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Abstract

Background: Studies that aim at explaining phenotypes or disease susceptibility by genetic or epigenetic variants
often rely on clustering methods to stratify individuals or samples. While statistical associations may point at increased
risk for certain parts of the population, the ultimate goal is to make precise predictions for each individual. This
necessitates tools that allow for the rapid inspection of each data point, in particular to find explanations for outliers.

Results: ACESisan integrative cluster- and phenotype-browser, which implements standard clustering methods, as
well as multiple visualization methods in which all sample information can be displayed quickly. In addition, ACES can
automatically mine a list of phenotypes for cluster enrichment, whereby the number of clusters and their boundaries
are estimated by a novel method. For visual data browsing, ACES provides a 2D or 3D PCA or Heat Map view. ACES is

implemented in Java, with a focus on a user-friendly, interactive, graphical interface.

Conclusions: ACES has been proven an invaluable tool for analyzing large, pre-filtered DNA methylation data sets

available from https://github.com/GrabherrGroup/ACES.

and RNA-Sequencing data, due to its ease to link molecular markers to complex phenotypes. The source code is
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Introduction

One fundamental challenge in modern biology and
medicine is to divide samples into distinct categories,
often cases and controls, based on the measurements of
biomarkers in the wider sense [1]. With advances in high-
throughput sequencing technologies, these markers can
comprise a large number of data points, such as in whole-
genome resequencing, RNA sequencing, or DNA methy-
lation status data. Here, identifying informative sites or
markers is essential, necessitating tools to quickly assess
what subset of markers are associated with what pheno-
types. In mathematical terms, the problem can be divided
into three parts: (a) feature selection; (b) data clustering;
and (c) correlating data clusters to phenotypes.

For univariate or multivariate data clustering, a num-
ber of core algorithms have been implemented and made
available, such as Cluto [2], Cluster 3.0 [3] and NeAT [4].
In addition, there are numerous software packages for
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MATLAB and R, albeit limited to smaller datasets due to
memory constraints. For cluster visualization, jClust [5]
provides a graphical user interface, as does ClustVis [6],
a web tool using 2D scatterplots and localizations. May-
day [7] is a powerful and distributed R-based platform
for analysis and visualization, which was initially designed
for microarray analyses. Likewise, The Hierarchical Clus-
tering Explorer [8] focuses on microarrays and visualizes
the data primarily as dendrograms and heat maps, simi-
lar to Clusterphile [9], which does focus on interactively
exploring the data.

Unlike these tools and packages, ACES provides a full
workflow guiding the user through a process that starts
with a distance matrix or raw data, all the way to connect-
ing the clustering results to a set of phenotypes. ACES
is implemented using a modular design, which allows
for expanding its functionality and including other tool’s
algorithms in the future.

Here, we present ACES, an integrated data analysis
tool that combines all the functionality outlined above.
Implemented in Java, it provides an interactive graphical
user interface that makes the analysis available even to
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non-expert users. Machine learning components aim at
facilitating assaying the data, including estimating param-
eters, notably the number of distinct clusters [10] and
other parameters specific to the algorithm, depending
on the input data. ACES supports multiple input for-
mats, providing functionality to filter and further refine
the format. Given a distance or minus-log-probability
matrix, ACES automatically extracts features of each iden-
tity for the following clustering analysis. As different
feature extractions algorithms are applied to the origi-
nal data, a distance matrix is always the resulting input
for clustering. ACES implements several clustering algo-
rithms, including hierarchical clustering [11], k-means
[12] and DBSCAN [13], while being extendable to other
methods.

For visualization, ACES reduces the dimensionality of
the samples by Principle Component Analysis (PCA) [14]
to plot them in a 2D or rotatable 3D view, or in Heat Maps,
as shown in Fig. 3. It computes the predicitive power
of each phenotype to cluster formation, and thus allows
for rapidly accessing correlations between the underlying
data and the sample information provided with the data.
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Implementation

ACES is platform independent, implemented in Java,
and sets emphasis on user-friendliness for scientists in
biology and medicine, both experts and non-experts in
statistical data processing. A schematic view of the work-
flow is shown in Fig. 1: ACES loads either raw data,
or one or more pre-computed distance or probability
matrices. ACES is file-format compatible with Saguaro
[15], yet supports multiple matrix formats, including
phylip [16] (for more details, see the documentation
at https://grabherrgroup.github.io/ACES/). If raw data
is given, ACES computes a distance matrix based on
the Manhattan Distance, Euclidean Distance, or Pear-
son correlation coefficient. ACES next applies cluster-
ing and estimates the number of clusters, as well as
their centroids. If attributes (phenotypes, disease cat-
egories, medical data, etc.) are available, ACES pre-
dicts and ranks these attributes against the clusters.
Attributes can then be selected and displayed either in
the 2D/3D scatter plot or Heat Map view. Each data
point is clickable and displays a full set of attribute
information.
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Current File: multi_distance_matrix_brain.cactus_brain (DistanceMatrix1)------- (Hierarchical Clustering)
| MTCGA-06-0125 MTCGA-06-0125 MTCGA-064
< Attributes Rank [¥] IDH status [ MGMT promoter status [X] |mTcoA065412  WTCGA06-5413  WTCGA-06-
PR R i 1.7CGA—14—1034 W TCGA-14-1402 M TCGA-15-
» | The discriminative power of attribute }. TOGNGBINT0 WTCRNEANIH TOOAZEE
v o 5‘3“.15 ~3:334291 {.TCGA—‘/EAQZ‘/ B TCGA-76-4928 B TCGA-76+ CluSterS
2 Chr 7 gain/Chr 10 loss - 0.9408502 |
E 3 S'udy - 0.93287235 ; B TCGA-CS-5397 M TCGA-CS-6186 M TCGA-CS-
4 IDH /COdEl sub‘ype - 0.90770566 | M TCGA-DB-5277 M TCGA-DB-5278 M TCGA-DB-
5 Ul33a - 0.8284155 | MTCGA-DB-A640 M TCGA-DB-AB4P Ml TCGA-DB-
6 Random Forest Sturm Cluster - 0.8272366 | mTCGA-DH-5141 WTCGADHS5142 M TCGADH-
; :Ila(?l\_llslz'lioma RNA EXPVESSWS ::él;:tsegs-e 0.5315 X iITCGA—Du—SBA‘/ M TCGADU5849 M TCGA-DU-
Promoter status := j0: | MTCGA-DU6394 M TCGA-DU-6395 M TCGA-DU-
9 Grade - 0.34665492 L -
= 10 1p/19q codeletion - 0.2856218
O= 11 Vital status (1=dead) - 0.28472137 -
12 Supervised DNA Methylation Cluster - 0.27371418 & Q[Qze] =[]
13 Pan-Glioma DNA Methylation Cluster - 0.2722513
= 14 IDH-specific DNA Methylation Cluster - 0.26836267 EWT EWT EWT EWT EwT
™ 15 Histology - 0.26112932 mwr mwr mwr mwr ENA
16 Transcriptome Subtype - 0.2485716 EWT ENA EMutant @WT EWT
17 Original Subtype - 0.22981244 EWT EWT  EWT  EWT EWT IDH
_____ i - ta
ig !rDE:;spemfm RNA Expressn%nl(élsuss;g; - 0.1972402 W BWE BW mWE W status
expression status - .
20 RPPA cluster - 0.16191573 e e B
~ | 21 ATRX status - 0.12195438 HMutant MMutant BMutant B Mutant B Mutant
> 22 TERT promoter status - 0.1068983 EWT  EMutant BMutant B Mtant B Mutant
23 HM450 - 0.09596567 M Mutant B Mutant B Mutant B Mutant B Mutant
(Kf}i | 24 Telomere Maintenance - 0.087492764 llvw HMutant EMutant MWT B Mutant
25 Chr 19/20 co-gain - 0.07871248 M Mutant B Mutant B Mutant B Mutant B Mutant
V 26 Tissue source site - 0.07292619 RIS R e, S e S e e
27 BRAF V60O status - 0.052703287 ece
28 DAXX status - 0.050248 =0 i
29 HM27 - 0.049311835 & A (&oe w5 |
30 Karnofsky Performance Score - 0.034088753 M Methylated M Methylated  BINA
31 Whole genome - 0.014572619 } Y M Methylated B Unmethylated [l Unmethylated
32 RNAseq - 0.014475618 [ s M Methylated B Methylated Il Methylated
i 32 BRAF-KIAA1549 fusion - 0.014475618 L e .
34 Gender - 0.008237753 v, u n u MGMT promoter
' 35 RPPA - 0.0048122066 i M Unmethylated Bl Methylated W Methylated status
W | 36 sNP6 - 0.0028673355 T % u n n
: e gk * M Methylated M Methylated M Methylated
— | FRLE . M Unmethylated B Methylated Il Methylated
M Methylated M Methylated Bl Methylated
B Methylated M Methylated Il Unmethylated
[l Methylated W Methylated [l Methylated

Fig. 1 Overview of ACES. An example is used to show ACES. ACES loads a Saguaro formated file with several distance matrices, of which distance
matrix 1 is chosen. Together with the clustering results shown in two colors (pink and blue), distance matrix 1 is visualized either in a 2D scatter plot or
Heat Map view. The heat map is reordered by the clustering results. Also, ACES can load the corresponding attributes and predict their discriminative
power shown on the screen, using the clusters. According to the prediction, IDH status and MGMT promoter status are selected and then visualized
in the bottom scatter plots, as well as at the bottom line of localization in the heat map. The points are colored by their selected attribute label and
clickable to view a full set of attribute information, which clearly demonstrate the relationship between selected attributes and the clusters results
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Clustering

ACES implements both agglomerative hierarchical and
k-means clustering. For hierarchical clustering, each sam-
ple starts in its own cluster, and pairs of clusters are
merged as one moves up the hierarchy, which builds
clusters incrementally. While k-means clustering aims to
partition the samples into k clusters, which uses cluster
centers to model the samples so that each sample belongs
to the cluster with the nearest mean. As all the sam-
ples will be grouped into certain clusters, the number of
clusters is predefined. In comparison, using hierarchical
clustering, the sample data is first computed into a tree
topology before the number of clusters is determined. For
ease of use, ACES automatically estimates the number of
clusters and the initial centroids by a novel cluster cen-
troid localization algorithm implemented in ACES (see
“Cluster centroid detection” section).

In addition, ACES implements DBSCAN, which is a
density-based clustering algorithm that groups identities
that are closely packed, while detecting and marking out-
liers. DBSCAN requires two parameters: the radius (eps),
and the minimum number of identities (minPts) required
to form a dense region. A sample is defined as a core sam-
ple if at least minPts points are within distance eps of it.
All other samples within this radius are directly reachable
from this sample. For any two core samples, the reacha-
bility can be generated by the common core samples. All
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the samples that are not reachable from any other samples
are considered as outliers. Therefore, the parameters eps
and minPts can be decreased to make more clusters and
increased for less clusters.

While DBSCAN does not require the specific number
of clusters a priori, eps and minPts need to be deter-
mined beforehand. ACES provides automatic estimates by
default, computed from the distance matrix, where the
default eps requires that at most 25% distance values of all
the identities pairs are lower than eps. minPts is set by the
number of identities.

Cluster centroid detection

The similarity of two identities is represented by the dis-
tance. To localize all candidate centroid identities, the
most salient identity (SI) is first found. SI is defined as
the identity that contains the most diverse similarities to
other identities. For this kind of identity, the variance of
the similarities range must be large enough to ensure that
there is a clear boundary between itself and the other
potential centroid identities. To this end, for each iden-
tity, all distances to the target identity are used to calculate
the distance vector and the standard deviation (Std;). The
identity with the highest Std,,.,, is selected as the SI, which
is considered as the first candidate centroid. As shown in
Fig. 2, all identities are represented as black points in the
3D plot. The red point is finally selected as the SI.

! |

Load raw sample data or distance matrix

Calculate the number
and centroids of clusters

Calculate or manually
set eps and minPts

' | l

Data Visualization

Hierarchical
K-means

Clustering (default)

DBSCAN

3D/2D plotting
with clusters

Heat map
with clusters

Save to Select one attribute

Samplelnfo 1
Predict the discriminative

power of attributes

Check label IDs to
match the sample data

I

Load Samplelnfo (attributes)

Fig. 2 The workflow of ACES. ACES first reads the raw sample data file or distance matrix, and then automatically calculates the number and the
potential centroids of clusters. Hierarchical clustering is set as the default, also allowing for k-means and DBSCAN. Initial input parameters are
automatically estimated. To demonstrate the relationships among the samples together with the clustering results, the samples are downsized by
PCA and visualized in 2D or 3D plots, colored by their cluster labels. Alternatively, the distance matrix is reordered for heat map visualization to show
the clusters. ACES provides functionality to analyze data samples with multiple phenotypes to best explain the clustering: ACES automatically extracts
and sorts all phenotypes/attributes and ranks them by consistency with the biomarker data, i.e. the discriminative power of each attribute is matched
to the clusters in the data. The matches are then visualized in 2D/3D PCA plots as well as at the bottom of heat map, colored by attribute labels

3D/2D plotting with
the selected attribute

|

Save figures

Heat map with the
selected attribute

Save the sorted
Samplelnfo




Gao et al. BMC Genomics (2018) 19:964

Given the SI found in the initial step, the remaining
centroids (shown as green and blue in Fig. 2) are local-
ized by the searching window defined for each identity.
For the i identity, a radius R; is set to build a circle
searching window that contains all neighboring identi-
ties on the basis of the distance matrix. Given that DM;;
is the distance between the i identity and j identity,
one of the distances (DM;1, DM, ---, DMj,), which is
higher than most distances is set to R; to ensure that
at least 90% identities are within the i searching win-
dow. Identities that are not within the searching window
of i identity are defined as the outliers of i iden-
tity. Also, all centroid identities should possess higher
Std; as defined above to ensure the variance of their
similarities from other identities is large. Therefore, the
outliers of SI with high Std are set as initial potential
centroids.

For each new potential centroid, if all the detected cen-
troids are its outliers, it is considered a new centroid,
which means the centroid should be the outlier of the
other centroids. As described in Fig. 2: the searching win-
dow of SI, shown as red circle is first applied, and the
farthest identity (the green point in Fig. 2) with high Std
is selected as the second centroid. Then, all common out-
liers of these two detected centroids with high Std are
used for comparison, and the blue point is found as the
third centroid. These detected centroids are then used
as the initial parameters of k-means clustering, while the
number of centroids are used for both hierarchical and
k-means clustering.

Correlating clusters and attributes

ACES first determines the number of distinct and discrete
labels in each attribute, and for each attribute containing
no more than N, unique labels, it sets a (N;-1) dimen-
stional feature vector for each unique labels to ensure the
distance between each two unique labels pair is the same.
ACES then computes a statistically weighted score (S) for
each attribute by

k

Sp=Y Ni(wi — )i — )"
i=1

k k
Sw=) Swi=)_ Y &—p)x—pu)"
i=1 i=1 x€X;
s= >
Sw

where k is the number of clusters, and X; represents all the
samples within i" cluster. N; and Wi are the number and
mean value of samples in i cluster. 4 is the mean value
of all the samples. S, and S, are the standard deviation
between clusters and within clusters, respectively.
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2D/3D Scatter and heap map view

In 2D or rotatable 3D view, all samples are either
color coded by their repective clusters, or a selected
attribute (Fig. 3). Multiple views can be shown simulta-
neously, and each data point displays complete attribute
information when clicked. All images can be exported
in Scalable Vector Graphics in production quality.
ACES shows both the Heat Map values, as well as
the attributes on the left column and bottom row
(Fig. 3).

Results

DNA methylation

DNA methylation (DNAm) is an epigenetic mechanism
that can control gene expression. It has been shown that
DNAm modification of certain sites are directly linked
to cancer [17]. We extracted data from 65 and 100
samples with glioblastoma multiforme and lower grade
glioma respectively from the Cancer Gemone Atlas [18,
19], and applied the unsupervised method Saguaro [15]
to segment the genome into distinct regions, yielding
seven distance matrices exhibiting different classifica-
tions. To interpret the results, we applied the following
methods.

PCA 2D/3D visualization

For each distance matrix, we obtained main components
using PCA and plotted the samples/distances in a 2D/3D
view. For one of the matrices, ACES finds two clusters,
and predicts the highest concordance with IDH mutation
status, followed by histological assessment (Lower Grade
Glioma or Glioblastoma multiforme), in accordance with
the original study [20].

Functional heat map

ACES provides two interfaces to generate a Heat Map: (a)
the distance matrix before clustering and with the label
IDs; (b) a distance matrix resorted accoding to the cluster-
ing results. In addition, ACES can also merge the attribute
into the Heat Map by adding an extra row on the bot-
tom, marking colors consistent with the PCA attributes
visualization.

Clustering results

We used three distance matrices from the brain can-
cer data to demonstrate the three clustering methods
implemented in ACES. The PCA 2D visualization rep-
resents the samples as two-dimensional points, colored
by the clustering or labels (Fig. 4). For each distance
matrix, clusters found by hierarchical, k-means and
DBSCAN algorithms are shown in each row. The points
in black are considered as outliers by DBSCAN, indicat-
ing that these points could not be reliably assgined to any
cluster.
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results are shown on the right

Fig. 3 Cluster centroid detection. Using the distance matrix or raw data, all the identities are visualized as black points in the 3D PCA scatter plot on
the left. The standard deviation of each identity is calculated by its corresponding row or column in the distance matrix. The red point with the
highest standard deviation is first detected as the S/. Using the red searching window of S/, the green point is localized as the second centroid. As
the common outliers of both red and green circles, the blue point is found as the third centroid. Using these detected centroids, the clustering

As shown in Fig. 4, ACES groups the original samples
without any predefined parameters. The parameters are
automatically estimated by the data samples or respective
distance matrix. Further, for data samples clustering
within clear boundaries, all clustering algorithms perform
well, exemplified by Distance Matrices 1 and 2 in Fig. 4.
Specifically, the three clustering algorithms produce the
same results for Distance Matrix 1, shown on the top.
In Distance Matrix 2, all samples are categorized as the
same groups, except for two points close to the boundary
in the middle. Hierarchical and k-means categorize them
into different groups, while DBSCAN considers them as
outliers, according to the parameters that are automati-
cally computed by ACES. For Distance Matrix 3, shown in
the bottom row, the three clustering algorithms generate
different results, as there are no clear boundaries among
groups.

Figure 5 shows a Kaplan-Meier survival plot for the clus-
ters in Distance Matrix 1, which is consistent with the
findings of the original study [20] in that IDH mutation
status constitutes a better predictor for survival than his-
tology. Specifically, there are 65 people who died within
60 months in this survival analysis. Using hierarchical
clustering, patients in cluster 2 (all IDH mutants) exhibit
longer survival compared to those in cluster 1 (all IDH
wildtype).

RNA-Seq expression in pancreatic islets from Type-I
diabetes patients and controls

The dataset published by Krogvold et al. [21] consists of
RNA sequencing from pancreatic tissue from six type 1
diabetic patients (samples DIVID1 through DIVIDS6), two
brain dead organ donors that died at the onset of type 1
diabetes (samples H911 and H1204), and three brain dead
non-diabetic organ donors (samples H1778, H1499, and
H1530). Here, we choose to use the RPKM values as the
raw data input, using the same gene pathways as in the
original study, which are the “complement system” and
the “insulin secretion pathway”.

On the insulin secretion pathway (Fig. 6a left), hierar-
chical clustering finds one cluster that contains all diabetic
samples, except for DIVID6, which was also an outlier
in the original study [22]. While k-means (Fig. 6a mid-
dle) groups the samples in two clusters, these two samples
are classified as outliers in the DBSCAN clustering results
based on the parameters that were automatically calcu-
lated by ACES (Fig. 6a right). While the granularity of
ACES results in more clusters with each method, the
sample grouping produced by ACES based on hierarchi-
cal clustering is identical to the orignial study, which also
applied hierarchical clustering. Figure 6b, which shows the
complement pathway, demonstrates similar differences
while comparing the clustering methods. However, the
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Fig. 4 Clustering results shown by the PCA 2D scatter. Three distance matrices generated from brain DNA methylation data are shown by three
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Fig. 5 Survival Analysis Using Distance Matrix 1. Shown are the survival rates of 65 people who died within 60 months (black), compared to the
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(b) Complement pathway

Fig. 6 Type-| diabetes patients and controls shown by PCA 2D scatter. Shown are three clustering methods for the live diabetic samples (DIVID1
through DIVID®), brain dead early-onset diabetics (H911 and H1204), and three brain dead controls (H1778, H1499, and H1530), for genes in the
insulin secretion pathway, which should separate by cases and controls (a). By contrast, the complement pathway, which is unrelated to insulin
metabolism, separates samples by brain dead versus live patients (b). Sample DIVID6 was identified as outlier in the original study

results show that the samples have been clustered by alive
and brain dead patients and regardless of their diabetic
status, identical to the results in the original study.

Conclusion

Analyzing medical or biological data benefits from quick
and interactive tools to quickly assay the data. Here,
we present ACES, a visual browser specifically geared
towards comparing phenotypes or medical diagnoses to
the underlying genetic, epigenetic, or proteomic data.
ACES implements a number of features that makes it
suitable even by non-expert users, by encapsulating clus-
tering algorithms beneath a layer that estimates critical
parameters, and by automatically linking cluster results
to different kinds of sample meta-information. In addi-
tion, being implemented in Java rather than R or matlab,
ACES is directly accessible to users not familiar with
those envorinments. We expect that ACES will contribute
significantly to biomedical research in many areas and
diseases.
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