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Background: Improving resistance to mastitis, one of the costliest diseases in dairy production, has become an
important objective in dairy cattle breeding. However, mastitis resistance is influenced by many genes involved in
multiple processes, including the response to infection, inflammation, and post-infection healing. Low genetic
heritability, environmental variations, and farm management differences further complicate the identification of
links between genetic variants and mastitis resistance. Consequently, studies of the genetics of variation in mastitis
resistance in dairy cattle lack agreement about the responsible genes.

Results: We associated 15,552,968 imputed whole-genome sequencing markers for 5147 Nordic Holstein cattle
with mastitis resistance in a genome-wide association study (GWAS). Next, we augmented P-values for markers in
genes in the associated regions using Gene Ontology terms, Kyoto Encyclopedia of Genes and Genomes pathway
analysis, and mammalian phenotype database. To confirm results of gene-based analyses, we used gene expression
data from E. coli-challenged cow udders. We identified 22 independent quantitative trait loci (QTL) that collectively
explained 14% of the variance in breeding values for resistance to clinical mastitis (CM). Using association test
statistics with multiple pieces of independent information on gene function and differential expression during
bacterial infection, we suggested putative causal genes with biological relevance for 12 QTL affecting resistance

Conclusion: Combining information on the nearest positional genes, gene-based analyses, and differential
gene expression data from RNA-seq, we identified putative causal genes (candidate genes with biological
evidence) in QTL for mastitis resistance in Nordic Holstein cattle. The same strategy can be applied for
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Background

Mastitis is the commonest and costliest disease in the
dairy cattle industry [1], decreasing milk production and
quality, incurring treatment costs for farmers, and nega-
tively affecting animal welfare. Mastitis incidence, sever-
ity, and outcomes are influenced by several factors,
including the pathogen type, host immunity, and envir-
onment [2]. On the host side, mastitis resistance, cow
age, and lactation stage influence mastitis risk [3]. Al-
though genetics plays a role in mastitis resistance, the
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trait has low heritability [4, 5]. Nonetheless, breeding
can help to reduce the incidence of mastitis. In this re-
gard, identifying candidate genes affecting mastitis resist-
ance may help in breeding cows for improved udder
health, especially in transferring information across
breeds for genomic prediction [6].

Genome-wide association studies (GWASs) are widely
used to find DNA variants associated with complex traits
like mastitis [7]. Previous studies have identified quantita-
tive trait loci (QTL) that are associated with variations in
CM and its indicator trait, somatic cell count (SCC) [8—
11]. These studies have proposed candidate genes, such as
GC, NPFFR2 [12], TRAPPC, ARHGAP39 [13], LY6K,
LY6D, LYNX1, LYPD2, SLURPI1, and PSCA [14]. However,
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concordance among these studies is low, suggesting diffi-
culty in identifying reliable candidate genes for mastitis.
New approaches integrating additional information with
GWAS results can help with this problem. For example, a
gene-based association statistical approach accounts for
the correlation structure among single-nucleotide poly-
morphisms (SNPs) within the gene and may have higher
power to prioritize genes within an identified region to be
candidates [15]. This approach can be especially helpful
when the lead SNP from association analysis is not the
causal mutation or is not located within the causal gene.
We expect that the causal gene will be enriched in
trait-associated SNPs compared to neighboring genes.
Various approaches for gene-based analysis have been
implemented in programs like GCTA [16], MAGMA
[17], GATES [18], VEGAS [19], and so on [20]. As im-
plemented in MAGMA [17], gene-based analysis uses a
multiple regression model to test the joint effect of mul-
tiple markers from a gene and is efficient in finding can-
didate genes [17]. Gene expression data provide another
source of information to identify candidate genes. The
most powerful method of incorporating RNA-seq data is
expression quantitative trait locus (eQTL) mapping,
which can serve as tool for identifying genetic variants
that affect gene regulation [21]. In a multitrait setting,
eQTL mapping can help in distinguishing between pleio-
tropic and linkage effects [22]. However, eQTL studies
remain expensive, impeding their application to live-
stock. As an alternative, specifically designed gene ex-
pression studies (RNA-seq) in target tissues from
healthy and affected individuals can be used as biological
evidence post GWAS to prioritize candidate genes [23].
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We hypothesized that combining gene-based associ-
ation statistics, gene annotation, and gene expression,
along with known phenotypes related to the genes,
would enable us to prioritize candidate genes for quanti-
tative traits. In this study, we performed GWAS using
15,552,968 imputed markers on 5147 Nordic Holstein
cattle for resistance to CM. Post GWAS, we studied can-
didate genes for gene-based association signals, and
made annotations using the Gene Ontology (GO) data-
base [24], Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis [25], and mammalian pheno-
type databases [26]. We confirmed results of gene-based
association strength with mammary gland expression
during E. coli challenge experiments [23]. Variant anno-
tations were used to investigate candidate mutations
within the prioritized candidate genes.

Results and discussion

GWAS for resistance to clinical mastitis in Nordic Holstein
cattle

Using our previously described GWAS approach [27],
we ran an association analysis with imputed whole-gen-
ome sequencing (WGS) variants for resistance to CM in
Nordic Holstein cattle. Figure 1 presents the Manhattan
plot of the GWAS results. Table 1 lists the lead SNPs
(i.e, most significantly associated SNPs) and positional
candidate genes (i.e., annotated genes closest to lead
SNPs).

We observed 22 association signals across the genome
(~log10(P) = 8.5), which explained 14% of variance among
de-regressed breeding values for resistance to CM. The
strongest association signal was on Bos taurus autosome
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Fig. 1 Manhattan plot for association of SNPs with resistance to clinical mastitis of Nordic Holstein cattle. Red horizontal line indicates genome-wide
significance level [—log;o(P) = 8.5]. Base positions are given as position in UMD 3.1.1 [59] bovine genome assembly
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(BTA) 6, where the lead SNP was BTA6:88729872
(rs109803407) located within GC. The GC and nearby
NPFFR2 genes were previously proposed as candidate
genes for mastitis in cattle [12]. The second lead SNP on
this chromosome was BTA6:23469606 (rs380325826), lo-
cated within the intron of MANBA. According to Uniport
[28], this gene encodes a protein involved in the N-glycan
degradation pathway, but there is no known biological
function relating this gene to mastitis resistance. A third
association signal on BTA6 was observed at BTA
6:93131207 (rs379964407), located close to a lead SNP
from a previous study (BTA6:93381472, rs41655339) [29].
The lead SNP on BTA20, BTA20:38471456 (rs472814468),
was located within a previously reported QTL [12] up-
stream of SPEF2, which is related to the GO term “im-
mune system development”. The lead SNP on BTA13 was
BTA13:62017506 (rs211080099), located close to a previ-
ously reported QTL for CM in Norwegian Red cattle [30].
The gene closest to this SNP was PDRGI. The lead SNP
on BTA18, BTA18:43909571 (rs464881101), was located
near ENSBTAG00000004994 (novel gene). The lead SNP
on BTA19 was BTA19:43038655 (rs134993207), located
near STATSA. Previous research proposed this gene as a
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candidate gene for cattle mastitis [31, 32]. This lead SNP
was also near BRCA1 (BTA19:43714457 ~ 43,783,351),
which was previously proposed as a candidate gene for
mastitis resistance [33]. Other lead SNPs on chromosomes
4, 16, and 20 are located near previously reported QTL for
CM or SCC [12, 13, 34].

Identification of candidate genes by gene-based
association statistics

We performed a gene-based association statistical ap-
proach using MAGMA [17] to search for candidate
genes. Due to long-range linkage disequilibrium (LD) in
the cattle genome, several genes in some QTL regions
showed significant signals (Additional file 1: Table S1);
therefore, we considered the top five genes from each
association signal (Table 2). Next, we included informa-
tion from the GO database [24], KEGG pathway analysis
[25], and the mammalian phenotype databases [26] to
narrow the candidate gene list. We searched these data-
bases for the top five genes from the gene-based analysis
(Table 2) and for genes closest to the lead SNPs (Table
1), if not already included in the previous list. Enrich-
ment analysis using the clusterProfiler package [35] did

Table 1 Genomic regions identified by genome-wide association analysis of resistance to clinical mastitis in Nordic Holstein cattle

BTA Base position Effect ~10g10(p) Region™” Gene Annotation
3 92,927,352 -134 8388 91,961,838~ 93,178,041 ENSBTAG00000010814 (28,361 bp) intergenic
4 10,928,348 -2.39 1148 10,113,846~ 11,178,507 TFPI2 (107,131 bp) intergenic
4 58490979" 144 9.44 57,757/451 ~ 58,741,047 ENSBTAG00000020620 (233,286 bp) intergenic
5 30,211,323 —1.54 171 29,850,270 ~ 30,461,626 BCDIN3 (599 bp) upstream
5 106371995 —-152 923 105,444,242 ~ 106,622,012 CCND2 (95,176 bp) intergenic
6 88,729,872 2.78 3897 88,479,895 ~ 88,980,376 GC intron

6 23469606* 1.63 12.53 23,219,637 ~ 23,719,758 MANBA intron

6 93131207 2.05 12.63 92,131,530 ~ 93,382,644 CCDC158 (72,869 bp) intergenic
7 57,794,761 1.36 9.32 57,545,197 ~ 58,044,816 ENSBTAG00000019739 (33,697) intergenic
8 25,684,799 1.83 11.98 25,434,812 ~ 25,935,079 ADAMTSLT intron

9 80,007,099 -145 10.02 79,238,565 ~ 80,257,157 NMBR (604,558 bp) intergenic
10 51,191,670 -1.63 9.90 50,733,332 ~ 51,441,800 MYOIE intron

Ihl 88,742,878 147 943 88,150,188 ~ 88,993,125 D2 intergenic
13 62,017,506 —1.95 19.82 61,295,534 ~ 62,267,717 PDRG1 (2545 bp) upstream
14 61,344,981 1.76 8.88 61,020,081 ~ 61,594,984 ZFPM2 intron

16 47,836,093 —1.88 12.77 47,048,599 ~ 48,086,099 ACOT7 intron

18 43,909,571 2.38 17.52 43,659,734 ~ 44,159,716 ENSBTAG00000004994 (17,651 bp) intergenic
19 43,038,655 -1.73 14.95 42,148,461 ~ 43,288,858 STAT5A intron

20 38,471,456 —2.88 20.57 38,221,493 ~ 38,721,830 SPEF2 intron

23 11,477,905 153 13.58 11,204,757 ~ 11,727,945 MDGAT (52,973 bp) intergenic
25 35,354,412 1.46 947 35,104,498 ~ 35,604,430 CUX1 intron

26 20,463,679 141 9.44 20,214,011 ~ 20,713,741 SLC25A28 (2425 bp) downstream

“The lead SNP was found in the second round
“The lead SNP was found in the third round
““The method to define the QTL interval can be found in Method
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Table 2 Top five genes based on gene-based association
statistics for resistance to clinical mastitis

Lead SNP Top 5 Genes’ Gene P
value
3:92927352 PLPP3, TXNDC12, RAB3B, NRDC, 1.46e-08
ENSBTAG00000046915
4:10928348 ASB4, ANKIB, COL28A1, DYNCII1, PON1 1.83e-06
4:58490979 TBX20, IMMP2L, ST7, LAMB4, ELMO1 9.77e-09
5:30211323 SLC2AT13, SLC38AT, RPAP3, TMEM117, LIMAT 6.80e-10
5:106360448  CCDC77, LOC100336690,ABCCI KDM5A, FGF6 1.56e-08
6:23469606 TBCK, TSPANS, PPA2, PPP3CA, NFKB1 1.33e-09
6:87299659 NPFFR2, SULTTET, SLC4A4, DCK, LOC100140490  2.50e-26
6:93131207  PARM1, SHROOM3, MTHFD2L, SEPTT1, EPGN 2.16e-14
7:31253987 (3, PCDHB11, PCDHB6, FBN3, LOC786512 1.27e-08
8:25684799 ADAMTSL1, MLLT3, PLPPR1, MTAR, FOCAD 3.15e-08
9:80007099 ESRI1, RAETI1G, PPPIR14C, SYNET, SHPRH 4.16e-07
10:51191670  RORA, MYOITE, RNF111, DUOX1,SLC28A2 2.93e-08
11:88742878  PDIA6, ATP6V1C2, CAPG, TBC1D8, MGAT4A 4.43e-08
13:62017506  BMP7, TFAP2C, NSFL1C, NDRG3, REM1 201e-14
14.61344981 DPYS, KCNQ3, TPD52, RSPO2, PARP10 1.44e-07
16:47836093  SMYD3, ACOT7, MEGF6, ENSBTAGO0000019339,  8.28e-13
CHD5

18:43909571 HPN, GPI, WTIR PDCD2L, TGFB1 7.08e-09
19:43038655  SP2, TBCD, OSBPL7, SRCINT, CBX1 222e-13
20:38471456  PLCXD3, WDR70, RICTOR, MROH2B, NUP155 2.99%e-14
23:11477905  ZFAND3, CPNE5, DNAHS, KCTD20, PPARD 1.05e-11
25:35354412  TMEM130, CORO7, VASN, CDIP1, DNAJA3 2.09e-08
26:20463679  PDE6C, BTRC, SEMA4G, CNNM2, SLK 743e-09

“Top five genes selected based on the ranking of P value, if the -log;, (P) >
5.60, the genes are listed in the table

# The P value listed in the table is for the gene with highest P value among
the top five genes showing association. The model to calculate the gene P
value in MAGMA [17] was snp-wise = mean

not show any enrichment for GO terms; however, the
inclusion of some GO terms involved in mastitis will
be useful for picking candidate genes with biological
support.

As GO terms for mastitis-related biological pathways,
we chose “inflammatory response” and all terms related
to “immune” and “wound healing”. Ten candidate genes
for mastitis resistance (Tables 1 and 2) were associated
with these GO terms: PLPP3 (canonical Wnt signaling
pathway involved in positive regulation of wound heal-
ing), NFKBI1 (inflammatory response, innate immune
response), C3 (inflammatory response), ESRI (regula-
tion of inflammatory response), RORA (negative regula-
tion of inflammatory response), TGFBI (inflammatory
response, response to wounding, immune response
based on somatic recombination of immune receptors
built from immunoglobulin superfamily domains),
STATS5A (positive regulation of inflammatory response),
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RICTOR (regulation of inflammatory response), SPEF2
(immune system development), and PPARD (wound
healing). From this list, STATSA is near the lead SNP
on BTA19 (Table 1) and is associated with the GO term
“positive regulation of inflammatory response”. SPEF2,
related to “immune system development,” harbors the
lead SNP on BTA20 (Table 1).

The KEGG pathway analysis showed that ESRI,
CCND2, NFKBI, and STAT5A are involved in the signal-
ing of prolactin, a polypeptide hormone that is involved
in a wide range of biological functions including immu-
nomodulation. CCND?2 is located near the second lead
SNP on BTAS5 (Table 1). CCND2, FGF6, and NFKBI are
part of the PI3K-Akt signaling pathway that is an com-
ponent of innate immunity [36]. NFKBI, FGF6, PPP3CA,
and TGFBI belong to the MAPK signaling pathway.
Some MAPKKKs may activate ERK1/2 in response to
pro-inflammatory stimuli.

The mammalian phenotype database [26] provided
useful phenotypic information about several genes. A
mutation in ELMOI could cause a decrease in natural
killer T-cell numbers. Some mutations in PPP3CA could
cause abnormal T-cell proliferation. Mutations in DCK
could cause abnormal T-cell differentiation and de-
creased response to antigen. Mutations in GC and [D2
could cause abnormal immune system physiology. /D2
harbors the lead SNP on BTA11 (Table 1). Mutations in
STAT5A can cause increased mammary gland apoptosis,
abnormal mammary gland physiology, and decreased
T-cell proliferation. Mutations in CUXI can cause ab-
normal T-cell differentiation, abnormal tumor necrosis
factor levels, and small thymus. The lead SNP on BTA25
is a variant in the intron of CUXI. Mutations in
IMMP2L could cause negative or positive T-cell selec-
tion. Mutations in NFKBI could cause abnormal inflam-
matory or humoral immune responses. Mutations in
NPFFR2 could cause abnormal macrophage activation,
which is involved in the immune response. Mutations in
C3 and TGFBI could cause abnormal immune system
physiology and inflammatory response. Mutations in
ESRI could cause abnormal immunoglobulin levels. Mu-
tations in RORA could cause abnormal immune system
physiology. Mutations in CORO?Y could cause enhanced
wound healing. Mutations in SLK could cause abnormal
immune cell physiology and abnormal T cell activation.

Combined analysis of RNA-seq data with gene-based
association statistics

To prioritize candidate genes or choose other candidate
genes (in addition to the top five genes from gene-based
association and genes closest to the lead SNPs), we con-
firmed the significant genes from genetic analysis using
differentially expressed genes (DEGs) in udders from an
E. coli challenge experiment [23]. We identified 115
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genes that were significant in gene-based association
analysis and were DEGs in RNA-seq data. Table 3 gives
the top gene for each QTL, and Additional file 1: Table
S2 gives the full gene list.

Joint analysis suggested three candidate genes on BTA3,
and the mammalian phenotype database showed that a mu-
tation in CYP4X1 could cause abnormal humoral immune
response in mice. On BTA4, joint analysis suggested AOAH
as a candidate gene, which was linked to the GO term
“inflammatory response”. Joint analysis identified 13 candi-
date genes on BTAS5, including LALBA (BTA5:30211323,
rs41655922) with GO term “defense response to Gram-
positive bacterium”. On BTA®6, joint analysis uncovered 18
candidate genes, eight with additional support: NFKBI
(BTA6:23469606, 1s380325826), PDGFRA (BTA6:8729
9659, 1s383420156), CSNI1S2 (BTA6:87299659, 1s383
420156), CSN2 (BTA6:87299659, rs383420156), PF4 (BTA6
:88729872, rs109803407), CXCL2 (BTA6:88729872, rs10
9803407), EREG (BTA6:93131213), and CXCL13 (BTA®6:
93131213). NFKBI, located at BTA6:23557311-23,679,508,
is involved in “inflammatory response” and “innate immune
response”. This gene is near the second association signal
on BTA6 (Table 1). CSN1S2 is associated with “defense re-
sponse to bacterium” and “inflammatory response”. CSN2
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belongs to the prolactin signaling pathway. CXCL2 and
CXCL13 are associated with “immune response”. PF4 is as-
sociated with “inflammatory response” and “immune re-
sponse”. PDGFRA belongs to the PIBK-Akt and MAPK
signaling pathways. EREG has the GO term “positive regu-
lation of innate immune response”.

On BTA7, we found that VAVI has additional support
and may be involved in immune responses [37]. On
BTA11, we found ILIR2 and ILIRL1 with additional
support, which have GO terms “involved in inflamma-
tory response” and “positive regulation of inflammatory
response”, respectively. On BTA13, we found five genes
with additional support: ANGPT4, HCK, CCM2L,
BPIFAI, and BPIFB1. ANGPT4 is involved in the Ras
and PI3K-Akt signaling pathways, HCK plays an import-
ant role in innate immunity [38], and CCM2L mediates
wound healing. HCK, BPIFA1, and BPIFBI all have the
GO term “innate immune response”.

On BTA16, we identified SELP, TNFRSF18, and
ISG15 as candidate genes with additional support.
SELP and TNFRSFI8 are associated with “inflamma-
tory response”, and TNFRSFI8 has the GO term “im-
mune response”’. ISGI5 is associated with “defense
response to bacterium”. On BTA18, we found a gene

Table 3 Top genes from combined analysis of gene-based association statistics and differential gene expression in udders for

each QTL
Gene Location Gene P RNA-seq  Putative function Differential
value FDR* expression®*
CYP4X1 BTA3: 99666161~ 99,714,764 142e-7 347e-4 MP: abnormal humoral immune response Down
AOAH BTA4:60940663~ 61,125,662 1.51e-8 1.66e-11 GO: negative regulation of inflammatory response  Up
ENSBTAG00000032429 ~ BTAS5: 32263608~ 32,264,561 1.02e-9 4.71e-2 NA Down
SLC6AT2 BTAS5: 107649324~ 107,666,752 1.14e-7 1.03e-3 NA Up
NFKB1 BTA6:23557311~ 23,679,508 1.33e-9 4.02e-2 GO: inflammatory response, innate immune Up
response
CSN1S2 BTAG: 87262457~ 87,280,936 260e-17  7.65e-3 KEGG: Prolactin signaling pathway Down
SHROOM3 BTAG6: 93340874~ 93,398,475 183e-20 1.67e-2 NA Down
FBN3 BTA7:18006365 ~ 18,076,590 1.13e-8 592e-10 NA Down
TAGAP BTA9: 96806294~ 96,815,764 2.09%-6 238e-3 NA Up
SLC28A2 BTA10: 65395125~ 65,427,753 293e-8 2.75e-3 NA Up
PDIA6 BTA11:86834898~ 86,857,648 3.56e-10 3.58e-2 NA Up
HCK BTA13: 62106257~ 62,151,619 148e-12  3.13e-22 GO: innate immune response Up
ACOT7 BTA16: 47827124~ 47,934,930 6.66e-14  283e-2 NA Up
HPN BTA18:45971859~ 45,991,833 3.50e-11 4.53e-2 NA Down
PLEKHH3 BTA19: 43366278~ 43,374,706 6.46e-13 1.73e-3 NA Down
MROH2B BTA20: 33456349~ 33,528,569 500e-15  8.62e-5 MP: abnormal T cell physiology and decreased T Down
cell proliferation
ENSBTAG00000010730 BTA23: 10627244~ 10,628,260 5.98e-9 5.36e-6 NA Up
CDIPT BTA25: 3650394~ 3,673,924 2.83e9 1.27e-2 NA Down
CRTACT BTA26: 18869719~ 19,013,761 8.49e-9 3.72e-2 NA Down

#Results from Fang et al. [23]

*Comparison between infected mammary glands and controls at 24 h post intra-mammary infection with E. coli
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involved in biosynthesis of antibiotics, BCKDHA. On
BTA19, TRPV2, DHX58, STAT3, and ITGB3 stood out
as candidate genes with additional support. TRPV2 is
involved in inflammatory mediator regulation of TRP
channels. DHX58 has the GO term “negative regula-
tion of innate immune response”. STAT3 is involved
in the prolactin signaling pathway. According to the
mammalian phenotype database a mutation in this
gene in mice could cause abnormal innate immunity
and increased susceptibility to bacterial infection.
ITGB3 has the GO term “wound healing”.

On BTA20, FYBI is a possible candidate gene with
additional support and is involved in immune response
[39]. On BTA23, FI3AI1 and PLA2G7 are candidate
genes with additional support. FI3A1 is involved in
complement and coagulation cascades. The mammalian
phenotype database associated a mutation in PLA2G7
with increased susceptibility to bacterial infection. On
BTA25, ORAI2 stood out. According to the mammalian
phenotype database, mutations in ORAI2 could cause
abnormal T-cell activation and physiology. On BTA26,
we found SCD with additional support. Mutation in this
gene could cause increased susceptibility to bacterial in-
fection from mammalian phenotype database.

Variant annotations to help find candidate genes and
mutations

In cattle, long-range LD can result in wide QTL regions
[40]. Therefore, causative variants may be in the LD re-
gion of the lead SNP, rather than in genes harboring the
lead SNP. To identify additional candidate genes, we an-
notated all SNPs in LD (r* > 0.2) with the lead SNP using
the Variant Effect Predictor (VEP) [41]. We annotated
61,992 SNPs, which were typically intergenic followed by
intronic variants (Fig. 2a). Among variants located
within coding sequences (Fig. 2b), most SNPs were syn-
onymous variants followed by missense variants. We
identified 136 genes with at least one missense,
start-loss, stop-gain, frameshift, splice-donor, or splice-
acceptor variant. Among them, 16 genes were in the
previously identified candidate gene sets (i.e., top five
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genes from gene analysis, nearest genes, and joint ana-
lysis; Tables 1-2 and Additional file 1: Table S1-S2).
These genes were: FAMISIA, SLC6A12, NFKBI,
NPFFR2, PDIA6, CASS4, BPIFAI, BPIFB1, DCSTAMP,
KRT24, KCNH4, PLEKHH3, SPEF2, CRTACI, SCD, and
ENSBTAG00000006539.

Putative causal genes for resistance to clinic mastitis

The three analyses described above helped us to select
putative causal genes from among the candidate genes
(summarized in Table 4). Although our analysis (Fig. 3)
was effective, we still had some QTL without any good
hits. We examined the flanking regions of these QTL to
uncover the reason for the lack of putative causal genes
and to pick some genes for future study. No genes were
recognized in the region around the lead SNP in BTA8
(BTA8:25684799, rs378067069). However, the lead SNP
was located is in the intron of ADAMTSL1 (BTAS:
25,340,759-25,841,063). ADAMTS proteases are in-
volved in extracellular matrix proteolysis and are related
to morphogenesis, angiogenesis, ovulation, cancer, and
arthritis [42]. Due to a lack of biological support, how-
ever, we cannot propose ADAMTSLI as putative causa-
tive gene. The lead SNP on BTA9 (BTA9:80007099,
rs382310712) was in a region with no known genes. The
region 1 Mb up- and downstream of this SNP contains
three genes (NMBR, VTA1, and ADGRG6), all of which
are at least 0.6 Mb from the lead SNP. Without add-
itional evidence beyond GWAS results, none of these
genes is a likely putative causal gene. Joint analysis
picked TAGAP (BTA9: 96806294~ 96,815,764) as a can-
didate gene, but it was too far from the lead SNP (~
16 Mb; Additional file 1: Table S2). For other QTL, all
candidate genes with biological support were located
outside QTL intervals.

Dissecting closely linked QTLs

The low heritability [43] and polygenic nature of mastitis
make it challenging to identify putative causal genes as-
sociated with variation in mastitis resistance. Several
previous studies have reported QTLs for SCC and/or
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Fig. 2 Distribution of VEP annotations for SNPs in LD (r > 0.2) with lead SNPs. a Percentage of each annotation category among all SNPs within LD
with lead SNPs. b Proportion of each annotation among variants that can change protein sequences
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Table 4 Putative causal genes for identified QTL affecting resistance to clinical mastitis

QTL Gene Source”
3: 91961838~ 93,178,041 FAM151A

4. 57757451~ 58,741,047 IMMP2L

5:105444242~106,622,012  FGF6 and/or CCND2

6: 23219637~ 23,719,758 NFKB1

6: 88479895~ 88,980,376 GC

6: 92131530~ 93,382,644 NAAA and/or SHROOM3

11: 88150188~ 88,993,125 D2

CCM2L and/or HCK

HES2 and/or ACOT7 and/or KCNAB2

13: 61295534~ 62,267,717
16: 47048599~ 48,086,099

Gene analysis and RNA-seq

Gene analysis and MP

Gene analysis and KEGG / Gene analysis, KEGG and nearest gene

Gene analysis, KEGG, GO, MP and RNA-seq

Gene analysis and MP

RNA-seq and gene analysis / RNA-seq and gene analysis

Gene analysis and MP

Gene analysis, GO, MP and RNA-seq / Gene analysis, GO, MP and RNA-seq

Gene analysis and RNA-seq / Gene analysis, nearest gene and RNA-seq / Gene

analysis and RNA-seq

19: 42148461~ 43,288,858 KRT32 and/or DHX58 and/or KCNH4

and/or STAT5A and/or STAT3

Gene analysis and RNA-seq / Gene analysis, GO, MP and RNA-seq / Gene analysis,
MP and RNA-seq / Gene analysis, nearest gene, KEGG, GO and MP / Gene analysis,

KEGG, MP and RNA-seq

20: 38221493~ 38,721,830
25: 35104498~ 35,604,430

CAPSL and/or SPEF2
ORAI2 / CUX1

Gene analysis and RNA-seq / Gene analysis nearest gene and GO

Gene analysis, MP and RNA-seq / Gene analysis, nearest gene and MP

Note, * we used '/’ to separate the evidence for different genes, MP stands for mammalian phenotype database

CM, but only one major QTL on BTA6 was identified in
several studies [10, 12, 14, 44]. We found 22 independ-
ent association signals using imputed WGS variants and
CM as a phenotype. Our association analysis approach,
which was described previously [27], aids in dissecting
closely linked QTLs. The 22 lead SNPs overlapped or
were close to many previously reported QTLs [10, 12,

GWAS RNA-seq
Closest Gene Differential
genes analysis expression
‘ Top five Full set

Candidate genes

Joint
analysis

Biological
evidence

i Distance ;

Putative causative genes

Fig. 3 Flow chart of procedure to find putative causal genes.
Parallelogram means analysis, rectangle means output, and text
above arrow indicates which part of result to use

14, 44] and explained 14% of the variance for de-
regressed breeding value for resistance to CM.

Combining multiple sources of information post GWAS
Combining multiple sources of information helped to
narrow the list of candidate genes for most QTL.
Long-range LD in cattle adds to the challenge of finding
putative causal genes in post-GWAS analyses. Here, we
combined several independent information sources with
GWAS results to short-list the candidate genes. First, we
considered physical distance from the lead SNP to the
nearest gene, using a similar approach to many previous
studies [45, 46]. However, many of the candidate genes
(e.g., NMBR) had no documented biological function
linking them to mastitis, and many lead SNPs may not
be located in the causal gene (e.g., due to imputation in-
accuracy, random fluctuations in association test statis-
tics, LD structure, multiple closely spaced QTL, etc.).
We expected that several variants in a causal gene would
show strong associations with the trait. Therefore, we
performed gene-based association statistics using
MAGMA [17] to test the gene-based association. Still,
we cannot draw conclusions based solely on this rank-
ing. Thus, to narrow the candidate gene list further, we
applied annotations with GO [24], KEGG and the mam-
malian phenotype database [26]. To avoid missing candi-
date genes by ignoring genes outside the list of the top
five genes, we included information of DEGs from E.
coli-challenged cow udders [23] coinciding with gene-
based association signals. This joint analysis of gene-
based analysis and RNA-seq results helped us to im-
prove information about several candidate genes. For
some QTL, however, none of the above approaches led
to any candidate gene.
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We observed some possible sources of error associated
with various approaches of picking candidate genes. For
MAGMA, some genes showing significant gene-based
association were located very far from lead SNPs. For
RNA-seq, we expected to find more immune- or
infection-related genes showing differential expression.
We checked the distance and LD structure to judge
whether to trust the list obtained by joint analysis. For ex-
ample, CXCL13, which is involved in inflammatory and
immune responses, was significant in gene-based analysis
and was a DEG in the E. coli challenge experiment. How-
ever, because CXCLI13 is ~5 Mb away from the lead SNP,
it is highly unlikely to be the causative gene underlying the
detected QTL. When the lead SNP was included as a co-
variate in the second round of GWAS, no additional asso-
ciation signal around this gene was observed. This analysis
shows the importance of considering multiple information
sources when prioritizing candidate genes for identified
QTL. Genes that are not differentially expressed should
not be immediately excluded from the pool of potential
candidate genes because the sampled tissue or time point
might not reflect the place or time of action. Moreover,
the causal variant can influence the expression of the other
genes that alter the phenotype. We performed variant an-
notation for all candidate genes. However, it is not possible
to design a unique strategy to combine multiple sources of
information to pinpoint candidate genes for all scenarios
because available information varies from region to region,
and differences in modes of gene action can lead to differ-
ences in what types of data will be informative. Gradually
adding new types of pertinent data and data from other
populations will add to the confidence of the identified ef-
fects of genes on the variations in mastitis resistance.

Limitations of the study and potential solutions

With the emergence of new technologies and experi-
mental methods, more data are generated, helping to
uncover the biological effector mechanisms of trait-asso-
ciated genetic variants. However, incomplete genome an-
notation in cattle still impedes analyses. On BTA9
(BTA9:80007099, rs382310712), we failed to propose any
putative causal genes. Poor annotation of this region is
probably the main reason for our failure. Three genes
have been annotated around 1 Mb from the lead SNP,
none of which have functional annotations suggesting
them as candidate genes. The inability to identify any
genes does not mean that this QTL is a false positive. It
may be that the causal mutation is in an unidentified
regulatory element or some unidentified gene in the
region.

We faced two major limitations in our study. The first
concerned the source of RNA-seq data. Although E.
coli-challenged udder samples can be used to help find
genes related to the immune response, mastitis is a
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complex disease involving multiple pathogens and bio-
logical pathways. Ideally, RNA-seq data for mastitis
should consider multiple tissues in which these pathways
may be active and multiple time points during the devel-
opment and recovery of mastitis. The second limitation
is the long-range LD of the cattle population, which re-
duces the power of gene-based analysis to discriminate
among linked genes. In MAGMA [17], there are two
models for different genetic architectures for obtaining
the P-value after GWAS. The SNP-wise Top (snp-wise =
top) model is designed for genes with sparse associated
SNPs. The SNP-wise Mean (snp-wise = mean) model is
more attuned to the mean SNP association, but is
skewed to high-LD regions. In our experience, the lead
SNP is not always the causal SNP [27]. Thus, we wanted
to avoid calculating the gene P-value based on the top
SNP in genes (snp-wise = top), an option that uses only a
fraction of the SNPs from each gene. For our purposes,
the computational cost of this approach proved exces-
sive. In the end, we used the snp-wise = mean option. As
a result, the list of genes is biased towards the high-LD
region. Long-range LD further lengthens the list of genes
with or close to significant SNPs. A possible solution in
gene analysis could be implementing meta-analysis from
multiple populations to reduce the impact of LD [47] or
using a tag SNP strategy [48].

Conclusions

In this study, we associated 15,552,968 imputed whole-
genome sequencing markers with mastitis resistance in
5147 Nordic Holstein cattle. After GWAS, we identified
22 independent QTL that collectively explained 14% of
the variance in breeding values for resistance to CM. Be-
sides recovery of some QTL from previous reports, we
also found new loci associated with mastitis resistance.
To prioritize candidate genes post-GWAS, we used mul-
tiple source of information including Gene Ontology
terms, Kyoto Encyclopedia of Genes and Genomes path-
way analysis, and mammalian phenotype database. To
confirm results of gene-based analyses, we used gene ex-
pression data from E. coli-challenged cow udders from
previous study. For combining different information, we
designed a method to gradually add new types of pertin-
ent data. At the end, we suggested putative causal genes
with biological relevance for 12 QTL affecting resistance
to CM in dairy cattle. This study showed our approach
could be widely applied for GWAS in dairy cattle.

Methods

Procedure to identify putative causal genes

To identify putative causal genes affecting resistance to
CM, we linked GWAS results to genes by incorporating
biological evidence, as illustrated in Fig. 3. Post-GWAS,
we followed two independent approaches to find candidate
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genes: 1) we used the gene closest to the most significantly
associated SNP of the region, and 2) we determined the
gene-based association signal strength using MAGMA
[17]. For the second approach, we included the top five
genes from gene-based analysis because the number of sig-
nificant genes from gene-based analysis was large.

To move from a list of candidate genes to a list of pu-
tative causal genes, we needed biological evidence. We
used GO [24], KEGG [25], and mammalian phenotype
database [26] as sources for biological evidence with
possible terms related to mastitis. Candidate genes with
further biological support were accepted as putative
causal genes. We also analyzed RNA-seq data from E.
coli-challenged cattle mammary glands [23]. We con-
firmed the full set of significant genes from the gene-
based association with the DEGs from the RNA-seq
data. All candidate genes within a QTL interval that had
biological support and were significant in the joint ana-
lysis were listed as putative causal genes.

Phenotype and genotype data

Phenotypic records of CM for Nordic Holstein cattle were
obtained from the Nordic Cattle Genetic Evaluation data-
base (NAV, http://www.nordicebv.info/). Values used for
association analysis were de-regressed breeding values [49,
50] from the routine genetic evaluation by NAV and were
available for 5147 progeny tested Holstein bulls. The asso-
ciation study was carried out on imputed WGS data, as
previously described by Iso-Touru et al. [40] and Wu et al.
[51]. All bulls were genotyped with the Illumina Bovi-
neSNP50 BeadChip (54 k) ver. 1 or 2 (Illumina, San Diego,
CA, USA). The 54 k genotypes were imputed to
high-density (HD) by IMPUTE?2 v2.3.1 [52] with a multi-
breed reference of 3383 animals (1222 Holsteins, 1326
Nordic Red Dairy Cattle, and 835 Danish Jerseys) with
[llumina BovineHD BeadChip genotype data. Next, these
imputed HD genotypes were imputed to WGS by Mini-
mac2 [53] with a multibreed reference of 1228 animals
from Run4 of the 1000 Bull Genomes Project [54] (1148
cattle, including 288 individuals from the global Holstein—
Friesian population, 56 Nordic Red Dairy Cattle, 61 Jer-
seys, and 743 cattle from other breeds) [54] and additional
data from Aarhus University (80 individuals, including 23
Holsteins, 30 Nordic Red Dairy Cattle, and 27 Danish
Jersey) [55]. Imputation to WGS was done in 5-Mb
chunks with a buffer region of 0.25 Mb on either side. A
total of 22,751,039 bi-allelic variants were present in the
imputed sequence data. After excluding SNPs with a
minor allele frequency below 1% or with large deviation
from Hardy—Weinberg proportions (P < 1.0-6), 15,552,
968 SNPs on 29 autosomes in Nordic Holstein cattle were
retained for association analyses. The average imputation
accuracy (+* values from Minimac2) was 0.85 for cross-
breed imputation. Information on the distribution of
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imputation accuracy as a function of minor allele fre-
quency was published previously [51].

Methodology of multiple QTL detection and estimation of
genetic variants explained by QTL

Details of the association analysis pipeline and simula-
tion verification were reported previously [27]. In the
first round, we used GCTA [16] to perform single-SNP
GWAS analysis on each chromosome. Subsequently, we
fixed the lead SNP as a covariate to run the second
round of GWAS if the lead SNP was genome-wide sig-
nificant (experiment-wise 0.05 type I error-rate after
Bonferroni correction for 15,552,968 simultaneous tests
corresponds to a threshold of —log;oP ~8.5). In second
and subsequent rounds, if the lead SNP was significant
in the first round, we fixed it as another covariate until
no more significant association signals were identified. A
lead SNP found in any round was tested in 2-Mb flank-
ing regions (up- and downstream) to search for other
significant SNPs. If they failed to attain significance, they
were removed from further analyses. Remaining SNPs
constituted the final list of lead SNPs. To define the
boundaries of each QTL region, we examined a 1-Mb
flanking region of the lead SNP. If the SNP —log;(P)
value decreased by more than three units compared to
the value of the lead SNP and the region was larger than
0.25 Mb, then we set this SNP as a boundary; otherwise,
we set £0.25 Mb from the lead SNP as the QTL bound-
ary. We used the lead SNP list to generate one genetic
relationship matrix (GRM). We removed SNPs within
5 Mb of the lead SNP to construct the second GRM.
We estimated the variance explained by the lead SNPs
by using GCTA [16] to fit two GRMs.

LD calculation, variant annotation, and gene annotation
We calculated the pairwise 7 between the lead SNP and
all other SNPs on the same chromosome using PLINK
[56] and extracted all SNPs with 7> 0.2 with the lead
SNP. These SNPs were annotated by VEP (version 92)
[41]. Enrichment of the gene list was estimated by clus-
terProfiler [35]. Possible candidate genes proposed from
different methods were sent to DAVID [57] to retrieve
the GO terms [24] of biological process and KEGG path-
ways [25]. We used the same gene list to search the
mammalian phenotype database [26] to check whether
mutations in these genes would have some phenotypic
effect related to mastitis.

Confirmation of gene-based association statistics with
RNA-seq data

For MAGMA [17], we downloaded the gene information
file from Ensembl gene build 92 [58]. The number of
genes (including 5'- and 3’-UTRs) with at least one SNP
was 20,356; thus, the P-value threshold for genome-wide
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significance was 2.46 x 10"°. A total of 455 Holstein
animals from the 1000 Bull Genome Project (Run 6)
[54, 55] was used as the reference population for
MAGMA [17]. We performed MAGMA gene analysis
with the GWAS results using the model snp-wise =
mean. To confirm gene-based analysis results, the list
of P-values of DEGs from E. coli-challenged udders
[23] was used. Details of the RNA-seq analysis can be
found in a previous study [23]. We only used the list
of the DEGs and their false discovery rate (FDR)
values. We confirmed the significant genes from
gene-based analysis (MAGMA) with the data from
the DEGs (RNA-seq).

Additional file

Additional file 1: Table S1. The full list of the significant gene from the
gene-based analysis. Table S2. The full list of gene significant both in gene-
based analysis and differential expression. (XLSX 72 kb)
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