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Abstract

Background: Genomic selection (GS) can increase genetic gain by reducing the length of breeding cycle in forest
trees. Here we genotyped 1370 control-pollinated progeny trees from 128 full-sib families in Norway spruce (Picea
abies (L.) Karst.), using exome capture as genotyping platform. We used 116,765 high-quality SNPs to develop
genomic prediction models for tree height and wood quality traits. We assessed the impact of different genomic
prediction methods, genotype-by-environment interaction (G × E), genetic composition, size of the training and
validation set, relatedness, and number of SNPs on accuracy and predictive ability (PA) of GS.

Results: Using G matrix slightly altered heritability estimates relative to pedigree-based method. GS accuracies were
about 11–14% lower than those based on pedigree-based selection. The efficiency of GS per year varied from 1.71
to 1.78, compared to that of the pedigree-based model if breeding cycle length was halved using GS. Height GS
accuracy decreased to more than 30% while using one site as training for GS prediction and using this model to
predict the second site, indicating that G × E for tree height should be accommodated in model fitting. Using a
half-sib family structure instead of full-sib structure led to a significant reduction in GS accuracy and PA. The full-sib
family structure needed only 750 markers to reach similar accuracy and PA, as compared to 100,000 markers
required for the half-sib family, indicating that maintaining the high relatedness in the model improves accuracy
and PA. Using 4000–8000 markers in full-sib family structure was sufficient to obtain GS model accuracy and PA for
tree height and wood quality traits, almost equivalent to that obtained with all markers.

Conclusions: The study indicates that GS would be efficient in reducing generation time of breeding cycle in
conifer tree breeding program that requires long-term progeny testing. The sufficient number of trees within-family
(16 for growth and 12 for wood quality traits) and number of SNPs (8000) are required for GS with full-sib family
relationship. GS methods had little impact on GS efficiency for growth and wood quality traits. GS model should
incorporate G × E effect when a strong G × E is detected.
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Background
Norway spruce (Picea abies (L.) Karst.) is one of the
most important conifer species for commercial wood
production and ecological integrity in Europe [1]. A con-
ventional breeding program for Norway spruce based on
pedigree-based phenotypic selection usually takes be-
tween 20 and 30 years in Scandinavian countries [2]. To
shorten the breeding cycle, genomic selection (GS) has
recently been proposed as an alternative in many tree
species such as eucalypts (Eucalyptus) [3–5], maritime
pine (Pinus pinaster Aiton) [6, 7], loblolly pine (Pinus
taeda L.) [8, 9], white spruce and its hybrids (Picea
glauca [Moench] Voss) [10–12], and black spruce (Picea
Mariana [Mill] B.S.P.) [13].
Hayes et al. [14] considered four major factors affect-

ing the accuracy of GS: 1) heritability of the target trait;
2) the extent of linkage disequilibrium (LD) between the
marker and the quantitative trait locus (QTL); 3) the size
of training population and the degree of relationship be-
tween training set (TS) and validation set (VS); and 4)
the genetic architecture of the target trait. The genetic
architecture and heritability of the target/breeding traits
are intrinsic of the nature of the traits and environment
in the test trials. Thus it is difficult to change in a prac-
tical breeding process. However, some factors such as
LD between the marker and the QTL and the size of
training population are relatively easy to be managed by
increasing the number of markers and relationship be-
tween training and prediction (or validation) popula-
tions, reducing effective population size (Ne), and
increasing training population size [15].
Model selection in GS is quite important for the predic-

tion of genomic estimated breeding values (GEBVs) [14].
In GS, model adequacy is more related to the genetic
architecture of the target trait. Based on genome-wide as-
sociation studies (GWAS), most growth and wood quality
traits for conifer species have polygenic inheritance with a
gamma or exponential distribution of allelic effects [16].
To account for these skewed distributions of a few genes
with large effects and most of genes with small effects,
Bayes A, B, and Cπ and Bayesian Least Absolute Shrink-
age and Selection Operator (BLASSO) were developed to
fit the models more accurately, in contrast to Genomic
best linear unbiased prediction (GBLUP) model that as-
sumes a normal distribution of allelic effect. In most stud-
ies for growth and wood quality traits, the results were
similar regardless of models used [4, 9]. Resende et al. [9]
reported that fusiform rust in loblolly pine may be
controlled by a few genes with large effects and
Bayesian-based models had a higher predictive ability
(PA), which is defined as the correlation between adjusted
phenotype values and GEBVs. Thus, it is worthwhile to
test different models on traits that may have different gen-
etic architectures for specific tree species.

So far, several genotyping technologies have been
employed in GS, such as diversity array technology
(DArT) array [5, 17], SNP chip/array [4–6, 9, 10, 13],
genotyping by sequencing (GBS) [10, 11], and exome
capture [18]. Those technologies were developed to
genotype a subset of a whole genome, especially for
conifer species with a large genome size. From the pub-
lished papers, the number of used markers in tree spe-
cies varies from 2500 to 69,511 single nucleotide
polymorphisms (SNPs), most with a few thousands of
SNPs. With the large genome size in most commercial
conifer species (~ 20Gb) [19], for example, 20 Gb in
Norway spruce [20], such small number of markers may
not be able to capture most of QTL effects with
short-range marker-QTLs LD in undomesticated popu-
lations or large breeding populations. Thus, such studies
mostly capture those QTL effects with long-range
marker-QTLs LD and relationships in highly related
populations, such as full-sib families in tree breeding
programs with a small Ne.
Evaluations of accuracy in GS have been performed with

phenotypic and dense marker data from a single site and
multiple sites in several tree species [8, 11, 17]. Substantial
G × E effects for growth traits have been found in conifer
species [21–23]. However, wood quality traits usually have
a low or non-significant G × E [24–26]. Thus, a GS model
for growth traits using data from a single site and used to
predict genomic breeding values in another site, may pro-
duce a low accuracy.
The aims of this study were to 1) evaluate the accuracy

of GS on tree height and wood quality traits; 2) assess
the GS accuracy for single site, cross-site, and joint-sites
(e.g. G × E effect on GS selection); 3) examine effect of
different statistical models and ratios between TS and
VS for GS; 4) explore the roles of relatedness (full-sib,
half-sib and unrelated) on accuracy of GS; 5) test the ac-
curacy using subsets of random markers and markers
with the largest positive effects; 6) estimate number of
trees within-family and number of families required for
effective GS for tree height and wood quality traits.

Materials and methods
Sampling of plant material
In this study, 1370 individuals were selected from two
28-year-old control-pollinated progeny trials with the
same 128 families from a partial diallel mating design that
consisted of 55 parents originating from Northern
Sweden. 5–20 trees per family per site were selected in
Vindeln (64.30°N, 19.67°E, altitude: 325m) and Hädanberg
(63.58°N, 18.19°E, altitude, 240m). Buds and the first year
fresh needles from 46 parents were sampled in a
grafted archive at Skogforsk, Sävar (63.89°N, 20.54°E)
and in a grafted seed orchard at Hjssjö (63.93°N,
20.15°E). Progenies were raised in the nursery at
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Sävar, and the trials were established in 1988 by
Skogforsk in Vindeln and Hädanberg.
A completely randomized design without designed

pre-block was used in the Vindeln trial (site 1), which was
divided into 44 post-blocks. Single-tree plot with a spacing
of 1.5 m × 2m was used in each rectangular block with 60
trees (6 × 10). The same design was also used in the
Hädanberg trial (site 2) with 44 post-blocks, but for the
purpose of demonstration, there was an extra design with
47 extra plots, each plot with 16 trees (4 × 4). Based on
the spatial analysis, in the final model, 47 plots were com-
bined into two big post-blocks.

Phenotyping
Tree height was measured in 2003 at the age of 17 years.
Solid-wood quality traits including Pilodyn penetration
(Pilodyn) and acoustic velocity (velocity) were measured
in October 2016. Surrogate wood density trait was
measured using Pilodyn 6 J Forest (PROCEQ, Zurich,
Switzerland) with a 2.0mm diameter pin, without remov-
ing the bark. Velocity is highly related to microfibril angle
(MFA) in Norway spruce [27] and was determined using
Hitman ST300 (Fiber-gen, Christchurch, New Zealand).
By combining the Pilodyn penetration and acoustic vel-
ocity, indirect modulus of elasticity (MOE) was estimated
using the equation developed by Chen et al. [27].

Genotyping
Total genomic DNA was extracted from 1, 370
control-pollinated progeny and their 46 unrelated par-
ents using the Qiagen Plant DNA extraction protocol
with DNA quantification performed using the Qubit® ds
DNA Broad Range Assay Kit, Oregon, USA. Probe de-
sign and evaluation were described in Vidalis et al. [28].
Sequence capture was performed using the 40,018
probes previously designed and evaluated for the mate-
rials [28] and samples were sequenced to an average
depth of 15x at an Illumina HiSeq 2500 platform. Raw
reads were mapped against the P. abies reference gen-
ome v1.0 using BWA-mem [29, 30]. SAMTools [31] and
Picard [32] were used for sorting and removal of PCR
duplicates and the resulting BAM files were subse-
quently reduced to containing the probe only bearing
scaffolds (24,919) before variant calling. Variant calling
was performed using the Genome Analysis Toolkit
(GATK) HaplotypeCaller [32] in Genome Variant Call
Format (gVCF) output format. Samples were then
merged into batches of ~ 200 before all samples were
jointly called.
As per the recommendations from GATK’s best prac-

tices, Variant Quality Score Recalibration (VQSR)
method was performed in order to avoid the use of hard
filtering for exome/sequence capture data. The VQSR
method utilizes machine-learning algorithms to learn

from a clean dataset to distinguish what a good versus
bad annotation profile of variants for a particular species
should be like. For the VQSR analysis two datasets were
created, a training subset and the final input file. The train-
ing dataset was derived from a Norway spruce genetic map-
ping population with loci showing expected segregation
patterns [33]. The training dataset was designated as true
SNPs and assigned a prior value of 12.0. The final input file
was derived from the raw sequence data using GATK best
practices with the following parameters: extended probe co-
ordinates by + 100 excluding INDELS, excluding LowQual
sites, and keeping only bi-allelic sites. The following annota-
tion parameters QualByDepth, MappingQuality and Base-
QRankSum, with tranches 100, 99.9, 99.0 and 90.0 were
then applied to the two files for the determination of the
good versus bad variant annotation profiles.
The recalibrated Variant Call Format was filtered

based on the following steps: (1) removing indels; (2)
keeping only biallelic loci; (3) treating genotype with a
genotype quality (GQ) < 6 as missing; (4) filtering read
depth (DP) < 2; (5) removing individual call rate < 50%;
(6) removing variant call rate (“missingness”) < 90%; (7)
minor allele frequency (MAF) < 0.01. After steps 1–4, we
calculated discordance between 148 pairs technique rep-
licates, the average discordance was less 1%. Thus, con-
ditions of GQ < 6 and DP < 2 as missing are sufficient to
do downstream analysis. After all filtering, 116,765 SNPs
were kept for downstream analysis and 77,116 SNPs
were independent based on LD (r2 < 0.2) calculated in
PLINK [34]. The resultant SNPs were annotated using
the default parameters for snpEff 4. The Ensembl gen-
eral feature format (GTF, gene sets) information for the
P. abies genome was utilized to build an annotation
database. This analysis revealed that 90% of the variants
were located within gene coding regions, with only 10%
variants in intronic regions.
LD K-nearest neighbour genotype imputation ap-

proach [35] was used to impute missing genotypes in
TASSEL 5 [36]. After several rounds of imputation, a
few of missing genotypes were imputed using random
imputation of the codeGeno function in the synbreed
package in R [37]. In total, 5.9% of missing genotypes
were imputed.

Estimating breeding values
Breeding values for the genotypes in the trials were pre-
dicted using the following model:

y ¼ XβþWb sð Þ þ Z1aþ e ð1Þ

Where y is a vector of phenotypic observations of a
single trait; β is a vector of fixed effects, including a
grand mean and site effects, b(s) is a vector of
post-block within site effects, a is a vector of site by
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additive effects of individuals. X, W, and Z1 are inci-
dence matrices for β, b(s), and a, respectively. For
join-site cross-validation, the average of breeding values
was assumed as estimated (true) breeding values (EBVs)
when unstructured variance and covariance were used
for additive effects. Otherwise, EBVs in the single site
were assumed as true or reference breeding values. The
random additive effects (a) in equation (1) were assumed

to follow a∼Nð0;A σ2a1 σa12

σa12 σ2a2

" #Þ, where A is the addi-

tive genetic relationship matrix, σ2a1 and σ2a2 are the addi-
tive genetic variances for site 1 and site 2, respectively,
σa12 is additive genetic covariance between site 1 and

site 2. The residual e was assumed to follow e � Nð0;
In1σ2

e1 0
0 In2σ2e2

� �
Þ , where σ2e1 and σ2e2 are the residual

variances for site 1 and site 2, In1 and In2 are identity
matrices, n1 and n2 are the number of individuals in
each site, 0 is the zero matrix.
To obtain accurate heritability estimates for joint-site

models, we used the equation as following:

y ¼ XβþWb sð Þ þ Z1aþ Z2saþ e ð2Þ

where sa is a vector of site-by-additive interaction ef-
fects, a, sa, and e were assumed to be homogenous be-
tween the two sites.

Statistical analyses for genomic predictions
GBLUP, Bayesian ridge regression (BRR), BLASSO, and
reproducing kernel Hilbert space (RKHS) were used to
estimate GEBVs. We implemented GBLUP calculations
using ASReml R [38]. And we implemented the BRR,
BLASSO, and RKHS methods using BGLR function
from the BGLR package in R [39]. The details of these
statistical methods will be defined later. The GEBVs
were estimated using the following mixed linear model:

y0 ¼ Xβþ Zaþ e ð3Þ

Where y’ is a vector of adjusted phenotypic observa-
tions by post-block effects and standardized site effect
(transforming it to have zero mean and unit variance for
each site), β is a vector of fixed effect, including a grand
mean), a and e are vectors of random additive and ran-
dom error effects, respectively, and X and Z are the inci-
dence matrices.
The four genomic-based best linear unbiased predic-

tion methods were compared with the traditional
pedigree-based best linear unbiased prediction (ABLUP)

1) ABLUP

The ABLUP is the traditional method that utilizes a
pedigree relationship matrix (A) to predict the EBVs. For
ABLUP the vector of random additive effect (a) in equa-
tion (3) is assumed to follow a normal distribution a
� Nð0;Aσ2aÞ , where σ2a is the additive genetic variance.
The residual vector e is assumed as e � Nð0; Iσ2eÞ, where
I is the identity matrix. The mixed model equation (3)
was solved to obtain EBVs as:

X 0X X 0Z
Z0X Z0Z þ A−1α

� �
b
u

� �
¼ X 0y

Z0y

� �
ð4Þ

The scalar α is defined as α ¼ σ2e=σ
2
a , where σ2

e is the
residual variance, σ2a is the additive genetic variance.

2) GBLUP

The GBLUP model is the same as ABLUP, with the
only difference being that the genomic relationship
matrix (G) replaces the A matrix. The G matrix is calcu-

lated as G ¼ ðM−PÞðM−PÞT
2
Pq

i¼1
pið1−piÞ

, where M is the matrix of sam-

ples with SNPs encoded as 0, 1, 2 (i.e. the number of
minor alleles), P is the matrix of allele frequencies with
the ith column given by 2(pi − 0.5), where pi is the ob-
served allele frequency of all genotyped samples. In
GBLUP, the random additive effect (a) in equation (3) is
assumed to follow a � Nð0;Gσ2g ), where σ2

g is the

genomic-based genetic variance and GEBVs (â) are pre-
dicted from equation (4), but with A− 1 replaced by G− 1

and σ2a replaced by σ2
g . The inverse of G matrix was esti-

mated using write.realtionshipMatrix function in the
synbreed package in R [40].

3) Bayesian ridge regression (BRR)

BRR is a Bayesian version of ridge regression with the
shrinkage merit that was originally intended to deal with
the problem of high correlation among predictors in lin-
ear regression models [41]. The random additive vector
a is assigned a multivariate normal prior distribution
with a common variance to all marker effects, that is a
� Nð0; Ipσ2m), where p is the number of markers. Param-
eter σ2m denotes the unknown genetic variance contrib-
uted by each individual marker and is assigned as
σ2a � χ−2ðdf a; SmÞ, where dfa is degrees of freedom, Sm is
the scale parameter. Finally, the residual variance is
assigned as σ2e � χ−2ðdf e; SeÞ , where dfe is degrees of
freedom for residual variance, Se is the scale parameter
for residual variance.

4) Bayesian LASSO (BLASSO)
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BLASSO is a Bayesian version of LASSO regression
with two properties of LASSO: 1) shrinkage and 2) vari-
able selection. BLASSO assumes that the random addi-
tive effects in equation (3) is given a multivariate normal
distribution with marker specific prior variance, which is
assigned as a � Nð0;Tσ2mÞ, where T ¼ diagðτ21;…; τ2pÞ ,
Parameter τ2j is assigned as τ2j � Expðλ2Þ for j = 1,…, p,

where λ2 is assigned as λ2~Gamma(r, δ). The residual
variance is assigned as σ2e � χ−2 ðdf e; SeÞ , where dfe is
degrees of freedom, Se is the scale parameter.

5) RKHS

RKHS assumes that the random additive marker ef-
fects in equation (3) are distributed as a~N(0, �Kσ2a ),
where �K is computed by means of a Gaussian Kernel
that is given by Kij = exp(−hdij), where h is a
semi-parameter that controls how fast the prior covari-
ance function declines as genetic distance increase and
dij is the genetic distance between two samples com-

puted as dij ¼
Pp

k¼1ðxik−xjkÞ2 , where xik and xjk are the
kth SNPs for the ith and jth samples, respectively [42].
RKHS method uses a Gibbs sampler for the Bayesian
framework and assigned the prior distribution of σ2

a and
σ2e as σ2

a � χ−2 ðdf a; SaÞ and σ2e � χ−2 ðdf e; SeÞ, respect-
ively. Here we chose a Single-Kernel model as suggested
by Perez and de Los Campos [39], where h value was de-
fined as h = 0.25.

Model convergence and prior sensitivity analysis
The algorithm is extended by Gibbs sampling for esti-
mation of variance components. The Gibbs sampler was
run for 150,000 iterations with a burn-in of 50,000 itera-
tions. A thinning interval was set to 1000. The conver-
gence of the posterior distribution was verified using
trace plots. Flat priors were given to all the models.

Heritability and type-B genetic correlation estimates

Pedigree-based individual narrow-sense heritabilities ( h2a )
and marker-based individual narrow-sense heritabilities (h2gÞ
were calculated as

h2a ¼
σ2a
σ2pa

; h2g ¼
σ2
g

σ2pg

respectively, where σ2
a is the pedigree-based additive

variance estimated from ABLUP, while σ2
g is the

marker-based additive variance estimated from GBLUP.
σ2pa and σ2pg are phenotypic variances for pedigree-based

and marker-based models, respectively. Type-B genetic

correlation was calculated as r12 ¼ σa12=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2a1σ

2
a2

p
, where

σa12 is covariance between additive effects of the same

traits in different sites and σ2a1 and σ2a2 are estimated
additive variances for the same traits in different sites,
respectively [43]. One-tailed likelihood ratio test (LRT)
was used to check the significance of the Type-B genetic
correlation against one.

Model validation and estimation of GS accuracy
Tenfold cross-validation (90% of training and 10% valid-
ation) was performed for all the models, except in test-
ing the various sizes of training data sets and the
number of trees per family. GEBVs in VS for Bayesian
and RKHS methods were estimated as

bgi ¼ Xn

j¼1
Z0
ijâ j

Where Z0
ij is the indicator covariate (− 1, 0, or 1) for

the ith tree at the jth locus and â j is the estimated effect
at the jth locus. In this study, prediction accuracy (accur-
acy) was defined as the Pearson correlation between
cross-validated GEBVs and EBVs as “true” or reference
breeding values estimated from ABLUP using all the
phenotypic data (y). Predictive ability (PA) was defined
as the Pearson correlation between GEBVs and adjusted
phenotypic values y’ in equation (3).

Testing different statistical models and the size of
training set on GS accuracy
To test the effect of different statistical models, we used
the five models (ABLUP, GBLUP, BRR, BLASSO, and
RKHS) and five TS/VS sizes (ratio of 1:1, 3:1, 5:1, 7:1,
and 9:1 of training/validation population size, respect-
ively) to evaluate the accuracies of different models. For
each of 25 models, 10 replicate runs were carried out for
each scenario of four traits.

Testing the number of families on GS accuracy
To test the effect of the number of families on GS, we ran-
domly selected family numbers from 10 to 120 to test the
efficiency of GS. The purpose is to examine the efficiency
of using a small subset of families in clonal selection.

Testing the number of trees per family on GS accuracy
To test the effect of the number of trees per family on
GS, we randomly selected 1 to 20 trees per family as TS,
remaining trees as VS.

Testing site effect on GS accuracy
In order to consider genotype and environment inter-
action (G × E) effect on GS, different GS scenarios were
tested: 1) within-site GS, both training and validation
sets are from one single site, where EBVs from single site
model including G × E term was assumed as true breed-
ing values of the site; 2) cross-site GS, using one site
data as TS to predict GEBVs in another site; 3) joint-site
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GS, average EBVs were assumed as true breeding values
when unstructured additive variance-covariance were
used in equation (1) .

Testing the effect of relatedness on GS accuracy
In order to test whether the different relatedness (family
structures) affect the accuracy and PA, three different sce-
narios were used in this study. There were: 1) TS and VS
selected based on random sampling, but more likely from
the same full-sib families; 2) for comparison purpose, TS
and VS selected based on half-sib family structure in
which the TS and VS shared female parents, but from dif-
ferent families; 3) for comparison purpose, TS and VS se-
lected based on unrelated family structure in which the
TS and VS shared different female and male parents.

Testing subset of markers (SNPs) on GS accuracy
To test the impact of the number of SNPs on the accuracy
of genomic prediction models, 15 subsets of SNPs (10, 25,
50, 100, 250, 500, 750, 1 K, 2 K, 4 K, 6 K, 8 K, 10 K, 50 K,
and 100 K) and two different types of sampling strategies:
1) randomly selected SNP subsets and 2) SNP subsets se-
lected with the largest positive effects were implemented.
The single marker effects were estimated using
single-marker regression for association testing in training
data set. To examine the impact of relatedness on the
number of markers, we used full-sib and half-sib family
structures between training and validation populations.

Selection response with genomic selection
Selection response could be calculated as the ratio be-
tween selection accuracy and breeding cycle length in
years.
The relative efficiency of GS to traditional BLUP-based

selection (TBS) is

RE ¼ r GEBVsGS; EBVsð Þ
r EBVsTBS; EBVsð Þ

Thus, the relative efficiency of GS to TBS per year is

RE=year ¼ r GEBVsGS; EBVsð Þ
r EBVsTBS;EBVsð Þ � TTS

TGS

Where EBVs are the estimated breeding values using
the full data from equation (1), and TTBS and TGS are
the breeding cycle lengths under TBS and GS, respect-
ively [15]. We assumed that the TGS is reduced to 12.5
years from the current approximately 25 years of a
breeding cycle by omitting or reducing progeny testing
time about 10–15 years.

Results
Heritability and type-B genetic correlation
Heritabilities of the tree height based on GBLUP from
two single sites and the joint sites were higher than
those from ABLUP models (Table 1). This is in contrast
with the wood quality traits (Pilodyn, velocity, and
MOE) where all heritabilities from the GBLUP models
were lower than those obtained from the ABLUP
models. For example, heritability of Pilodyn (0.34) from
the GBLUP model was smaller than that from the
ABLUP model (0.41).
The type-B genetic correlations for tree height esti-

mated from ABLUP and GBLUP models (as 0.48 and
0.41, respectively), were significantly different from 1,
however, the type-B genetic correlations of wood quality
traits (0.80–0.94) were higher and statistically were not
significantly different from 1.

Accuracy of different statistical methods and the size of
training set
Estimates of accuracy were obtained using different stat-
istical methods and for different ratios of TS/VS for each
of four traits (Fig. 1). It was observed that ABLUP had
higher accuracy than that using the four genomic selec-
tion methods (GBLUP, BRR, BLASSO, and RKHS) for
tree height, Pilodyn, velocity, and MOE. Tree height had
higher accuracy than the three wood quality traits using
ABLUP and GS (Fig. 1 and Table 2). Among the four GS
methods, GBLUP, BLASSO, and RKHS had approxi-
mately similar accuracies, but a slightly higher accuracy
was observed when BRR was implemented for tree
height. Nevertheless, these four GS methods had little
differences on accuracy for the three wood quality traits.
GS accuracy increased as the ratio of training to valid-

ation population size increased. However, for GS
methods, the maximum accuracy was reached at the ra-
tio of 5:1 between training to validation populations for
tree height while maximum accuracy seemed to change
minimally after the 3:1 ratio for wood quality traits.

Impact of the number of families on GS accuracy
We estimated the effect of the number of families on
GS. The accuracies of all four traits increased when the
number of families increased from 10 to 120 families in
both the ABLUP and GBLUP model building (Fig. 2).
PA had a similar trend, except for tree height. PA of tree
height increased from 10 to 30 families and then had
similar values up to 120 families in the model building.

Impact of the number of trees per family on GS accuracy
In this study, all 128 full-sib families planted in both pro-
geny trials were selected. Five trees per family in site 1
(Vindeln) and 20 trees per family were selected if there
were enough trees for some families in site 2 (Hädanberg).

Chen et al. BMC Genomics          (2018) 19:946 Page 6 of 16



Thus, in joint-site cross-validation model, maximum 20
trees per family were tested. Accuracies and PA from
ABLUP for all the traits were higher than those from
GBLUP when we randomly selected a subset trees per
family as TS (Fig. 3). It was also observed that accuracy
and PA had similar increased trends as the number of
trees within-family increased, but it flattened (stabilized)
as the tree numbers reached between 6 and 14, depending
on method (e.g. ABLUP and GBLUP) and traits. The ac-
curacies of tree height, Pilodyn, velocity, and MOE in-
creased initially from 0.48, 0.39, 0.52, and 0.41 to 0.84,
0.64, 0.78, and 0.72, respectively, and then stabilized after
tree number reached 14, 6, 12, and 12 per family for
ABLUP, respectively. The GS accuracies of tree height,
Pilodyn, velocity, and MOE also stabilized after the tree
number reached 18, 6, 10 and 10 per families for GBLUP,
respectively. This may indicate that more trees within a
family (16–19) are required for a reliable training set in
GS for growth trait than for wood quality traits (6–12).

Testing site effect on GS accuracy
Accuracy and PA of ABLUP and GBLUP were listed in
Table 2 for three selection scenarios: Within-site training
and selection, cross-site training and selection (e.g. train-
ing based on one site while selection for the second site)
and joint-site training and selection using full-sib family
structure. For all four traits, accuracy of within-site
training and selection were always higher than the sec-
ond scenario of cross-site training and selection. How-
ever, the accuracy differences between within-site and
cross-site were larger for tree height than for three wood
quality traits. For example, the average accuracy of two
within-site selections is 0.76 relative to 0.44 for average
across-site for tree height from GBLUP. However, for
MOE, the average accuracy of two within-site selection
is 0.64 relative to 0.59 for average cross-site selection.
PA had a similar pattern. The joint-site model accuracies
from both ABLUP and GBLUP were the higher than
those of within-site and cross-site training and selection.

Table 1 Estimates of variance components and narrow-sense heritabilities from the conventional pedigree-based relationship matrix
model (ABLUP) and genomic-based relationship matrix model (GBLUP) in two single sites and a joint-site analysis

Trait Model Additivea Residualb Heritability (SEc) Type-Bd

Height Site1 ABLUP 690.8 5260.5 0.12 (0.06)

GBLUP 902.2 5064.1 0.15 (0.06)

Site2 ABLUP 2007.1 8604.5 0.19 (0.06)

GBLUP 2140.6 8461.8 0.20 (0.06)

Joint-site ABLUP 1104.2 7576.4 0.13 (0.04) 0.48

GBLUP 1351.8 7393.5 0.15 (0.05) 0.41

Pilodyn Site1 ABLUP 2.3 3.2 0.42 (0.11)

GBLUP 1.7 3.6 0.31 (0.08)

Site2 ABLUP 2.3 2.7 0.46 (0.10)

GBLUP 1.9 2.9 0.39 (0.07)

Joint-site ABLUP 2.2 3.0 0.41 (0.09) 0.88

GBLUP 1.7 3.3 0.34 (0.06) 0.90

Velocity Site1 ABLUP 0.039 0.036 0.52 (0.11)

GBLUP 0.036 0.037 0.49 (0.08)

Site2 ABLUP 0.034 0.039 0.47 (0.10)

GBLUP 0.026 0.044 0.37 (0.07)

Joint-site ABLUP 0.033 0.041 0.45 (0.09) 0.88

GBLUP 0.027 0.045 0.37 (0.06) 0.80

MOE Site1 ABLUP 8.0 8.5 0.48 (0.11)

GBLUP 6.2 9.7 0.39 (0.08)

Site2 ABLUP 5.8 6.4 0.47 (0.10)

GBLUP 4.7 6.9 0.40 (0.07)

Joint-site ABLUP 6.2 7.7 0.44 (0.09) 0.88

GBLUP 4.7 8.5 0.36 (0.06) 0.94
aAdditive is the additive genetic variance
bResidual is the residual variance
cSE is the standard error
dType-B represents type-B genetic correlation
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Especially, for instance, tree height accuracy in the
joint-site (0.81) was higher than average of within-site
(0.76) and average of cross-site (0.44). Similarly, PAs
from the joint-site model for all four traits were higher
than cross-site training and selection model, but were
not always higher than within-site training and selection
model. For instance, PAs from ABLUP (0.26) and
GBLUP (0.23) models in site 2 were higher than those
from the joint-site (0.20 in both models) for tree height.
Relative efficiency (RE) of GBLUP to ABLUP was lower

than 1 for all the selection scenarios and traits, ranging
from 0.80 to 0.95 with an average of 0.88. However, RE
per year (assuming halving a breeding cycle time) reached
from 1.60 to 1.89 with an average of 1.76 and were not re-
lated to any traits and selection scenarios.

Relatedness
Compared with the full-sib family structure, GS models
built with a half-sib family structure led to a considerable
decrease in accuracy and PA (Table 3). For instance, in the
half-sib family structure, GS accuracy and PA from
GBLUP model decreased from 0.81 and 0.20 to 0.55 and

0.11, respectively for tree height and from 0.69 and 0.36 to
0.50 and 0.26, respectively for MOE. However, both RE
and RE per year changed little between half-sib and
full-sib structure in GS selection. For example, RE and RE
per year increased slightly from 0.89 and 1.78 to 0.98 and
1.97, respectively for velocity from full-sib to half-sib
population while RE and REs per year decreased slightly
from 0.89 and 1.78 to 0.83 and 1.67, respectively from
full-sib to half-sib population for tree height.
Compared with half-sib family structure, GS models

built with an unrelated family between TS and VS had a
considerable decrease in accuracy and PA from GBLUP
(Table 3). For example, in the unrelated family structure,
GS accuracy and PA from GBLUP model decreased from
0.55 and 0.11 to 0.24 and 0.06, respectively for tree
height and from 0.50 and 0.26 to 0.19 and 0.10, respect-
ively for MOE. Especially for velocity, GS accuracy and
PA from GBLUP model with a marked decrease from
0.62 and 0.32 to 0.09 and 0.02, respectively, was ob-
served. However, it is worth to note that ABLUP models
built with unrelated family had zero accuracies between
training and validation populations.

Fig. 1 Accuracy of different methods and increasing ratios of training set (TS) and validation set (VS)
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Impact of the number of SNPs on GS accuracy
Accuracy and PA using subsets of markers with the lar-
gest positive effects were slightly higher than those using
subsets of random markers until the subset of random
markers reached 100 K SNPs (Fig. 4). Accuracy and PA
using a subset of random markers increased with the in-
crease in the number of markers, until all the markers
were included, except that tree height accuracy stabilized
with 4 K SNPs. However, accuracy and PA using the sub-
set of markers with the largest positive effects showed
different trends. It increased initially, then stabilized and
finally decreased until it got to the same level as the ran-
dom markers selection at the highest number of markers
of 100 K SNPs. The use of subsets of markers with the
largest positive effects had higher accuracy and PA than
random markers until most of the markers were used.
For example, PA using a subset of markers with the lar-
gest positive effects increased initially from 0.10 to 0.23
with 1 K SNPs and then decreased to 0.19 with 10 K
SNPs for tree height. Trait had a similar influence on
the number of markers to reach the plateau of the accur-
acy and PA using a subset of markers with the highest
positive effects. The accuracy and PA reached a plateau
when the number of markers with the highest positive
effects increased to 4 K–6 K for all the traits.

Impact of the number of SNPs and relatedness on GS
accuracy
It required fewer number of markers in the full-sib fam-
ily structure than the half-sib family structure to reach
the same accuracy and PA (Fig. 5). For example, the ac-
curacies observed with 250 markers in the full-sib family
structure were similar as using all 100 K markers in the
half-sib family structure for tree height, Pilodyn, velocity,
and MOE. The same PA with random 750 markers used
in the full-sib family structure for all four traits required
at least 100 K markers in half-sib family structure.

Discussion
Heritability estimates
Heritability is an essential genetic parameter in selective
breeding and its values are dependent on the relative
contributions of genetic and environmental variations,
and vary among traits [43]. In our study, heritabilities
for wood quality traits were higher than those for tree
height, which is expected and agrees with previous re-
ports for Norway spruce [1, 27]. Tan et al. [4] reported
that heritability estimates obtained from GBLUP were
higher than those from ABLUP for growth and wood
quality traits in Eucalyptus. In contrast, Lenz et al. [13]
and Gamal EL-Dien et al. [11] reported that heritability

Table 2 Accuracy, predictive ability (PA), relative efficiency (RE), and relative efficiency per year (RE per year) based on all the
markers and five genomic selection scenarios for height, Pilodyn, velocity, and MOE

Trait GS
scenario

Accuracy (Error) Predictive ability (Error) RE RE per year

ABLUP GBLUP ABLUP GBLUP GBLUP/ABLUP GBLUP/ABLUP

Height Site1 0.82 (0.01) 0.74 (0.02) 0.15 (0.03) 0.16 (0.04) 0.91 1.81

Site2 0.89 (0.01) 0.77 (0.02) 0.26 (0.03) 0.23 (0.03) 0.87 1.73

Site1→ 2 0.48 (0.04) 0.39 (0.04) 0.10 (0.04) 0.11 (0.03) 0.81 1.63

Site2→ 1 0.54 (0.02) 0.48 (0.02) 0.02 (0.03) 0.01 (0.03) 0.89 1.77

Joint-site 0.91 (0.00) 0.81 (0.02) 0.20 (0.02) 0.20 (0.02) 0.89 1.78

Pilodyn Site1 0.69 (0.02) 0.60 (0.03) 0.29 (0.04) 0.24 (0.05) 0.87 1.74

Site2 0.72 (0.02) 0.58 (0.03) 0.33 (0.03) 0.29 (0.04) 0.80 1.60

Site1→ 2 0.57 (0.03) 0.52 (0.03) 0.28 (0.03) 0.28 (0.03) 0.92 1.84

Site2→ 1 0.58 (0.02) 0.52 (0.02) 0.24 (0.04) 0.23 (0.03) 0.90 1.80

Joint-site 0.77 (0.01) 0.66 (0.01) 0.32 (0.01) 0.30 (0.02) 0.86 1.71

Velocity Site1 0.75 (0.01) 0.70 (0.02) 0.42 (0.03) 0.44 (0.04) 0.93 1.87

Site2 0.80 (0.01) 0.69 (0.02) 0.41 (0.02) 0.37 (0.03) 0.86 1.72

Site1→ 2 0.72 (0.02) 0.63 (0.02) 0.40 (0.03) 0.36 (0.03) 0.88 1.76

Site2→ 1 0.69 (0.02) 0.60 (0.03) 0.37 (0.02) 0.34 (0.03) 0.87 1.75

Joint-site 0.83 (0.01) 0.74 (0.01) 0.43 (0.02) 0.41 (0.02) 0.89 1.78

MOE Site1 0.70 (0.01) 0.64 (0.03) 0.34 (0.03) 0.35 (0.05) 0.91 1.83

Site2 0.76 (0.02) 0.64 (0.03) 0.38 (0.04) 0.35 (0.05) 0.84 1.69

Site1→ 2 0.66 (0.02) 0.59 (0.02) 0.34 (0.02) 0.32 (0.03) 0.89 1.78

Site2→ 1 0.61 (0.03) 0.58 (0.02) 0.29 (0.04) 0.31 (0.03) 0.95 1.89

Joint-site 0.79 (0.01) 0.69 (0.03) 0.38 (0.02) 0.36 (0.03) 0.87 1.75

Chen et al. BMC Genomics          (2018) 19:946 Page 9 of 16



estimates obtained from GBLUP were lower than
those from ABLUP for similar growth and wood qual-
ity traits in black spruce and interior spruce (Picea
glauca [Moench] Voss × Picea engelmannii Parry ex
Engelm.). In this study, the heritability estimates for
tree height obtained from GBLUP were slightly higher
than those from ABLUP, but there is no significant
difference from ABLUP considering the estimated
standard errors. The heritability estimates for wood
quality traits obtained from GBLUP were slightly
lower than those from ABLUP. The above two oppos-
ite situations indicate that pedigree-based ABLUP
model may inflate heritability estimates for tree height
and deflate heritability estimates for wood quality
traits if estimates from GBLUP reflect true genetic re-
lationships among families and account for Mendelian
segregation within families.
The impact of heritability on the accuracy seems to

be low in this study, in line with the report in
Douglas-fir [18] and interior spruce [11]. In our
joint-site analyses, the heritabilities of tree height,
Pilodyn, velocity, and MOE were low to moderate
(0.15, 0.34, 0.37, and 0.36, respectively), but the ac-
curacies were high (0.81, 0.66, 0.74, and 0.83,

respectively). Several factors may explain this: (1) the
large sample size of 1370 and the relatively small ef-
fective population size (Ne = 55) likely negate the ef-
fect of low trait heritability on prediction accuracy
[18]. Märtens et al. [44] demonstrated that increasing
relatedness between training and validation popula-
tions leads to high prediction accuracy on yeast; (2)
the accuracy is the correlation between EBVs assum-
ing as true breeding values from ABLUP and GEBVs
from GBLUP in VS in that heritability may affect PAs
of ABLUP and GBLUP, but may have little influence
on the correlation; (3) the accuracy estimate only
represents the additive genetic effect. We found that
PA is more similar to the narrow-sense heritability
because PA involved both phenotypic and genetic
values. For example, heritability of MOE from
GBLUP model (0.36) is the same as from ABLUP
model (0.36).
In the present study, tree height accuracy (0.81 from

GBLUP in Table 2) in full-sib family structure with 1233
individuals in TS was similar as in the deterministic
simulation with 50 QTLs and heritability of 0.2 [15].
Wood quality traits were similar to that in the simula-
tion with 100 QTLs and a heritability of 0.4.

Fig. 2 Accuracy and predictive ability (PA) of genomic selection with different number of families based on two statistical methods: 1) ABLUP
and GBLUP with 9:1 for training set and validation set
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Different GS methods show similar results
As expected, the accuracies of four different genomic
statistical methods did not clearly outperform each
other. This contrasts with previous evaluation of the
RKHS method that was reported to outperform other
GS methods for low heritability growth traits [4]. It was
usually observed that different genomic statistical
methods produce similar results for growth and wood
quality traits in other forest trees species [10, 18, 45].
With an exception, Resende et al. [9] compared Ridge
Regression-BLUP (RR-BLUP), Bayes A, Cπ, and

BLASSO for 17 traits in loblolly pine, and found that
Bayes A and Bayes Cπ have higher PA than RR-BLUP
and BLASSO for fusiform rust disease-resistance trait.
They attribute this to a few genes with large effects that
control disease resistance. When the number of markers
increases the computational time for Bayesian methods
take longer time to converge. Therefore, we also support
the proposal that GBLUP is an effective method in pro-
viding the best compromise between computational time
and prediction efficiency if there are no major gene ef-
fects [4, 46].

Fig. 3 Accuracy and predictive ability (PA) of genomic selection with different subsets of trees per family based on two statistical methods: 1)
ABLUP with randomly selecting subset from one to 20 trees per family as training set (TS); 2) GBLUP with randomly selecting subset from one to
20 trees per family as TS

Table 3 Accuracy, predictive ability (PA), relative efficiency (RE), and relative efficiency per year (RE per year) of genomic selection
model based on half-sib families and unrelated families using all markers in a joint-site analysis

Trait Accuracy (error) Predictive ability (error) RE RE per year

ABLUP GBLUPa GBLUPb ABLUP GBLUPa GBLUPb GBLUPa/ABLUP GBLUPa/ABLUP

Height 0.66 (0.03) 0.55 (0.04) 0.24 (0.10) 0.16 (0.04) 0.11 (0.04) 0.06 (0.06) 0.83 1.67

Pilodyn 0.59 (0.03) 0.44 (0.04) 0.21 (0.05) 0.23 (0.04) 0.19 (0.04) 0.12 (0.04) 0.75 1.49

Velocity 0.63 (0.02) 0.62 (0.03) 0.09 (0.09) 0.29 (0.03) 0.32 (0.03) 0.02 (0.06) 0.98 1.97

MOE 0.59 (0.02) 0.50 (0.03) 0.19 (0.09) 0.28 (0.03) 0.26 (0.03) 0.10 (0.06) 0.85 1.69
arepresents GBLUP model based on half-sib family and
brespresents GBLUP model based on unrelated family in training and validation population. The results from ABLUP models based on unrelated families did not
present in the table because they were zero
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The effect of training dataset and the number of trees
per family on GS accuracy
In this study, ratio of TS/VS varied from 1:1 to 9:1. We
found that the accuracy improved from the TS/VS ratios
of 1:1 to 3:1, but accuracy only improved a little after
the TS/VS ratio of 3:1. This is different from other stud-
ies [4, 13] showing that an increased ratio of the TS/VS
beyond 3:1 still increases the accuracy. However, we
found that our result concurs with other reports when
the ratio of TS/VS is related to the number of trees per
family [13]. In our case, each family under 1:1 ratio of
the TS/VS, has 5 trees. There is an average of 10.7 trees
per each of the 128 families. The ratios of TS/VS with
1:1, 3:1, 5:1, 7:1, and 9:1 equate to average numbers of
TS trees per family of 5.3, 8.0, 8.9, 9.4, and 9.6, respect-
ively. This may indicate that after 8 trees per family on
average as TS, there is little increase of GS efficiency for
the full-sib family. Based on resampling technique,
Perron et al. [47] reported that the number of trees per
family has an important effect on the magnitude and
precision of genetic parameter estimate. For tree height
in that study, at least four trees per family at each site
should be included in a half-sib family in order to esti-
mate a more accurate heritability and 4–8 trees/per

family per site still could improve the accuracy of herit-
ability. However, further increase in the number of tree
trees per family had little contribution toward increase
of accuracy. Wood quality traits usually have higher her-
itabilities than those of growth traits and also have less
G × E. Therefore, wood quality traits may need a lower
number of trees than growth traits for obtaining a simi-
lar accurate estimate for genetic parameters. Such calcu-
lations could guide us to make a more accurate estimate
on the number of trees per family required for pheno-
typing and genotyping.

The effect of the number of families on GS accuracy
The effect of the number of families used in cross-valid-
ation test was found important in this study with full-sib
family structure. We found that the PA and accuracy in-
creased greatly for all the traits from 10 to 120 families,
except the PA for tree height, which stabilized after 30
families for cross-validation test. Based on resampling
technique, Perron et al. [47] reported that the number of
families has a less important effect on the magnitude
and precision of genetic parameter estimate in a half-sib
family structure. However, in this study, we found that
the number of families is also important for estimates of

Fig. 4 Accuracy and predictive ability (PA) of genomic selection with subset SNPs based on 2 scenarios: 1) randomly selecting the SNPs subset (10, 25,
50, 100, 250, 500, 750, 1000, 2000, 4000, 6000, 8000, 10,000, and 100,000 SNPs); 2) selecting the SNPs subset with the largest positive effects
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GS accuracy and PA. It may be due to the small effective
population size (55 unrelated parents) as compared to
the study in Perron et al. [47]. One application of GS is
in clonal forestry to select the best clones after selection
and mating of several best parents (5–10). One question
is how to build the training equation for such clonal se-
lection. Should we use progenies of the selected parents
or all parents fromthe trial? From this study, it seems
that it is more efficient involving progenies from a larger
number of parents (families). Model building and selec-
tion using 10 families seem to have lower accuracy than
using a larger number of families. It must be tested
whether it is due to the small size of families (10–20
trees per family) used in this study, and whether increas-
ing the family size (for example 40 trees per family) as
used in clonal progeny testing in Norway spruce in
Swedish tree breeding program [2] would increase GS
accuracy in a small group of elite families.

Genotype-by-environment interaction
G× E is usually important for growth traits when the
seedlings are planted in different environments. We
found that tree height in these two northern trials had a

significantly strong G × E, indicated by the type-B gen-
etic correlations (0.48 and 0.41) from ABLUP and
GBLUP, respectively (Table 1). Such strong G × E re-
sulted in a low accuracy and PA when one site is used as
TS to predict BVs in another site as VS. A moderate to
strong G × E for growth traits has been reported in sev-
eral studies in southern and central Sweden [21, 48, 49],
but not documented in northern Sweden. Chen et al.
[21] reported that within a test series in southern and
central Sweden, the averages of type-B genetic correla-
tions varied from 0.60 to 0.89 in 6 test series and their
type-B correlations were higher than those in this study.
Such strong G × E in the present study should be consid-
ered in model fitting in order to improve PA and accur-
acy. Several advanced models have been built and tested
in crops [50, 51] and one study in tree species [52]. For
instance, Oakey et al. [50] used marker and marker by
environment interaction in RR-BLUP method to extend
the genomic selection to multiple environments.
As expected, we found that wood quality traits have

no significant type-B genetic correlations and negligible
change of accuracy and PA. A similar result has been re-
ported in two southern Norway spruce open-pollinated

Fig. 5 Accuracy and predictive ability (PA) of genomic selection with subset SNPs based on 2 scenarios: 1) randomly selecting subset of SNPs (10,
25, 50, 100, 250, 500, 750, 1000, 2000, 4000, 6000, 8000, 10,000, and 100,000 SNPs) with full-sib family structure; 2) selecting the subset of SNPs
with half-sib family structure
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progeny trials [27]. All these indicate that we could use
a genomic model in one site to predict GEBV in another
site in the same test series for wood quality traits and
use of joint-site models could slightly improve the accur-
acy as in Table 2.

Effect of different family structures
We found that our genomic accuracy for tree height and
Pilodyn using half-sib family structure was lower than that
reported by Lenz et al. [13] in black spruce, even though
more SNPs were used in this study (116 K in 20,695 con-
tigs vs 0.49 K from SNP chip). The difference is likely due
to lower heritabilities (i.e. 0.15 vs 0.42 for tree height in
GBLUP) and the larger Ne in this study (55 vs 27 unre-
lated parents). Accuracy and PA decreased from full-sib to
half-sib family structure and from half-sib to unrelated
family structure, indicating that GS model is more effi-
cient in strongly structured populations where relatedness
and LD are higher, and full-sib families also needed less
number of markers than half-sib families for obtaining
similar accuracy (Fig. 5). Similar results were obtained by
other studies [12, 13, 45, 53]. However, the relative effi-
ciency between ABLUP and GBLUP (the accuracy ratio) is
more or less similar in both full-sib and half-sib popula-
tions, which indicates that GS could be used in both
half-sib and full-sib populations. The lower estimates of
accuracy and PA (Table 3) obtained from GBLUP for un-
related family structure may be due to the low LD be-
tween marker and QTL in the unrelated population,
which indicates that GS may not be used in unrelated
family structure based on the current exome capture data.

The effect of the number of SNPs and LD in genomic
prediction
To our knowledge, this study has used the largest num-
ber of SNPs (116,765 SNPs from 20,695 contigs) for GS
in tree species [3, 7, 18]. When we used GS in the
half-sib family structure, the accuracy and PA reduced
about 20%. Moreover, the values of square of PA in
half-sib and full-sib family structure accounted for less
than 50% of heritability for all traits, which may indicate
that even with such a large number of SNPs, we may
still have not captured and explained most of the QTL
effects. This may be attributed to the low LD in spruce
in Fig. 6 (approximate 84 base pairs based on 517 unre-
lated individuals in Baison et al. [54]) and only exome
regions being used. In humans, the exome constitutes a
mere 1% of the whole genome (3Gb) [55]. For Norway
spruce, however, the genome size is ca. 20 Gb and LD is
lower than Humans [19]. Norway spruce has a mapped
genome size of 3326.3 centiMorgan (cM) [33], which is
larger compared to ~ 2100 cM in white spruce (Picea
glauca (Moench) Voss) [56]. There were about 5.6 SNPs
per contig/gene on average based on 20,695 contigs/

genes that our SNPs come from. This translates to an
average genome coverage of ~ 6.2 markers/cM. If we use
all independent 77,116 SNPs, then, it amounts to 3.7
SNPs per contig used.
Accuracy and PA obtained from the subset of markers

with the largest positive effects were slightly higher than
those from a subset of markers based on random selec-
tion, implying that using the subset of markers with the
largest effects in genomic regions with small LD decay
could track relationship more effectively than random
markers. It also implies that using the subset of markers
with the largest positive effect could also obtain some ef-
fects based on part of the short-range LD [13, 45]. Thus,
this factor could also be potentially useful to reduce
genotyping the number of SNPs and GS cost, in highly
structured population when the genome locations of
markers are known.

Efficiency of genomic selection
In the present study, we observed that the efficiency of
GS per year is greater than that based on traditional pro-
geny test selection if GS is used to half generation time.
In traditional pedigree-based progeny selection, the gen-
eration time for Norway spruce in Northern Sweden is
at least 25 years, which is based on clonal replicated pro-
geny trial of selected breeding trees. The clonal based
progeny test procedure includes: seed sowing and grow-
ing to a sufficient size (2 yrs), vegetative propagation of
seed plants by rooted cuttings (2 yrs), testing in field tri-
als (15 yrs), and assessment of trials (1 yr). The final
stage, the completion of a crossing scheme to create the
next generation, is about 5 yrs. If we could omit the pro-
geny testing of the first three stages (a total of 19 yrs)
and complete flowering induction and mating within 15
years of GS selection, the time for a breeding cycle could
be halved for Norway spruce. In this study, we only con-
sidered the efficiency of GS based on the timing of the

Fig. 6 Within contigs LD decay estimated from 517 related
individuals in Baison et al. [54]
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breeding cycle. Considering the cost for field testing, the
benefit of GS might be higher if the cost for establishing
and maintaining 3–4 progeny trials in each breeding
population is more than genotyping.

Conclusions
As expected, the main advantage of genomic selection is the
potential to shorten the breeding cycle. We observed that:

1. Using G matrix slightly altered heritability relative
to A matrix with a slight increase for tree height
and a decrease for wood quality traits.

2. ABLUP is about 11–14% more efficient than
GBLUP for tree height and wood quality traits,
while the four GS methods (GBLUP, BRR, BLASSO,
RKHS) had a similar accuracy.

3. Efficiency of GS increased from 49 to 97% among four
growth and wood quality traits if GS could reduce the
generation time for a breeding cycle to half.

4. The GS accuracy improved from the TS/VS ratios
of 1:1 to 3:1, but accuracy only improved marginally
after a TS/VS ratio of 3:1.

5. The number of families and the number of trees per
family also had an effect on GS efficiency. Wood
quality traits need fewer number of trees within-
family than tree height for a similar GS efficiency.

6. GS accuracy decreased from full-sib to half-sib fam-
ily structure and from half-sib to unrelated family
structure. The number of markers need to be in-
creased greatly for half-sib family structure to have
a similar efficiency to the full-sib family structure.

7. GS accuracy increased as the number of markers
increased. The accuracy almost reached a plateau
when the number of markers increased to 4 K–8 K
for all the traits.
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