
β-cryptoxanthin. In the peel, the key carotenoid biosyn-
thesis pathway genes: PSY1, PDS1, ZDS, LCYB1, CHYB,
LUT1, ZEP, and VDE were up-regulated during papaya
fruit ripening, while LCYE and LCYB2 were down-regu-
lated; in the flesh, PSY1, PDS1, ZDS, LCYB1, CHYB, ZEP,
and VDE were also up-regulated during papaya fruit
ripening.

Discussion
Although the flesh and peel of red-fleshed papaya fruit
are closely integrated into one body, the coloration of
the flesh and peel are quite different: the color of exo-
carp turning from green to yellow and the color of flesh
changing from white to red. So exploring the differential
mechanisms of carotenoid biosynthesis in the yellow
peel and red flesh of papaya is an interesting research
point. The color transformation is directly related to the
change of the carotenoid component. Some studies
showed that the concentration of carotenoids was sig-
nificantly higher in the peel than that in the flesh such
as Citrus iyo fruit [22] and loquat fruit [8]. The coloration
of loquat peel due to the transient increase of carotenoids
and degradation of chlorophylls [8]. In papaya fruit, carot-
enoids (lycopene, β-carotene, β-cryptoxanthin) accumu-
lates extensively in the flesh, therefore the flesh color
changes from white to red; although the content of lutein
and β-carotene decreased in the peel, the rapid loss of
chlorophyll leads to the appearance of carotenoids causes
a color shift from green to yellow. Microscopic observa-
tion also proved that the carotenoid composition between
the peel and the flesh are different. Yellow round-shaped
elements are abundant in peel cells, while larger yellow
round-shaped and several red elongated contours crystals
present in flesh cells. This result is consistent with pre-
vious research that β-carotene is deposited in globular
and tubular elements in a lipid-dissolved form whereas
lycopene is deposited in a solid crystalline form [23, 24].
The synthesis of carotenoid in peel and flesh of papaya

had been analysed base on the distribution of carotenoid
components and the expression of carotenoid biosyn-
thesis pathway genes. The increase in the content of
β-cryptoxanthin and zeaxanthin was accompanied by
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the decrease in the content of lutein and β-carotene,
indicating that there were both α- and β-branch in the
peel and the β-branch was enhanced in the process of
papaya fruit ripening. However, there is only a β-branch
in the flesh because no lutein and expression of LCYE
were detected, LCYE was the only gene that had been
enriched in FL2 by KEGG pathway enrichment. It expressed
abundantly in the green peel, but hardly expressed in the

flesh. LCYE is the key reason for the differential carotenoid
accumulation in the flesh and peel of papaya. Except for
LCYE, three lycopene cyclases had been detected in papaya
fruit transcriptome, LCYB1, CYCB, and LCYB2. LCYB1 has
been considered as a chloroplast-specific lycopene β-cyclase
as well as CYCB is a chromoplast-specific lycopene β-cy-
clase [20, 21]. Although the gene of CYCB was named as
LCY-β2 in previous studies, CYCB was used in our paper

A

B

Fig. 5 Transcription levels of five carotenoid biosynthetic pathway genes in different organs. a, The pictures of different organs were used in this
study. b, The relative transcript levels of PSY1, LCYB1, LCYB2, LCYE, CHYB in root, leaf, stem, flower, and four developmental stages of papaya fruit
were measured through RT-qPCR. RT-qPCR was performed with gene-specific primer sets in Table 2. Expression data were normalized to the
expression of CpActin. Error bars on each column indicate SDs from three replicates
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[20, 25]. LCYB1 was supposed to be a chloroplast-specific
lycopene β-cyclase, but it had higher expression level in red
flesh and the downstream products of lycopene β-cyclase
like β-carotene and β-cryptoxanthin were also detected,
which means LCYB1 expresses in non-chlorophyllous tissue
as well. This is not consistent with previous studies [20].
LCYB2 is a newly discovered gene of lycopene cyclase in
papaya, the expression of LCYB2 in peel was higher than
that in flesh, and the transcript levels had been decreasing
with papaya fruit ripening. However, the function of LCYB2
is still unclear in papaya.
The reason for the conversion from α-branch to

β-branch in the peel of papaya during fruit ripening is
not clear. One of the key roles of carotenoids in plants is
protecting the photosynthetic apparatus against photoin-
hibition and photodamage [26]. The xanthophyll cycle
transforms the excitation energy into heat and thereby
prevents the formation of damaging ROS. It is an import-
ant photoprotective process in plants [27]. Violaxanthin
de-epoxidase (VDE) and zeaxanthin epoxidase (ZEP) are
the two enzymes in the xanthophyll cycle. In excess light
conditions, VDE catalyzes the conversion of violaxanthin

to zeaxanthin via antheraxanthin, whereas ZEP catalyzes
the reverse reaction [14]. The expression of ZEP and VDE
were up-regulated in color break stage of papaya, this may
due to chlorophyll degradation enhanced the activity of
the xanthophyll cycle to avoid severe photodamage under
strong illumination.
By above knowable, the differential expression of the

key carotenoid biosynthesis pathway genes in the peel
and flesh of papaya result in the differential accumulation
of carotenoids. But little is known about the regulatory
mechanisms of the genes involved in ɑ- and β-branch.
Transcriptional factors (TFs) play important roles in a
variety of cellular and developmental processes, such as
fruit ripening, senescence, hormone signalling, and
various biotic and abiotic stress responses. For example,
several TFs have been reported to be involved in the
ripening of banana [28], tomato [29], and papaya [30].
Recently, some TFs were found to play essential roles
in regulating the carotenoid biosynthesis in plants. An
R2R3-MYB represses the transformation of α- and
β-branch carotenoids by negatively regulating expression
of CrBCH2 and CrNCED5 in flavedo of Citrus reticulate

A B

Fig. 6 Carotenoid biosynthetic pathway in the yellow peel and red flesh of papaya. a, Carotenoid biosynthetic pathway in the sample of PE2
versus PE1 (PE1-vs-PE2). b, Carotenoid biosynthetic pathway in the sample of FL2 versus FL1 (FL1-vs-FL2). Genes examined are in red or blue italic
bold letters: genes with red or blue color means they are up- or down-regulated during papaya fruit ripening respectively. The carotenoids in
rectangular boxes were determined in the study. The red-frame boxes refer to the content of carotenoid is increasing during papaya fruit
ripening and the blue-frame boxes refer to the content of carotenoid is decreasing. (The diagram is modified from Naik et al. [40])
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[31]. CpNAC1 is a positive regulator of carotenoid biosyn-
thesis during papaya fruit ripening [32]. The protein of
CpNAC2 physically interacts with CpEIN3a, which act as
a transcriptional activator of CpPDS4 and CpCHY-b by
directly binding to their promoters has been proposed
[33]. Several TFs including MYB, ERF, bZIP, bHLH,
WRKY, and NAC had been selected according to the
expression patterns with papaya fruit ripening in our
research (data not given). Some TFs expression decreased
in both flesh and peel, while some TFs were gradually
increased, paralleling the increase of the carotenoids con-
tent; some TFs have higher expression levels in the flesh,
and some TFs have much higher expression levels in the
peel. The differential expression of these TFs suggests that
they may be involved in the regulation of carotenoid
biosynthesis genes transcription in flesh or peel. The
functions of these TFs should be studied in the future.

Conclusions
Carotenoid biosynthetic pathway in the yellow peel and
red flesh of papaya was revealed on the basis of the
major carotenoids accumulation and the expression pat-
terns of key carotenoid biosynthesis pathway genes.
There is only a β-branch of carotenoid biosynthesis in
the flesh of papaya, while there are both α- and β-branch
in papaya peel. However, additional genomics wide ana-
lysis are required to determine and validate. This work
elucidated the differential anabolic pathway of caroten-
oids in peel and flesh of papaya, and provide further in-
sights to control fruit color and improve fruit quality and
appearance.

Methods
Plant materials
Papaya fruits (C. papaya cv. ‘Daqing No.10’) in different
development stages (GS, Green stage; CB, Color break
stage; HY, Half yellow stage; FY, Full yellow stage) were
harvested from Longzhijia fruit and vegetable farmers’
specialized cooperatives in November in Zhangzhou,
China. The healthy fruits of similar size, shape, and
maturity were divided into four groups. Five papaya in
the same stage were peeled, seeds were removed, and
the peel and flesh were cut into some pieces respectively.
The pieces were mixed and weighed, frozen in liquid
nitrogen, and stored at − 80 °C. Finally, eight types of
samples were obtained, namely FL1 (the flesh of GS),
FL2 (the flesh of CB), FL3 (the flesh of HY), FL4 (the
flesh of FY), PE1 (the peel of GS), PE2 (the peel of CB),
PE3 (the peel of HY), PE4 (the peel of FY). Tissue
samples (root, stem, leaf, and flower) were collected for
reverse transcription quantitative PCR (RT-qPCR) ana-
lysis. For chromoplast observation, small pieces of flesh
and peel of FY stage papaya were obtained respectively.
All pieces were cut with a sharp razor blade to thin

sections. Then the ultrathin sections were put on a clean
slide and examined with an Olympus IX51 (Tokyo,
Japan).

Spectrophotometric determination of chlorophyll content
Chlorophyll was extracted from 200mg of ground papaya
fruit materials using 25mL of 80% acetone. The absorbance
was determined at 663 nm and 646 nm with a UV-Vis
spectrophotometer equipped with 1.0 cm quartz cells.
Based on the equation of total chlorophyll concentra-
tion CT = 7.18 × A663 + 17.32 × A646, total chlorophyll
content was determined [34].

UPLC analysis of major carotenoids
An modified method for the extraction of major carot-
enoids from papaya fruit was used in the study [35].
Briefly, the sample (peel or flesh) was lyophilized using a
freeze dryer at − 40 °C for two days, followed by mechan-
ical grinding with liquid nitrogen, and stored at − 20 °C.
papaya fruit (250mg) was added into 2.5mL of acetone
(1:10). Ultrasonic-assisted extraction was used to extract
carotenoids for 1 h at 240W at 20 °C, and then centri-
fuged for 10min at 10,000 rpm at 4 °C. The liquid super-
natant was filtered by 0.22 μm organic filter, and stored at
− 20 °C for later use.
Carotenoid pigments analysis was referenced to Yan

[35] and Lee [36]. Chromatography was carried out
with a Waters Ultra-high performance liquid chroma-
tography. Samples were measured by a C18 carotenoid
column (100 mm × 2.1 i.d., 1.7 μm) from Waters. The
eluent was methyl tertiary butyl ether and methanol
(V/V = 30:70) with the type of isocratic elution. And
each eluent contained 0.01% BHT and 0.05% TEA
(triethylamine) as modifiers in order to prevent the deg-
radation of carotenoids on the column. The following rate
was 0.5 mL/min, column temperature was 25 °C, and the
injection volume was 5 μL, analyzing with UV at 445 nm.
The lutein, β-carotene, lycopene standards were obtained
from Solarbio (Beijing Solarbio Science & Technology
Co., Ltd., Beijing, China). The β-cryptoxanthin standard
was from Sigma (USA).

RNA extraction and RNA-Seq
Total RNA was extracted from the papaya fleshes or
peels using an RNA extraction kit (Dongsheng Biotech,
Guangzhou, China). Total RNA of four samples (PE1,
PE2, FL1, FL2) was used to prepare cDNA libraries using
the Illumina Dynabeads® mRNA DIRECT™ Kit. Then, the
cDNA libraries were used for paired-end 125 sequencing
using an Illumina Hiseq2500 at Genedenovo Biotech-
nology Co., Ltd. (Guangzhou, China). In total, four sets
of raw reads were obtained, and all sequencing data
were deposited in the NCBI Sequence Read Archive
(SRA). The raw reads were filtered to remove “dirty”
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data, including low-quality reads, adaptor sequences, and
rRNA reads, to generate “clean” reads. FPKM (Fragments
Per Kilobase of transcript per Million mapped reads) was
used to measure the transcript abundance of each gene.
Those with a fold-change of ≥2 and a false discovery
rate (FDR) < 0.05 were considered significantly differen-
tially expressed genes (DEGs) [37]. All of the genes were
annotated using the reference papaya genome database
(Carica papaya Version1.181: CpGDB181(JGI)) [38],
NCBI non-redundant (Nr) database, the Kyoto
Encyclopedia of genes and genomes (KEGG) pathway
database. The KEGG enrichment analysis was performed
with a Qvalue cut off of 0.05.

Reverse transcription quantitative PCR analysis
For RT-qPCR, oligonucleotide primers were designed
according to each gene’s 3′-untranslated region with
DNAMAN (Table 2). CpActin was used as the reference
gene. RT-qPCR was carried out using SYBR Green-based
PCR assay in a Bio-Rad CFX96 Real-Time PCR System
(Bio-Rad, USA). Each reaction mix contained 1.0 μL of
cDNAs, SYBR Premix ExTaq™ 10 μL, PCR forward pri-
mer (10 μmol·L− 1) 0.5 μL, PCR reverse primer
(10 μmol·L− 1) 0.5 μL, ddH2O 8.0 μL, to a final volume of
20 μL. The PCR conditions were 95 °C for 3min, followed
by 40 cycles of 95 °C for 15 s, 56 °C for 30 s, and 72 °C for
20 s. Each RT-qPCR analysis was performed in triplicate,
and the mean was used for RT-qPCR analysis. The relative
expression of the genes was calculated according to the
method of 2−△△Ct [39], and SPSS was used to analyze the
data.
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