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Abstract

Background: It has become clear in recent years that many genes in a given species may not be found in a single
genotype thus using sequences from a single genotype as reference may not be adequate for various applications.

Results: In this study we constructed a pan-transcriptome for barley by de novo assembling 288 sets of RNA-seq
data from 32 cultivated barley genotypes and 31 wild barley genotypes. The pan-transcriptome consists of 756,632
transcripts with an average N50 length of 1240 bp. Of these, 289,697 (38.2%) were not found in the genome of the
international reference genotype Morex. The novel transcripts are enriched with genes associated with responses to
different stresses and stimuli. At the pan-transcriptome level, genotypes of wild barley have a higher proportion of
disease resistance genes than cultivated ones.

Conclusions: We demonstrate that the use of the pan-transcriptome dramatically improved the efficiency in detecting
variation in barley. Analysing the pan-transcriptome also found that, compared with those in other categories, disease

resistance genes have gone through stronger selective pressures during domestication.
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Background

The phenomenon that an individual contains only a pro-
portion of the genes in a given species was initially
noticed in microbes [1]. This phenomenon led to the
concept of pan-genome which consists of core and dis-
pensable genomes [2, 3]. The core component contains
genes shared by all individuals of a given species and the
remainder belong to the dispensable component [3]. Re-
ports on pan-genome for major crop species appeared
only in recent years. Similar to that observed in various
microbes, large proportions of genes in different crop
species have also been found to be dispensable. For ex-
ample, dispensable genes account for about 20% of the
genomes in soybean (Glycine soja) [4] and Brassica oler-
acea [5], 36% in bread wheat (Triticum aestivum) [6, 7],
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50% in maize (Zea mays) [8, 9] and 43% in rice
(Oryza sativa L.) [10].

Cultivated barley (Hordeum vulgare ssp. vulgare), de-
rived from its wild progenitor H. vulgare spp. sponta-
neum, is an ancient crop that was domesticated about
10,000 years ago in the Fertile Crescent. It is an import-
ant crop growing in highly diverse environments, and
has been widely used as human food, animal feed and
for fermented and distilled beverages [11]. Barley is a
diploid and inbreeding species with a large haploid gen-
ome of 5.1 gigabases (Gb) and about 80% of the genome
is characterised by repetitive elements and large pericen-
tromeric regions that are virtually devoid of meiotic re-
combination [11, 12]. Even with the rapid progress in
sequencing technique and capacity, it is still challenging
to generate a high quality genome assembly for species
like barley. After more than a decade of dedicated
efforts, an international team consisting of over 70
researchers have successfully sequenced the complete
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genome of barley based on the cultivar Morex [12]. It
seems unlikely that high quality genome assemblies for a
large number of barley genotypes can be obtained in the
near future. Thus a high quality pan-genome of barley
may have to wait. However, capturing the majority of
the expressed genes in a barley genotype is now rela-
tively easy and inexpensive. Transcriptome profiling
based on RNA-seq has in recent years become the tech-
nique of choice in capturing different species of tran-
scripts including mRNAs, non-coding RNAs and small
RNAs [13]. RNA-seq data from a wide range of studies
with different objectives are now available for not only
cultivated but also wild barley genotypes. They include
studies varying from stress tolerance [14-18] to do-
mestication [19, 20] and plant development [21, 22].
The availability of such a large quantity of RNA-seq
datasets provides a good opportunity to construct a
pan-transcriptome to capture most of expressed genes
in barley genome.

Methods

Collection of RNA-seq data

A total of 288 sets of RNA-seq data from 63 barley ge-
notypes were collected for this study. Of these, 234 were
derived from 32 cultivated genotypes (Hordeum vulgare
ssp. vulgare) and 54 from 31 wild accessions (Hordeum
vulgare ssp. spontaneum) (Additional file 1: Table S1).
The data consisted of a total of 6,321,262,514 reads
downloaded from the EMBL (European Molecular Biology
Lab)/EBI (European Bioinformatics Institute)-European
Nucleotide Archive (ENA) database and the National
Center for Biotechnology Information (NCBI) Short
Sequence Read Archive (SRA) database. The sequences
were obtained from a wide range of studies on different
environmental factors and stress treatments including low
temperature (vernalisation) [23, 24], photoperiod [25],
drought [15], salinity [14, 17, 26], heat stress [18], disease
infection [NCBI-GEO (Gene Expression Omnibus) ac-
cession GSE83676] and excessive nutrients [16]. Some
of the sequences were obtained from studies on do-
mestication [19, 20], tissue development ([21, 22],
NCBI-GEO accession GSE87377) and whole genome
sequencing in barley [11].

Transcriptome reconstruction

Trimming and filtering of raw RNA reads were per-
formed with SolexaQA++ software [27]. As the average
spot lengths (AvgSpotLen) of different RNA-seq datasets
were not the same, different filtering standards were ap-
plied to exclude low quality reads (Additional file 2:
Table S2). Using Trinity (version 2.0.6) [28] with K-mers
=25, cleaned RNA-seq reads were pooled together and
de novo assembled with a minimum transcript length of
200 bp for all three assemblies: cultivated+wild-assembly
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(CWA, including all 63 genotypes), cultivated-assembly
(CA, including only cultivated genotypes), and wild-as-
sembly (WA, including only wild genotypes). Contami-
nated transcripts were checked using the stand-alone
DeconSeq toolkit (version 0.4.3) [29] with the default pa-
rameters. Bacterial genomes, viral genomes and human
genomes downloaded from NCBI were used to build the
‘remove’ databases which were used to identify contam-
inant transcripts. Plant genomes of maize, rice, wheat,
soybean (Glycine max), sorghum (Sorghum bicolor),
Arabidopsis thaliana, Brachypodium distachyon and
Medicago truncatula were downloaded from Ensembl-
Plants database and used to build the ‘retain’ databases.

Identification of novel transcripts not present in Morex
Transcripts from the three assemblies were aligned to
the Morex genome sequences (the international reference
genome for barley) using the GMAP programme [30]. They
were then mapped against the cDNAs (ASM32608V1.31
from EnsemblPlants database), high-confidence (HC) +
low-confidence (LC) transcripts and HC + LC genes of
Morex [12] using Blastn (version 2.2.28+). Transcripts with
similarity < 85% and coverage < 85% were retrieved and de-
fined as novel. They were then clustered using the
cd-hit-est programme from cd-hit package v4.64 [31]
based on sequence similarity (c = 0.95).

Functional annotation of transcripts
ORFs (open reading frames) of transcripts were pre-
dicted using TransDecoder v3.0.0 (https://github.com/
TransDecoder/TransDecoder/releases) with a minimum
length of 300nt (100 amino acids). Redundant CDS
(coding DNA sequence) were removed using the
cd-hit-est program (c=0.98). For CDS from the novel
transcripts, non-redundant CDS were aligned back to
the reference sequences of Morex and barley Unigene
database (ftp://ftp.ncbi.nih.gov/repository/UniGene/Hor-
deum_vulgare/), and CDS without significant hits (similar-
ity <85% and coverage <85%, E-value<le-6) were
retained. GO (gene ontology) classification for biological
process was conducted by searching against plant proteins
databases using the AgBase Goanna programme and sum-
marized by GOSlimViewer with the default parameters
[32]. GO enrichment analysis was performed with agri-
Gov2.0 [33] and REVIGO [34]. HMMER v3.1b2 software
[35] was used to detect Pfam-A domains (Pfam31.0) with
E-value<le-3 [36]. NLR-parser [37] was applied to predict
the NLR (nucleotide-binding leucine-rich repeat)-asso-
ciated motifs and detect the NBS-LRR (nucleotide-binding
site leucine-rich repeat) type disease resistance genes.
Those novel transcripts without any predicted ORFs
were retrieved. They were aligned against the barley EST
database (expressed sequence tag, B-EST, v2.1), full-
length ¢cDNAs of cv. Haruna Nijo [38] and barley
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UniGene database using Blastn with a minimum similar-
ity of 90% and coverage 90% (E-value <le-6). The
remaining unaligned transcripts were queried against
proteins from the UniProtkb_Viridiplantae database
(EMBL-EBI) and the AgBase plant protein database [32].
Alignments with a minimum identity and coverage both
at 70% were considered as significant matches (E-value
<le-6). Those transcripts without any significant hits to
the protein databases were aligned against ncRNA se-
quences from the NONCODE database [39] and long
ncRNAs of Morex [12] using Blastn (E-value <le-6) and
the Rfam database [40] with the Infernal software ver-
sion 1.1.2 [41].

SNP discovery

Trimmed reads of the representative RNA-seq datasets
(dataset with the largest reads number when there are
replicates for a specific accession) for each genotype
were mapped to the pan-transcriptome (CWA) with
Bowtie2 (v2.2.9) [42]. Redundant sequences of the CWA
were firstly removed using cd-hit-est program (c = 0.95)
before reference building. Duplicated reads were re-
moved using the samtools v1.3.1 from the SAMtools
package [43]. SNPs (single nucleotide polymotphisms) or
SNVs (single nucleotide variants) were called by using
‘samtools mileup’ and ‘bceftools call’ [43] commands with
MAPQ 220 and were filtered with bcftools (-e ‘DP <4’
--SnpGap 3). The variant rates for cultivated and wild
barley genotypes were annotated with SnpEff v 4.3 t [44].
Based on the gmap results with the Morex genome, SNP
density along each chromosome was calculated with a
10 Mb window size. Based on SNP data from 63 culti-
vated and wild barley genotypes, the principle compo-
nent analysis (PCA) was conducted using vcftools
v0.1.14 [45] (converting the SNP vcf files to .ped and
.map files), plink v1.90 beta [46] (converting .ped and
.map files to binary files) and GCTA v1.91.7 beta [47]
(outputting the .eigenval and .eigenvec files). The first
two principal components were selected for categorizing
the cultivated and wild barley genotypes.

Genetic differentiation between cultivated and wild barley

To estimate the genetic differentiation of cultivated and
wild barley, the patterns of allele frequency for each locus
were measured using the SNP data from the two groups
of genotypes. Gene differentiation was measured by the
fixation index (Fs7) using vcftools v0.1.14 [45]. Transcripts
with Fgr larger than the 95th percentile were treated as
having been subjected to strong selective pressures. Distri-
bution of such transcripts on each chromosome was in-
vestigated by alignment them against the Morex genome.
The KEGG (Kyoto Encyclopedia of Genes and Genomes)
internal annotation tool BlastKOALA (www.kegg.jp/blas-
tkoala/) and KAAS (https://www.genome.jp/tools/kaas/)
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were used to assign K numbers to those transcripts
and enriched pathways were identified by KEGG map-
ping (www.kegg.jp/kegg/mapper.html).

We also analysed the barley Mla (Mildew resistance
locus a) gene families which are specific to resistance to
powdery mildew and genetic variations of the Mla locus
found among cultivars [48]. Since the Mla locus on
chromosome 1H has been subjected to extreme func-
tional diversification and it encodes by far the largest
number of R genes [49], it was selected for this study.
Thirty-one published gene sequences of this locus were
blast against CWA, CA and WA (identity=90%, cover-
age>50%) to identify matched transcripts. The Fgz value
the Mla gene transcripts from CWA was extracted and
the functional domains of the top hits from CA and WA
were analysed by searching against NCBI Conserved
Domains Databases (CDD) [50] with default settings.

Results

Classification and functional analysis of novel transcripts
not present in Morex

The total number of transcripts from the cultivated
+wild-assembly (CWA) were 756,632 with a N50 length
of 1240 bp. When analysed against the Morex genome
sequences, cDNAs, HC + LC transcripts and HC + LC
genes, 289,697 of the transcripts (38.2%, with a total
length of 203.9Mbp) were identified as novel (Fig. 1a).
Following the removal of the redundant sequences
(identity threshold 95%), 235,887 representative (non-re-
dundant) transcripts were retained. Of the novel CDS,
86,383 were identified with predicted open reading
frames (ORFs) with a minimum of 300 nt (100 amino
acids). Aligning the coded protein sequences to the Pfam
database identified 54,090 CDS with Pfam domains
(Fig. 1a). Numbers of top assigned domains and do-
mains related to environmental stresses were counted
(Additional file 3: Figure S1). Compared with genes in
Morex, 15 types of protein domains were substantially
enriched (percentage difference > 1.5 times) in the novel
CDS. They include peptidase, LRR domain, ABC trans-
porter, PPR (pentatricopeptide repeat) domain, short-
chain dehydrogenase, exchangers/symporters and salt
stress/antifungal family proteins. Meanwhile, significant
hits with known plant proteins were found for 44,559 of
the novel CDS, and GO annotations were assigned to
22,620 of them (Fig. la). GO classification for biological
processes indicates a large proportion of the novel CDS
was involved with ‘response to biotic and abiotic stimuli’
and ‘defense response’. These GO terms were all signifi-
cantly enriched in comparison with the genes in Morex
(P < 0.05) (Fig. 2). Aligning those transcripts without pre-
dicted ORFs against the barley EST database, the full-
length ¢cDNAs of cv. Haruna Nijo and the barley
UniGene database found 545 transcripts with
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Fig. 1 Enhanced efficiency of CWA (cultivated+wild-assembly) in detecting variations in comparison with the use of the international reference
genotype Morex. a) Novel transcripts and CDS not detected in Morex; and b) difference in the numbers of SNVs detected by using either Morex
HC + LC transcripts or CWA as the reference. The comparison was conducted using RNA-seq data from of 19 accessions from one study as the

significant hits. A total of 23,556 of the remaining tran-
scripts had significant hits to known protein databases. For
those transcripts without significant hits to known proteins,
7018 detected significant matches with ncRNA (non-coding
RNA) sequences.

To evaluate its efficiency in detecting genetic varia-
tions, the CWA (containing 528,646 transcripts after re-
dundancy removal) were used as the reference for reads
mapping. Trimmed RNA-seq reads of 19 cultivated and
wild genotypes from a single study [20] were used for
this assessment. The reads were mapped back to Morex
HC + LC transcripts and CWA, respectively. Compared
with the use of the Morex HC + LC transcripts (SN'Vs
ranging from 2655 to 8753), approximately four times
more SNVs were detected when CWA (SNV number
ranging from 11,408 to 32,610) was used as the refer-
ence. The mapping percentage of the reads also in-
creased from 95.9 to 98.5% when CWA was used as the
reference (Fig. 1b; Additional file 4: Table S3).

Functional comparison of transcripts from CA and WA
A total of 665,270 and 220,990 transcripts were assembled
for cultivated (CA) and wild barley (WA), respectively. Of

them, a total of 80,354 novel CDS for CA and 3929 for WA
were identified (Fig. 2). We also found ~ 60% transcripts of
CA are absent in WA and ~ 16% transcripts of WA are not
present in CA. The large difference in the number of novel
CDS and the proportion of common transcripts identified
between cultivated and wild barley is likely due to the less
diverse tissue types used (Additional file 1: Table S1) and
the much smaller quantity of sequences (~157Gb compared
with ~796Gb for cultivated barley) used for the wild barley
genotypes. Classification of GO terms in biological process
suggested a large number of the novel CDS from the wild
barley were involved in ‘response to stress, ‘multicellular or-
ganism development, ‘cellular component organization, ‘post
embryonic development, ‘reproduction’ and ‘anatomical
structure morphogenesis; ‘growth; ‘cell differentiation and
cell growth’. These GO terms all had substantially higher
percentages (number of proteins for a specific GO term di-
vided by the total protein number with GO terms >1.5
times) than those from the cultivated barley. The percent-
ages of GO terms ‘transport, ‘biosynthetic process; ‘embryo/
flower development; ‘lipid/carbohydrate/secondary meta-
bolic process’ and ‘regulation of gene expression’ are sub-
stantially higher for novel CDS from the cultivated barley.
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Fig. 2 The workflow for identification and annotation of novel transcripts from cultivated and wild barley genotypes

1)OREF prediction: 3,929 novel CDS

* 3,014 with Pfam domains

* 179 with GO annotations

* 932 blastx hits with plant protein

2) Transcripts without predicted ORFs:

74 hits with FIcDNA, HVEST and Unigene
* 393 blastx hits with plant proteins

347 significant hits with ncRNA

Pfam domains were assigned to 50,299 of the novel
CDS from the cultivated and 3014 of those from the
wild barley genotypes (Fig. 3). The proportions of several
protein classes, including LRR, NB-ARC (nucleotide-
binding adaptor shared by APAF-1, R proteins, and
CED-4), elongation factor, HSP (heat shock protein)
/HSF (heat shock factor) protein, EF-hand, wall-associ-
ated kinase (WAK) and ‘cold-shock’ DNA-binding
domain-containing proteins, are more than 1.5 times
higher in the wild barley than those in cultivated geno-
types (Fig. 3a). Similar analysis of CDS from all tran-
scripts of CA and WA showed that the genes with LRR,
NB-ARC, WAK, Myb/SANT (SW13, ADA2, N-CoR, and
TFIIIB)-like DNA-binding domain, LEA (late embryo-
genesis abundant) and plant mobile domains are more
abundant in wild barley genotypes than those of culti-
vated ones (Fig. 3b). Apart from the Pfam annotation,
the NLR-parser analysis also showed that both novel
CDS and the whole CDS set of wild barley had a signifi-
cantly higher proportion (two to five fold higher) of NLR
genes (including both CNL and TNL genes) than those
of cultivated barley (Table 1).

Genetic diversity of wild barley and cultivated barley with
SNP discovery

Using CWA as reference, a total of 441,770 SNPs were
identified among the cultivated barley genotypes and
672,579 SNPs were detected among the wild barley

genotypes. The number (485, 473) and proportion
(72.2%) of unique SNPs were significantly higher in the
wild barley genotypes than those in the cultivated ones
(254,664, 57.6%). SnpEff annotation analysis also found
higher genetic diversity among the wild barley genotypes
(1/193, one variant for every 193 bases) than that among
the cultivated ones (1/144). The distribution of SNPs
along each of the chromosomes is visualized with a 10
Mb window size (Additional file 5: Figure S2). A typical
V-shaped distribution pattern was observed for all chro-
mosomes. Chromosome 7H shows the largest difference
in SNP density (with an average of 1.8 times) between
cultivated and wild barley genotypes. PCA analysis indi-
cated the SNP data can effectively discriminate the culti-
vated and wild barley. They were clustered into two
distinct groups with no obvious overlapping although five
of the cultivated barley accessions show large genetic dis-
tances from the others (Additional file 6: Figure S3).

Disease resistance genes suffered more selective pressures
during barley domestication

With the 95th percentile of Fgr values (0.72) as the
threshold, a total of 6520 transcripts were found under
strong selection pressures (Fig. 4a). These transcripts are
distributed unevenly between different chromosomes al-
though the ‘V-shaped’ distribution is conserved for all
chromosomes (Fig. 4b-h). Chromosome 3H possesses
the largest number of genes under strong selection while
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there is little difference between the other six chromo-
somes. GO enrichment analysis on the 3165 genes pre-
dicted from these transcripts found that they are heavily
involved in biological processes including ‘response to
stress, ‘response to abiotic/biotic stimulus; ‘development
process, ‘anatomical structure development, ‘regulation of
biological process’ and ‘secondary metabolic process’
(Fig. 5a). When analysed against the KEGG pathway
database, these genes were found to be enriched in path-
ways of biosynthesis of antibiotics, plant-pathogen

interaction, phenylpropanoid biosynthesis and plant hor-
mone signal transduction (Fig. 5b).

The blast analysis of the 31 variants of Mla locus
against CWA identified eight matched transcripts and
only two of them had Fgr values: 049 for TRI1
20931_c5_gl_iland 0.53 for TR120931_c5_gl_i6. This
indicate the Mla gene families have still been under high
selection pressure. When separating cultivated and wild
barley genotypes, the top CA hits of Mla genes are
TR100774_c1_gl_(i2, i3, i5, i6,i7), all of which have

Table 1 Difference in NLR genes identified between cultivated and wild barley with NLR-parser analysis

CDS sets CC?-NBS-LRR(CNL) TIR°-NBS-LRR(TNL) Number of NLR genes Number of total CDS/genes Percentage of NLR genes
novel CDS of CA 114 58 172 80,354 0.21%
novel CDS of WA 39 1 40 3929 1.02%
all CDS of CA 669 66 735 134,773 0.55%
all CDS of WA 493 10 503 50,680 0.99%

2CC = coiled coil; °TIR = Toll/Interleukin1 receptor



Ma et al. BMC Genomics (2019) 20:12

Page 7 of 11

a b c
chriH chr2H
40,000 60 60
° L]
30000 40 *. 40 | .
E r. .
920,000/ 0 * ~ o
© 20 1o ot 20 *° "%
10,000‘ ..0 ° .o ° - F) .0.
o ° 0 e % on &% & & *
® o, 8% Y P e N0t ™
0. - 0 S cpamet ot U 0 o o
-1.0-0.8-0.6-04-0.20.0 02 0.4 0.6 0.8 1.0 0E+00 2E+08 4E+08 6E+08  OE+00 2E+08 4E+08  6E+08  8E+08
d e f
chr3H chr4H chrSH
60 60 60
° .
* .
40 {* M 40 - . 40 -
- o * .
° -~ . o o o,
P o Ld S -
20 & 20 o . 20 . -'\ L
L] o0 L]
Po . o oodi ~‘o..o . o :. .c. . [ o (1)
o .... . I ..a '.ﬁ'::. l 0 . o 08 ° ..~'~: 0 .... o. ) .‘:‘v -
0E+00 2E+08 4E+08 6E+08 0E+00 2E+08 4E+08 6E+08 0E+00 2E+08 4E+08 6E+08
g chr6H h chr7H
80 60
60 o . *e .
40 -
40 - o ..
LI 20 .‘ . .ﬁ..
20 - o.. . - o ..~~. . 0.. (F)
L
o | o mnss 2 o " o . *e ."'..‘r‘. N . '
0E+00 2E+08 4E+08 6E+08 0E+00 2E+08 4E+08 6E+08
Fig. 4 Overview of genetic differentiation between cultivated and wild barley with measured Fs. Physical locations of transcripts from CWA were
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>90% identity and 100% query coverage. The average se-
quence length of these transcripts is 3687 bp. The best
matched transcripts from WA are TR133441_c5_gl_(il,
i6) with a maximum of 66% query coverage. The CDD
analysis found that TR100774_c1_gl_i6 of CA (3752 bp,
the longest Mla gene transcript of CA) has CC and
NB-ARC domains and 5 LRR repeats while the tran-
script TR133441_c5_gl_ il (2160 bp, the longest Mia
gene transcripts of WA) has only CC and NB-ARC do-
mains without any predicted LRR repeats (Additional file 7:
Figure S4).

Discussion

In the study reported here we constructed a pan-tran-
scriptome of barley by de novo assembling 288 sets of
RNA-seq data from 63 genotypes. Approximately 38.2%
of the transcripts from the newly assembled
pan-transcriptome were not found in the genome of
Morex. The novel transcripts were enriched with genes
associated with response to abiotic and biotic stresses.
Comparing the cultivated and wild barley genotypes at
the pan-transcriptome level found that disease resist-
ance genes are more abundant in the wild barley and

they have suffered stronger selective pressures during
barley domestication in comparison with genes in
other categories.

As a proportion of genes in Morex must also belong
to the dispensable genome component, it seems not un-
reasonable to speculate that the ratio of dispensable gen-
ome in barley could be even higher than 38.2%.
However, it is unlikely that all genes from all of geno-
types were captured in the RNA-seq data used in this
study. Incomplete capture of all genes in individual ge-
notypes invariably lead to an exaggerated proportion of
the dispensable genome. Nevertheless, considering the
large numbers of genotypes and sequences used in this
study, the pan-transcriptome has likely captured the ma-
jority of the expressed genes in this species. The propor-
tion of the dispensable genome found here for barley is
similar to that for bread wheat [6, 7]. With the addition
of such a large number of novel transcripts on top of
those from Morex, the newly assembled pan-transcriptome
should facilitate various investigation in barley and its close
relatives. We demonstrated as part of this study that, com-
pared with the use of Morex as the reference, four times
more SNVs were detected when CWA was used (Fig. 1b).
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Compared with the cultivated genotypes, wild barley
contains substantially more disease resistance genes.
This is the case for both the whole transcripts and novel
ones only (Fig. 3). Although a larger number of novel
CDS are identified from CA than those from WA, the
difference unlikely contributed significantly to the com-
parison as it was conducted using the proportion values.
The disease resistance genes include those with
NB-ARC, LRR and WAK domains [51-54]. It has been

reported that the LRR receptors and WAK are not only
regulating plant immunity but also tightly linked to
other yield-related genes [55]. NLR-parser analysis also
revealed that the wild barley genotypes contained higher
percentage of genes conferring disease resistance in
comparison with the cultivated ones (Table 1). Import-
antly, the difference does not seem to be caused by how
the samples used in generating the RNA-seq data were
obtained. Although the ratio of the disease resistance
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genes was higher in the wild barley genotypes than the
cultivated ones, none of the RNA-seq datasets from the
former were generated from plants challenged with any
biotic pathogen while 16 datasets from cultivated barley
genotypes were generated from tissues infected by spider
mite (Additional file 1: Table S1). Therefore, the ob-
served difference must, to a large degree, reflect genuine
differences between cultivated and wild barley. The gen-
etic differentiation analysis also found that the enriched
genes under strong selective pressures are mainly those
involved in ‘response to stress, ‘plant-pathogen inter-
action, ‘phenylpropanoids biosynthesis’ and ‘plant hor-
mone signal transduction’ (Fig. 5). It has been
reported the phenylpropanoids can contribute to plant
responses towards biotic stimuli and plant hormones
can act as signals to trigger defense responses [56,
57]. Thus, these two enriched pathways may help ex-
plain why wild barley expresses a higher proportion
of disease resistance genes even without pathogen in-
fection. Moreover, the results from the analysis of the
Mla gene transcripts provide also further evidence
showing that genes related to disease resistance have
suffered stronger selection than other gene categories
during domestication.

As the increased yield potential is one of the most
important changes following domestication and
breeding [58], the substantially reduced numbers of
genes responsive to diseases in the cultivated geno-
types suggest the likelihood that disease resistance
can incur costs in yield potential. This likelihood is
not different from previous studies showing that re-
sistance often incur physiological costs that reduce
host fitness in the absence of the disease in concern in
different plant species [59, 60]. It is believed that such
costs can arise because the defence strategy could
have harmful pleiotropic effects [61] or because in-
vestment in defence requires allocation of limiting
resources and hence trade-offs with other traits [59].
Many crop plants have also been characterised by
low levels of resistance to pathogen infection [62].
The likelihood that resistance may incur costs that
reduce host fitness or yield potential suggests that
incorporating a large number of resistance genes
into a single genotype may not be an effective breed-
ing strategy. Rather, targeting only genes resistant to
major disease for a given environment can be more
efficient in breeding cultivars with high yield
potential.

Conclusions

In our study, we constructed a barley pan-transcriptome
by using 63 different genotypes. At the pan-transcriptome
level, we demonstrated that the disease resistance genes
went through stronger selective pressures than other gene
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categories during barley domestication. With the
trade-offs between gaining yield potential and increasing
disease resistance during domestication and breeding, we
infer that targeting only genes for major diseases for
a given environment can be more efficient in variety
breeding than incorporating all resistance genes into a
specific genotype.
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study. (XLSX 15 kb)

Additional file 2: Table S2. Different filtering criteria for raw sequences
of RNA-seq data with different spot lengths (AvgSpotLen). (XLSX 9 kb)

Additional file 3: Figure S1. Functional annotation of novel CDS from
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