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Abstract

Background: The challenges when developing a good de novo transcriptome assembler include how to deal with
read errors and sequence repeats. Almost all de novo assemblers utilize a de Bruijn graph, with which complexity
grows linearly with data size while suffering from errors and repeats. Although one can correct the errors by
inspecting the topological structure of the graph, this is not an easy task when there are too many branches. Two
research directions are to improve either the graph reliability or the path search precision, and in this study, we
focused on the former.

Results: We present TraRECo, a greedy approach to de novo assembly employing error-aware graph construction.
In the proposed approach, we built contigs by direct read alignment within a distance margin and performed a
junction search to construct splicing graphs. While doing so, a contig of length l was represented by a 4 × l matrix
(called a consensus matrix), in which each element was the base count of the aligned reads so far. A representative
sequence was obtained by taking the majority in each column of the consensus matrix to be used for further read
alignment. Once the splicing graphs had been obtained, we used IsoLasso to find paths with a noticeable read
depth. The experiments using real and simulated reads show that the method provided considerable improvement
in sensitivity and moderately better performance when comparing sensitivity and precision. This was achieved by
the error-aware graph construction using the consensus matrix, with which the reads having errors were made usable
for the graph construction (otherwise, they might have been eventually discarded). This improved the quality of the
coverage depth information used in the subsequent path search step and finally the reliability of the graph.

Conclusions: De novo assembly is mainly used to explore undiscovered isoforms and must be able to represent as
many reads as possible in an efficient way. In this sense, TraRECo provides us with a potential alternative for improving
graph reliability even though the computational burden is much higher than the single k-mer in the de Bruijn graph
approach.
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Background
Low-cost and high-throughput transcriptome profiling
(a.k.a. RNA-seq) based on the next generation sequen-
cing technology has ignited the recent development of
many software tools for transcriptome assembly to ex-
plore novel isoforms, the co-expression of related genes,
differentially expressed genes, and so on. Transcriptome
assembly for analyzing such RNA-seq data is categorized

as either reference-based or de novo. In reference-based
assembly methods such as Cufflinks [1], Scripture [2],
IsoLasso [3], and Isoinfer [4], raw RNA-seq reads are
first mapped to a reference genome using a splice-aware
aligner such as TopHat [5] and we use gene-annotation
information to explore the expressed transcript/isoforms
and their expression level. Meanwhile, in de novo assem-
bly, raw RNA-seq reads are aligned with each other for
constructing a graph directly to represent possible spli-
cing patterns through which isoform detection and
expression-level estimation can be performed. Although
reference-based assembly provides more accurate isoform
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detection and abundance estimation, it relies highly on
the prior knowledge of known genes (i.e. it requires a
known genome) and cannot be applied to a species with-
out a reference genome. Due to these reasons, recent
research has focused more on de novo assembly and many
de novo assemblers have been proposed so far, including
Trans-ABySS [6], Trinity [7], Velvet-OASES [8, 9], IDBA-
tran [10], SOAPdenovo-Trans [11], Bridger [12], and more
recently, BinPacker [13] and Shannon [14].
The challenges when developing a good transcriptome

assembler include how to deal with read errors and se-
quence repeats that frequently occur in eukaryotes. Al-
most all of the de novo transcriptome assemblers utilize
a de Bruijn graph, which is constructed by converting
base sequences into k-mer sequences and counting the
latter. This approach has been widely adopted in most of
the de novo transcriptome assemblers since its complex-
ity grows linearly with the read data size. However, a
weakness of the de Bruijn graph-based approach is the
difficulty in correcting read errors. One way to deal with
them is to use pre-error correction algorithms such as
Trimmomatic [15] or QuorUM [16] based on the quality
score of the reads, but this approach is a little risky as
the quality score only tells us the probability. Other
pre-error correction algorithms include Coral [17], SEE-
CER [18], and Rcorrector [19], which are based either
on multiple alignments or on the probabilistic approach.
Another way to handle read errors, especially in de
Bruijn graph-based approaches, is to utilize the topo-
logical structure of the graph. That is to say, read errors
create many branches with relatively low read coverage
and one can simply remove these suspicious branches or
merge them with the main branch if it is possible to
identify the latter. IDBA-tran [10] is another recently
proposed approach in which the authors employed an
iterative remapping of reads to the de Bruijn graph with
increasing k-mer values.
Another drawback of the de Bruijn graph-based ap-

proach is that it cannot utilize the full connection infor-
mation of a read. Most of the de Bruijn graph-based de
novo assemblers use a k-mer of around 30, which is
much smaller than a typical read length of 75 or 100 bp.
This means that the effective read length is only 30 bp.
As a matter of fact, with a small value of k, two or more
isoforms that have common sequences longer than k can
be merged into a single (sometimes huge) graph, thus
making isoform detection complicated and decreasing
the prediction accuracy. To overcome this tradeoff,
Schulz et al. [8] proposed combining the splicing graphs
obtained with different k-mers, which they showed was
effective in resolving this problem.
Based on the research into de novo transcriptome as-

sembly so far, there are two main research directions.
One is to improve the precision of plausible path search

for given splicing graphs, as demonstrated in Bridger
[12] and BinPacker [13], and the other is to improve the
reliability in the splicing graph construction, for ex-
ample, by utilizing the multi k-mers approach as in
OASES [8] and IDBA-tran [10].
In this study, we explored the latter direction based on

a greedy approach employing an error-aware construc-
tion of the splicing graph. To overcome read errors and
sequence repeats, we built splicing graphs by directly
aligning reads, which made us able to resort full connec-
tion information of a read, even though the running
time was much longer than the single k-mer in the de
Bruijn graph-based approach. As provided in [20], there
are two approaches to genome assembly: overlap-layout-
consensus (OLC) and the de Bruijn graph approach. The
former first gathers the alignment information between
all of the pairs of reads to build overlap graphs, bundles
the stretches to obtain contigs, and finally aligns the
contigs to correct possible errors by taking a consensus
at each position of the aligned contigs. The proposed ap-
proach is similar to the former but with a clear differ-
ence in that aligning the reads and taking the consensus
(error correction) are performed simultaneously during
the entire course of the graph construction step. In our
scheme, a contig of length l is represented by a consen-
sus matrix of size 4 x l in which each element is the base
count of the reads aligned to that contig and a repre-
sentative sequence of letters corresponding to the ma-
jority (the row index with the highest count) for each
column is used for further read alignments. Once an
overlap is detected for a read within some distance
margin, the consensus matrix is updated by increasing
those elements corresponding to the letters of the
read. Using this error-aware alignment procedure, we
could improve the reliability of the splicing graph by
making additional reads having errors usable in the
graph construction step. In fact, many of the reads
with errors are eventually discarded, as they could
not be aligned because of errors, resulting in poor
splicing graph. Therefore, adding these reads improves
the coverage depth information used in the subse-
quent path search steps. Although two or more iso-
forms having similar sequences can be merged to a
single graph, this is not mostly due to short repeats
but to similar sequences as we can set the minimum
overlap threshold to be much longer than that used
in the de Bruijn graph-based approach. Note that
the consensus matrix tracks the alignment records
throughout the entire assembly process and, by
inspecting each column of the consensus matrix, one
can check whether similar sequences have been
merged together or not. If any row other than the
representative one is conspicuous, then this is an in-
dication of merged sequences.

Yoon et al. BMC Genomics  (2018) 19:653 Page 2 of 20



Results
To demonstrate the effectiveness of the proposed
scheme, we used three data sets: one was simulated reads
with the exact set of target references and their expression
levels and the other two were real RNA-seq data (human
and mouse) from the gene expression omnibus available
at (https://www.ncbi.nlm.nih.gov/geo/).

Using BLASTN
The primary criterion for performance comparison was
the number of ‘distinct’ pairs of the reference-candidate
transcript for a given minimum target coverage where
the coverage was the ratio of the alignment length cov-
ered by a candidate (assembled) transcript to the length
of the reference transcript. The coverage can be ob-
tained using the BLASTN software [21], which aligns
query sequences to a subject sequence database. We
used a reference transcript as the query and a candidate
as the subject sequence. By running BLASTN, we ob-
tained the following for each query (reference)–subject
(candidate) sequence pair: the query sequence length
(Lq), the subject sequence length (Ls), and the alignment
length (La). The coverage is defined simply as the max-
imum of La/Lq over all of the candidates. We set the
maximum number of target sequence option to 1, which
means that we selected the best matching candidate for
each reference transcript. Note that even with this op-
tion, a candidate transcript can be matched to multiple
references. Hence, we looked up the match list (i.e. the
output from BLASTN) to select only the best match for
a particular reference-candidate pair. The selected pair
was counted as a recovered transcript if the ratio of the
alignment length to its paired reference was larger than
or equal to the target value.

Sensitivity and precision as the primary criteria
If the exact set of transcripts that reside in a sample is
known, one can measure the sensitivity (the percentage
of the recovered transcripts in the total number of target
references), which provides the simulated read. However,
for real reads, we do not know the exact set of targets,
so we compare the number of recovered transcripts for
the data. In the evaluation of sensitivity, we specifically
allow each candidate transcript and reference to have
only one match. However, a multiple of references are
sometimes matched to one candidate transcript due to
artificial gene fusion, and in these cases, one can define
wide sense (or extended) sensitivity where we allow mul-
tiple transcripts to match with the same candidate for a
given target coverage. Another primary performance
criterion is precision as a measure of the compactness of
an assembly, which is defined as the percentage of true
positives among all of the candidate (assembled) tran-
scripts found with a specific assembler. In fact, there

exists a trade-off between the two performance criteria
(sensitivity and precision) and we need to compare
both measures at the same time for specific target
coverage, for which we plot sensitivity versus preci-
sion (as shown later on).

The results for the real reads
Data sets
First, we performed de novo assemblies with the two real
data sets (human and mouse). The human sample was
obtained from the National Center for Biotechnology In-
formation (NCBI) website (accession code SRR445718),
which was sequenced from embryonic stem cells derived
from human preimplantation embryos and is available in
Sequence Read Archive (SRA) format from the NCBI.
SRR445718 contains approximately 33,000,000 single-
end reads, each with a nominal read length of 100.
The mouse sample (accession code SRX062280) contains
approximately 53,000,000 paired-end reads, each with a
nominal read length of 76 bp; it has been used to test de
novo assemblers in many studies.

Parameter settings and pre/post processing
We compared TraRECo with some popular de novo as-
semblers: Trinity (version 2.4.0), Velvet (version 1.2.10)
+ Oases (version 0.2.02), SOAPdenovo-Trans (version
1.01), TransABySS (version 1.5.2), Bridger (version 2014
− 12-01), and BinPacker (version 1.0). For SOAPdenovo-
Trans and Trans-ABySS, we set the k-mer to 31 and 32,
respectively, with which we were able to obtain the best
results, and for Trinity, we used 25 (the default value).
For Bridger and BinPacker, we used a k-mer length of 25
(the default value) for the human sample and 31 for the
mouse one (as the authors originally suggested). With
Velvet+Oases, we performed a multi-k assembly with k
ranging from 21 to 37 in steps of 4. As is discussed later,
TraRECo has several parameters that need to be set: the
normalized distance threshold (Dth) to 0.03~ 0.06, the
overlap threshold (Oth) to 52 (human) and 44 (mouse),
and the connection threshold (Cth) and the junction
overlap threshold (Jth), both to 24. In the same way as
with other assemblers, we discarded those candidates
with a length shorter than 200 bp. For preprocessing, we
first used Cutadapt [22] to remove any adaptor sequences
remaining in the reads, except for Trinity, for which we
enabled the Trimmomatic read trimming option instead.
Using the trimmed data, we obtained assembled transcript
candidates and, finally, BLASTN was used to align each
candidate to the reference transcriptome, for which we
used the Ensembl transcript for human (hg19) and mouse
(mm9), respectively, to finally obtain the number of recov-
ered reference transcripts for the given target coverage.
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The impact of distance threshold (Dth) and coverage depth
threshold (CDth) in TraRECo
The results are available in Table 1 and Fig. 1 for
SRR445718, and Table 2 and Fig. 2 for SRX062280. Figures 1
and 2 show the precision versus the number of recovered
transcripts for a target coverage (recovered percentage) of
(a) 95% and (b) 80%. In the figures, the results for the as-
semblers other than TraRECo are shown as a single point,
while the results for TraRECo are exhibited as a curve in
which each point corresponds to a CDth of 0, 1, 2, 4, 8, 12,
and 16. Note that TraRECo jointly detects isoforms and esti-
mates their abundance (expression level). CDth is the abun-
dance (coverage depth) cutoff at which we discarded those
candidates with an abundance estimate below this value as
most of these were highly likely to have been read error
artifacts (CDth= 0 means that we considered all of the paths
obtained from the final splicing graph regardless of
the abundance estimates). With various values of this
cutoff, the performance of TraRECo was exhibited as
a line for a given Dth.
To show the impact of distance threshold, we ran

TraRECo with Dth = 0.04, 0.05, and 0.06 for the human
sample and 0.03, 0.04, and 0.06 for the mouse one, al-
though Table 1 only contains the results for Dth = 0.06.
The results in Figs. 1 and 2 indicate the impact of Dth

on the performance of TraRECo. One can observe the
improvement in both precision and sensitivity with a lar-
ger distance threshold up to Dth = 0.06, after which no
further improvement in sensitivity was observed al-
though the precision was slightly improved. From the
performance curves for TraRECo, one can clearly see

the performance improvement with larger values of Dth

(up to 0.06). Note that with larger values of Dth, more
erroneous reads are made usable for the graph construc-
tion, improving the quality of coverage depth informa-
tion used in the subsequent path search step, and
eventually, the assembler performance. Our results sug-
gest that Dth = 0.06 is a reasonable choice for obtaining
good findings with real data, although it must be chosen
carefully according to the error statistics, as suggested
by our results for simulated reads reported later on.

Sensitivity versus precision
In Fig. 1 for the human sample, TraRECo demonstrated
better precision than most of the assemblers, the excep-
tion being BinPacker. When considering only the num-
ber of transcripts recovered, TraRECo with Dth = 0 and
multi-k OASES attained the best results; for the number
of transcripts for the 95% and 80% targets, this method
found more than 5000 and 9500, respectively, while
most of the other assemblers found only around 4000 or
fewer and 7700 or fewer, respectively. Of course, such
high sensitivity in TraRECo with Dth = 0 and multi-k
OASES might have been obtained only at the cost of
precision. For the mouse sample (shown in Fig. 2), when
compared at the same precision or at the same sensi-
tivity, TraRECo showed slightly better results than
most of the other assemblers, the exceptions being
Trinity and BinPacker. Moreover, we could not obtain
any results for Bridger due to runtime errors that
could not be corrected.

Table 1 A comparison of the number of transcripts found and matched to a reference for the single-end reads SRR445718 (Human sample)

Assembler # of
candidates
found

# of transcripts matched for Target coverage of

≥ 95% ≥ 90% ≥ 80%

SOAPdenovo-trans 48,462 2613 3522 5349

Trans-ABySS 87,686 3626 4781 6967

Trinity 82,865 4008 5279 7680

BinPacker 20,612 3486 4314 5685

Multi-k OASES 202,152 5120 6737 9520

Bridger 58,217 4013 5093 7017

TraRECo, Dth = 0.06, CDth = 0 219,402 5366 7010 10,168

TraRECo, Dth = 0.06, CDth = 1 118,342 4845 6308 9078

TraRECo, Dth = 0.06, CDth = 2 109,551 4774 6209 8901

TraRECo, Dth = 0.06, CDth = 4 79,073 4537 5890 8393

TraRECo, Dth = 0.06, CDth = 6 58,396 4217 5436 7642

TraRECo, Dth = 0.06, CDth = 8 47,095 3937 5026 6973

TraRECo, Dth = 0.06, CDth = 12 35,506 3396 4305 5880

TraRECo, Dth = 0.06, CDth = 16 28,997 2959 3749 5089

Except for Trinity, Cutadapt was used for read data trimming
Target coverage = 95%, 90% and 80%. For TraRECo, the results with Dth = 0.06 and CDth = 0, 1, 2, 4, 6, 8, 12 and 16 are shown
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Transcript length mismatch
In the sensitivity measures obtained here, we allowed
only one reference transcript (with the highest alignment
length) to be paired with each candidate. However, when
comparing the length of candidate transcripts with those
of their paired reference, one can see that there were big
differences between the two. Figures 3 and 4 show scat-
ter plots of the candidate (assembled) transcript lengths
and their paired references for SRR445718 and
SRX062280, in which we show only those for Trans-
ABySS, multi-k OASES, and TraRECo (Dth = 0.06, CDth

= 4). For the human sample, the R2 measurements for

these were 0.467 (best), 0.158 (worst), and 0.398, re-
spectively, and for the mouse sample, 0.6, 0.324 (worst)
and 0.79 (best), respectively. For other assemblers, the
R2 measurements for human (mouse) were 0.382
(0.593), 0.408 (0.511). 0.351 (0.44), and 0.349 (not avail-
able) for SOAPdenovo-trans, Trinity, BinPacker, and
Bridger, respectively. In fact, there were noticeable
mismatches in all of the assemblers and we believe
that the mismatch between the two lengths does not
necessarily mean a worse performance since they sim-
ply stem from artificial gene fusion due to sequence
repeats.

Table 2 A comparison of the number of transcripts found and matched to a reference for the paired-end read data SRX062280
(Mouse sample)

Assembler # of candidates
found

# of transcripts matched for Target coverage of

≥ 95% ≥ 90% ≥ 80%

SOAPdenovo-trans 48,234 4902 6088 7634

Trans-ABySS 70,052 8202 9673 11,680

Trinity 71,415 10,247 11,645 13,543

BinPacker 34,838 8979 10,151 11,685

Multi-k OASES 174,724 11,256 13,224 15,789

TraRECo, Dth = 0.06, CDth = 0 240,907 11,864 13,980 17,076

TraRECo, Dth = 0.06, CDth = 1 82,522 10,480 12,355 14,927

TraRECo, Dth = 0.06, CDth = 2 78,226 10,347 12,183 14,688

TraRECo, Dth = 0.06, CDth = 4 65,823 9978 11,706 14,080

TraRECo, Dth = 0.06, CDth = 6 52,465 9555 11,166 13,353

TraRECo, Dth = 0.06, CDth = 8 43,550 9146 10,638 12,643

TraRECo, Dth = 0.06, CDth = 12 33,704 8313 9614 11,282

TraRECo, Dth = 0.06, CDth = 16 28,132 7577 8708 10,087

Except for Trinity, the cutadapt SW was used for read data trimming
Target coverage = 95%, 90% and 80%. For TraRECo, the results with Dth = 0.06 and CDth = 0, 1, 2, 4, 6, 8, 12 and 16 are shown

Fig. 1 The number of transcripts recovered versus precision for the single-end read data SRR445718 (Human sample). Target coverage = 95%
(a) and 80% (b), respectively
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Wide sense (WS) sensitivity
Figures 3 and 4 show that many reference transcripts,
including small RNA sequences with lengths of around
100 bp, were aligned to a much longer candidate tran-
script, indicating that each candidate might represent
multiple reference transcripts due to artificial gene fu-
sion. Perhaps these small RNA sequences recovered with
the de novo assemblers were not expressed at all, while
detected because other larger transcripts contained them
as a part of their entire sequence. Once we consider such
gene fusion and the mismatch as a general phenomenon

(even though a good assembler should be able to combat
sequence repeats in an efficient way), it will be interesting
to check how many (and which) reference transcripts were
aligned to a single candidate. Considering such fusion
as a usual occurrence, we defined the WS sensitivity
as the number of reference transcripts that are recov-
ered by any one of candidates for a given minimum
target coverage, i.e. by allowing multiple references
paired with one candidate.
Figures 5 and 6 compare the WS sensitivity (the num-

ber of references recovered by ‘any’ candidate) with the

Fig. 2 The number of transcripts recovered versus precision for the paired-end read data SRX062280 (Mouse sample). Target coverage = 95%
(a) and 80% (b), respectively

Fig. 3 Scatter plot representing length correlation between reference and candidate transcripts matched with 95 or higher coverage of reference
for human sample (SRR445718). a Trans-ABySS, (b) multi-k OASES, (c) TraRECo (Dth = 0.06)
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sensitivity (allowing only one candidate for each refer-
ence). As shown, there are noticeable differences be-
tween the sensitivity and WS sensitivity for all of the
assemblers. Specifically for the human sample, the WS
sensitivities were twice as high as the sensitivities for all
of the assemblers considered, the largest percentage dif-
ference being that of Bridger. The overall WS sensitivity
looked to have a similar pattern to the assemblers con-
sidered herein, although Bridger and Trinity attained
quite good performances for the human and mouse
samples when considering both WS sensitivity and pre-
cisions simultaneously. One thing to note here is that

when considering WS sensitivity, one may need to re-
define precision since many candidate transcripts (iso-
forms) found with each assembler share the same exons
and it might be more appropriate to use, for example,
the number of nucleotides in the splicing graphs, which
were not available for most of the assemblers.

Results for simulated reads
We were able to perform a more in-depth investigation
of assembler performance (including abundance estima-
tion) using simulated reads as we had prior knowledge
of the exact set of isoforms and their expression level.

Fig. 4 Scatter plot representing length correlation between reference and candidate transcripts matched with 95 or higher coverage of reference
for mouse sample (SRX062280). a Trans-ABySS, (b) multi-k OASES, (c) TraRECo (Dth = 0.06)

Fig. 5 A comparison of sensitivities with wide sense sensitivities for human sample (SRR445718). Target coverage ≥ 95%
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This will be interesting even though the simulated reads
might have had different characteristics from the real
ones and the performance demonstrated for the simu-
lated reads could have been different from the practical
performance with real data.

Data generation and prior knowledge
The simulated data we used were generated with the
Flux Simulator [23] using the UCSC mm9 reference
genome and its annotation. The Flux Simulator first ran-
domly generated expression levels for all of the tran-
scripts in the annotation and then simulated the library
preparation (including reverse transcription, fragmenta-
tion, and size selection) to obtain reads through the
sequencing process. Using the default error models, we
generated 41 M reads of length 100 bp. In addition to
the reads, the Flux Simulator also provided the following
additional information for each isoform generated,
which was used for the in-depth investigation provided
in this section.

(1) Expressed coverage (covered fraction): the
expressed coverage is the percentage of an isoform’s
length that is covered by the generated reads.

(2) Sequenced number: the number of reads sequenced
for a given transcript such that the coverage depth
(expression level per base) can be obtained as the
number of sequenced reads times the read length
divided by the transcript length times the
expressed coverage.

Parameter settings and pre/post processing
Through a similar procedure as for real reads, we com-
pared TraRECo with the other assemblers previously
used. We used the same parameters for all of the assem-
blers except for a k-mer length of 31 for Bridger and
BinPacker (the suggested value for the mouse sample as
in [12]). Using the candidate isoforms obtained from
each assembler, we ran BLASTN to attain how many
reference transcripts were matched to the candidates.
Here, we did not use mm9 Ensembl transcriptome and
instead, created a reference transcriptome by using the
gene annotation and the expression level profile ob-
tained from the supplemental files generated along with
the simulated reads. The reference transcriptome con-
tained the exact set of transcripts from which the simu-
lated reads were generated.

Sensitivity versus precision
Table 3 contains the number of transcript candidates
found with each assembler and the number of recovered
references with a coverage greater than or equal to the
specified target value (95%, 90%, or 80%). In the last
row, we also report the number of transcripts with an
expressed coverage greater than or equal to the specified
target value. As a matter of fact, the number of recov-
ered transcripts for a given target coverage could not ex-
ceed this number for the same coverage values. The
sensitivity was defined as the percentage of the recov-
ered transcripts among all of the reference transcripts
with an expressed coverage greater than or equal to the
target value. The sensitivity versus precision for the

Table 3 A comparison of the number of transcripts found and matched to a reference for the simulated reads (Mouse)

Assembler # of candidates found # of transcripts matched for Target coverage of

≥ 95% ≥ 90% ≥ 80%

SOAPdenovo-trans 21,640 4792 5730 6353

Trans-ABySS 29,642 5330 6280 6934

Trinity 27,962 5499 6314 7067

BinPacker 19,489 5117 5920 6655

Muli-k OASES 56,885 7201 8132 8727

Bridger 22,737 6015 6781 7378

TraRECo, Dth = 0.05, CDth = 0 42,275 7923 8739 9205

TraRECo, Dth = 0.05, CDth = 1 27,005 7700 8511 8975

TraRECo, Dth = 0.05, CDth = 2 26,398 7677 8481 8946

TraRECo, Dth = 0.05, CDth = 4 19,813 7613 8395 8840

TraRECo, Dth = 0.05, CDth = 6 15,540 7540 8298 8704

TraRECo, Dth = 0.05, CDth = 8 13,502 7420 8110 8451

TraRECo, Dth = 0.05, CDth = 12 11,503 6941 7473 7696

TraRECo, Dth = 0.05, CDth = 16 10,290 6408 6821 6997

The number of Transcripts generated with its expressed coverage ≥ Target coverage 9911 11,538 12,733

Target coverage = 95%, 90% and 80%. For TraRECo, the results with Dth = 0.05 and CDth = 0, 1, 2, 4, 6, 8, 12 and 16 are shown
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simulated reads is shown in Fig. 7, in which compared
with the other assemblers, TraRECo showed the best
performance for both sensitivity and precision. Differ-
ently from the real reads, the performance of TraRECo
with the simulated reads compared to the other assem-
blers was considerably better. However, this does not
necessarily indicate its better performance with real data
since the characteristics of simulated reads can be differ-
ent from those of real reads.

Transcript length mismatch and WS sensitivity
As with the real data, we checked length mismatch and
WS sensitivity for the simulated data, as shown in Figs. 8
and 9. In Fig. 8, we showed only those for Trans-ABySS,
multi-k OASES, and TraRECo (Dth = 0.05, CDth = 4).
Compared with those for the real data, the results with
the simulated reads showed much better matches be-
tween the candidate and the reference transcripts and al-
most no small RNA sequences were detected. The

Fig. 7 Sensitivity versus precision for the single-end simulated reads. Target coverage = 95% (a) and 80% (b), respectively. Sensitivity is defined as
the number of recovered transcripts divided by the number of reference transcripts with its expressed coverage larger than the target coverage
(provided in the last row of Table 3)

Fig. 6 A comparison of sensitivities with wide sense sensitivities for human sample (SRX062280). Target coverage ≥ 95%
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R2measurements for SOAPdenovo-trans, Trans-ABySS,
Trinity, BinPacker, multi-k OASES, Bridger, and TraRECo
(Dth = 5, CDth= 4) were 0.990 (best), 0.962, 0.960, 0.894,
0.732 (worst), 0.944, and 0.961, respectively. Figure 9 shows
a comparison of sensitivity with WS sensitivity. As can be
inferred from Fig. 8, there was no considerable difference
between sensitivity and WS sensitivity for the assemblers.

Abundance and sensitivity
Figure 10 show the number of undetected transcripts
with their true abundances approximately equal to the

abscissas, where to obtain an insight into the percentage
of undetected transcripts, the number of reference tran-
scripts is also shown. We used 30 bins for true abun-
dance from 0 to 4.2 on a log-scale. Figure 10a shows
only TraRECo with Dth = 0.01, 0.02, 0.03, and 0.05,
which clearly shows an improvement as Dth increased.
Although our expectation was for some improvement,
especially for the low-level expressed transcripts, the re-
sults show a marginal improvement for low-level
expressed transcripts but considerable improvement for
transcripts with medium expression levels (from 20 to

Fig. 8 Scatter plot representing length correlation between reference and candidate transcripts matched with 95% or higher coverage of
reference for the simulated read. a Trans-ABySS, (b) multi-k OASES, (c) TraRECo (Dth = 0.05)

Fig. 9 A comparison of sensitivities with wide sense sensitivities for simulated reads. Target coverage ≥ 95%
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several hundred on a normal scale (1.3~ 2.5 on a
log-scale)). When compared with the other assemblers,
TraRECo showed a slight improvement for transcripts
with a low expression level. There are two things to
note: (1) most of the assemblers, including TraRECo,
could not successfully detect those transcripts with an
abundance of fewer than 10 (1 on a log-scale); and (2) even
with medium to high expression levels, non-negligible por-
tions of transcripts could not be detected. This is true even
when we consider sensitivity as it is slightly lower than the
WS sensitivity, as shown in Fig. 9. Figure 11 shows the
number of recovered transcripts common among TraR-
ECo, multi-k OASES, and Bridger for a target coverage of
80% or higher (we selected these three assemblers as they
showed the highest sensitivity). We can see that (1) a
considerable percentage of candidates (68~ 81%) were
commonly processed and (2) a non-negligible percentage
(1559/11,764 ≈ 13% for abundance ≥ 5 and 251/8133 ≈ 3%
for abundance ≥ 20) could still not be recovered.

Abundance estimation performance
Note that TraRECo also provides abundance estimates
for each candidate, with which we could trade sensitivity
for precision by controlling the coverage depth threshold
CDth. Although abundance estimation is a secondary
issue in a de novo transcriptome assembler, it was of
interest to see how accurate it was for TraRECo.
Figure 12 shows a comparison of the abundance esti-
mation performance between Trinity+RSEM and
TraRECo. The latter produces abundance estimates for all
of the detected isoforms along the assembly procedure,
while the former provides a separate abundance estima-
tion package called RSEM, with which estimates are

obtained by realigning the reads to the assembled iso-
forms. RSEM provides abundances in Transcripts Per
Kilobase Million (TPM) and Fragments Per Kilobase Mil-
lion (FPKM), while TraRECo provides it in Reads Per
Kilobase Million (RPKM) and raw coverage depth. Hence,
we used the effective transcript length and expected read
count provided by RSEM to obtain the estimates in RPKM
as 109nk/lkN where nk and lk are the expected read count
and effective length of the kth transcript and N is the sum
of nk’s for all k.
We selected those isoforms with a coverage of 80% or

higher and compared their abundance estimates with
the true abundances provided as prior knowledge. The
R2 measurements for the TraRECo and Trinity+RSEM
were 0.684 and 0.728, respectively. Although TraRECo
attained less accurate abundance estimates than Trinity
+RSEM, they were still quite close. Another thing to
note is that TraRECo tended to slightly underestimate
the abundances for a large portion of transcripts even
though the big differences evident using Trinity+RSEM
were seldom (Fig. 12a). The underestimation tendency
was because some of the reads were discarded in the
contig growing step of TraRECo, as they could not be
aligned within the specified distance margin.

Assembly quality measurements using DETONATE
For real data, we do not have the exact set of transcripts
and the evaluation can only be based on the known
transcripts disregarding the unknown (yet possibly exist-
ing) isoforms, while simulated data may have different
characteristics from real data. Given that the ground
truth is unknown for real data, DETONATE [24] or
TransRate [25] can be used as a more reliable measure

Table 4 A comparison of DETONATE (RSEM-EVAL) scores for the three data samples

Assembler SRR445718 (Human) SRX062280 (Mouse) Simulated reads

SOAPdenovo-trans -1,714,875,885 −11,260,544,990 a −1,601,887,363

Trans-ABySS − 1,450,049,444 a − 11,304,600,611 − 1,528,116,522

Trinity − 1,489,443,203 − 11,327,881,219 − 1,482,875,599 a

BinPacker − 1,479,768,971 − 11,281,390,921 −1,620,059,120

Muli-k OASES −2,333,599,533 −11,623,498,121 −2,031,443,441

Bridger −1,479,768,971 Not available −1,540,527,574

TraRECo, CDth = 0 −1,604,604,900 −12,088,126,158 − 1559,358,185

TraRECo, CDth = 1 −1,401,116,205 − 11,421,827,023 −1,481,790,008

TraRECo, CDth = 2 −1,391,489,463 a − 11,402,670,499 −1,480,014,038 a

TraRECo, CDth = 4 −1,392,964,314 −11,372,430,684 − 1,486,956,413

TraRECo, CDth = 6 − 1,419,050,587 − 11,347,202,193 −1,506,415,171

TraRECo, CDth = 8 −1,452,606,806 − 11,327,444,550 −1,530,794,253

TraRECo, CDth = 12 −1,529,402,883 − 11,300,573,327 −1,581,922,133

TraRECo, CDth = 16 −1,598,153,693 − 11,282,292,195 a −1,630,265,385

Best performance among benchmark assemblers and among TraRECo with different coverage depth thresholds were marked with a. For TraRECo, Dth = 0.05 was
used for simulated read, while 0.06 for real reads
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of de novo transcriptome assembly. To provide insight
into how well the assembled candidates represent the
data in an efficient way, we used DETONATE, which
provides two types of assembly quality measure, namely
RSEM-EVAL without and REF-EVAL with a reference
transcriptome. In our experiments, we used the former,
which is a measure of how well and efficiently the as-
sembled transcripts represent the read data.
Table 4 contains the results with the RSEM-EVAL

method. For the real human sample (SRR445718) and the
simulated reads, the best RSEM-EVAL scores with TraRECo

(CDth= 2) were− 1,391,489,463 and− 1,480,014,038, re-
spectively, while the best scores among the other as-
semblers were − 1,450,049,444 (Trans-ABySS) and −
1,482,875,599 (Trinity), respectively. For the real
mouse sample (SRX062280), the best score with TraR-
ECo (CDth = 16) was − 11,282,292,195, while the best
among the other assemblers was − 11,260,544,990 (SOAP-
denovo-Trans). For the latter sample, it seems that the
number of candidate transcripts was the dominant factor
in achieving a better score as TraRECo with CDth = 16
(having the least number of candidates) obtained the best

Fig. 11 Venn diagram showing the number of transcripts detected that are common among various assemblers for the simulated reads. Target
coverage 80%. Considered only those reference transcripts with its abundance being equal to or greater than (a) 5 and (b) 20

Fig. 10 Histogram of the number of undetected transcripts (in wide sense) for simulated reads. Target coverage ≥ 80%. True abundance is
shown in log-scale. To give insight into the percentage of undetected transcript, the number of all reference transcripts were also shown
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among all of the TraRECo scores, which gradually wors-
ened with smaller CDth values.

Computational burden and runtime
Most of the existing assemblers took from 2 to 20 h ex-
cept for multi-k OASES which ran for a few days to per-
form Velvet many times for the different k-mers and
combined them to obtain the final splicing graph. TraR-
ECo took around 64 h for the simulated reads and 150~
180 h for the real reads, which were much longer than
those with existing assemblers. There are two reasons
for the much longer run time with TraRECo. First, it
uses the direct alignment of the reads to the contigs,
and in the worst case scenario, the computational com-
plexity of the full alignment test grows according to
(NL)2, where N is the number of reads and L is the read
length. This is a bottleneck for the runtime with TraR-
ECo. One thing to note is that as the contig growing
step compares the reads with the contigs rather than
with other reads, the complexity grows as NL⋅NcLc,
where Nc is the number of contigs and Lc is the average
contig length. Since NcLc is typically much smaller than
NL, the computational complexity is far less than what
might be expected with square growth. A rough estima-
tion of NcLc is NL divided by the average coverage depth
(abundance) which, as we saw in Fig. 8, is approximately
100. Another reason is that TraRECo was originally de-
veloped using MATLAB™, a proprietary software tool,
while most of the assemblers were written using C/C++.
Although C/C++ version of TraRECo is now available,
the analysis provided here was performed using

MATLAB™ version and the runtime was measured
based on the latter. As MATLAB™ typically runs
much more slowly than C/C++, we can save some
proportion of the runtime by using C/C++, which is
a software development issue rather than a bioinfor-
matics one. Most of all, as our focus in this study
was on the development of new methods rather than
on the software used, the runtime was considered as
a secondary issue.

Discussion
Sensitivity and precision are two primary performance
measures for de novo transcriptome assemblers and a
tradeoff between the two criteria certainly exists. To
maximize the performance, many de novo transcriptome
assemblers perform assembly in two steps: (1) building a
splicing graph and (2) searching for plausible paths. In
the former step, a de Briujn graph approach has been
widely adopted for use in most of the existing assem-
blers since its computational burden only increases
linearly with the read data size. One problem with a de
Bruijn graph is that it is not well suited to combat read
errors and sequence repeats, and to overcome this prob-
lem, Schulz et al. [8] proposed a multi-k approach where
de Bruijn graphs are constructed separately for many
different k-mers. Although it takes a lot more iterations
to obtain the final splicing graph, multi-k OASES pro-
vides the highest sensitivity among all of the existing as-
semblers for all of the samples including simulated
reads. However, multi-k OASES has been shown to be
the worst in terms of precision among all of the

Fig. 12 Abundance estimation accuracy of TraRECo (a) and Trinity + RSEM (b)
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assemblers, while the best is the recently proposed Bin-
Packer, especially for human samples. In between these
two extreme cases, Bridger and Trinity are a good com-
promise in terms of the two performance criteria.
Compared to these de Bruijn graph approaches, TraR-

ECo provides a new framework for de novo transcriptome
assembly by combining the consensus matrix-based error
correction procedure with direct read alignment based on
the greedy approach. Through the work presented in this
study, we confirmed that the proposed contig growing
procedure using consensus matrices could combat read
errors efficiently in that the sensitivity of TraRECo with
low coverage depth threshold (CDth) was even better than
multi-k OASES. As mentioned before, this improvement
was achieved by making additional reads having errors us-
able in the graph construction step. Without an error-
aware alignment test, many of the reads with errors will
eventually be discarded, resulting in a poor splicing graph.
However, utilizing the consensus matrix based read align-
ment we could make these reads usable to improve the
coverage depth information used in the subsequent path
search steps and finally the assembler performance. This
aspect is certainly different from the simple read-error
removal or error correction based on the topological
structure of the de Bruijn graph approach and the differ-
ence could make the proposed approach an alternative
method, at least for the splicing graph construction step,
even though it has a higher computational burden due to
direct alignment test.
On the other hand, the direct alignment of reads to

build the contigs made us able to resort full connection
information of short reads to suppress the impact of
sequence repeats of a length less than the minimal over-
lap width used for read alignment. Furthermore, the im-
provements over a broad range of abundances shown in
Fig. 10 for the simulated reads support this argument.
Although there is still a problem in that any transcripts
with low expression level could not be connected during
the contig growing step, we could alleviate the problem
by connecting the contigs with a smaller connection
threshold (Cth) before performing the junction search
and the graph construction step. Resorting to the full
connection information of a read played an important
role in the junction search and the group (graph) de-
composition step as well, by which we could utilize the
junction overlap width for the group/graph decompos-
ition to facilitate the subsequent joint isoform detection
and abundance estimation.
For the final step, we borrowed the idea of IsoLasso to

jointly detect isoforms and estimate their abundance.
IsoLasso is a simple yet quite powerful method for the
subsequent path search step, even though there are ap-
proaches that are more sophisticated such as Bridger
and BinPacker. However, our approach was different

from IsoLasso’s in that if there are loops in the graph,
then we allow a segment to be included in a path more
than once. The original IsoLasso did not take this into
account simply because loops never occur in reference-
based assembly as these techniques utilize known gene
annotation, but they can appear in de novo assembly as
an artifact of a sequence repeat.
The results from the simulated reads also show that

many challenges still remain unsolved, especially for the
path search step. Specifically, a non-negligible portion of
the transcripts with their expression level being high
enough (a read depth greater than 20) could still not be
recovered by the existing de novo assemblers, including
TraRECo, which appears to have been mainly due to
sequence repeats by which many transcripts/isoforms
were merged together. To solve such problems, one may
need to devise more sophisticated methods to decouple
merged transcripts/isoforms and artificial gene fusion.

Conclusions
Many existing de novo transcriptome assemblers are
based on the de Bruijn graph approach, which builds a
splicing graph in linear time of the data size but suffers
from read errors that make the splicing graph compli-
cated. Because of this, it seems natural that recent
approaches such as Bridger and BinPacker have focused
more on a reliable path search to improve the precision.
Another research direction has been forged by Schulz et
al. [8] to suppress the impact of read errors and short re-
peats by using the multiple k-mers approach. The study
presented here pursued the same objective as this and
we believe it was successful in the sense that the pro-
posed approach showed the highest sensitivity when pre-
cision was not considered. TraRECo also attained a good
performance even when comparing both sensitivity and
precision at the same time. Although the computational
burden of direct read alignment can be much higher
than the single k-mer de Bruijn graph approach, it seems
that its computational burden was far less than the worst
squared complexity due to its recursive computation
providing an alternative to de novo assembly. Overall,
TraRECo was able to provide reliable splicing graph
construction, which is an important issue since de novo
assembly is mainly to explore as yet undiscovered iso-
forms and must be able to represent as many reads as
possible in an efficient way.

Implementation
The entire procedure for the proposed assembly consists
of three parts: (1) contig growing, (2) junction search
and graph construction, and (3) joint isoform detection
and abundance estimation, as summarized in Fig. 13.
The contig growing step utilizes the greedy approach
that has been widely adopted for DNA assembly, e.g.
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Zhang et al. [26], SSAKE [27], SHARCGS [28], and
VCAKE [29], as it is more suitable for error correction
and one can utilize the full connection information of a
read. The second step is to search for junctions among
the contigs and then to construct the graph, which consists
of nodes (representing a segment of the base sequence)
and edges (representing the connections between the
segments). In this step, the read coverage for each base is
tracked to obtain the coverage depth profile for each contig
and segment. Finally, this information is used to jointly
detect isoforms and estimate abundances. This procedure
differs from previously reported methods as follows:

(1) In the contig growing step, we use a “consensus”
matrix that holds an alignment profile represented
by the base count for each location of a contig. This
profile makes it possible to identify errors and

check whether any similar sequences have been
merged into a single contig.

(2) This alignment profile is also tracked in the
subsequent junction search and the graph
construction step delivered to the final stage where
one can jointly detect isoforms and estimate
abundances.

Throughout this section, we provide details of the as-
sembly process and highlight the key features of the pro-
posed assembler.

Contig growing based on a consensus matrix
The contig grower builds contigs by aligning short reads
to all of the contigs in the contig pool and extending the
one with the highest match in a recursive manner. We
use the name to emphasize the recursive nature of the

Fig. 13 The entire workflow of TraRECo assembly procedure consisting of (1) contig growing, (2) junction search and splice graph construction
and (3) joint isoform detection and abundance estimation. In contig growing step, we employed greedy approach and consensus-matrix based
error-aware alignment test. In junction search, we test alignment of prefix and suffix of a contig with other contigs. The aligned prefix and suffix
contain chimeric reads that span over two consecutive exon, even though they might have been aligned because of sequence repeat. The inner
end of aligned prefix or suffix will possibly be the junction boundary between two consecutive exons. In joint isoform detection and abundance
estimation, we used a modified version of IsoLasso, by which one can remove the transcript candidates according to their estimated abundance
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algorithm, which alleviates the squared complexity with
data size, and it proceeds as follows. Let Ψ be the set of
contigs found so far and Ξ be the set of short reads. We
select a read from Ξ and try to align it with all of the
contigs in Ψ. Next, we choose the contig with the widest
overlap for the selected read. If the read completely
overlaps with the contig, we merge the former with the
latter or extend the latter if the former only partially
overlaps it. If there is no contig having an overlap longer
than or equal to a predefined value, we simply add
the read to Ψ as a new contig. This procedure is re-
peated until all of the reads in Ξ have been processed.
One key feature in our contig growing is that we use
a consensus matrix to provide read error correction,
as summarized in Fig. 14.
In the proposed scheme, a contig of length l is repre-

sented by a consensus matrix C of size 4 × l, and the
corresponding representative vector s of length l. Each
row in C corresponds to a base in {A, C, G, T} and each
element in C is the base count of reads aligned to this
contig. On the other hand, each element in s corresponds
to the row index with the highest count at each column in
C, i.e. si = argmaxi ∈ {1, 2, 3, 4}ci, j, where the row indices
{1,2,3,4} correspond to the letters {A,C,G,T}.
The representative s is used to test the alignment with

a read as follows. Let us consider an alignment test of
read r of length m with a representative s of length l.
Without any loss of generality, we assume l ≥m. Three
cases can occur: (1) complete overlap, (2) partial overlap
from the left or right of the reference s, and (3) no

overlap. Let tnl be a portion of vector t such that tnl ¼ ½tl
; tlþ1;…tn� for l ≤ n and tnl ¼ ½ �, a null vector of length 0,
if l > n. The same notation can also be applied to a
matrix, i.e. Tn

l is a matrix consisting of the lth to nth col-
umns of matrix T. Subsequently, one can write r ¼ ½rn1 j
rmnþ1� for integer 0 ≤ n ≤m. Based on this notation, we
say that r completely overlaps with s if for some integer a
in [1, l −m + 1], dHðrm1 ; saþm−1

a Þ≤mDth with m ≥Oth, where
dH(a, b) is the Hamming distance between the two vectors
a and b, Dth is the normalized distance threshold such that
mDth is the number of errors allowed, and Oth is the mini-
mum overlap width for an overlap to be considered as
valid.
On the other hand, we say that r partially overlaps

with s if n exists that satisfies one of the following condi-
tions: (1) dHðrmm−nþ1; s

n
1Þ≤nDth (partial overlap from the

left) or (2) dHðrn1 ; sll−nþ1Þ≤nDth (partial overlap from the
right) for m > n ≥Oth. If multiple n’s satisfy any of the
conditions, we take the largest value. For notational sim-
plicity, we define two functions: rep(⋅) and cns(⋅). The
function rep(⋅) takes consensus matrix C and returns its
representative sequence such that s = rep(C), while func-
tion cns(⋅) takes sequence s and returns a consensus
matrix initialized by s, i.e. each element of C= cns(s) is
set to ci, j = 1 if i = sj, or 0 otherwise. Now, we can de-
scribe the contig-profile update procedure using the two
functions by considering 3 cases. Suppose that read r of
length m partially overlaps with the representative s =
rep(C) of length l ≥m from the left/right of s and the

Fig. 14 An example of contig profile update when a read r of length 5 partially overlaps with s = rep(C) of length 6 from the right (differing only
one base among 4). The contig profile C is extended to and replaced with the updated contig profile C′, which is now of length 7. The updated
elements are marked with dashed circle
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overlap width obeys m ≥Oth, then we update the contig
profile as follows:

From the left : C← cns rm−n
1

� �
Cn

1 þ cns rmm−nþ1

� �
C l

nþ1

����� �
; ð1Þ

From the right : C← C l−n
1 C l

l−nþ1 þ cns rn1
� �

cns rmnþ1

� ������ �
: ð2Þ

An example of a contig profile update for the partial
overlap case is shown in Fig. 14. Suppose that read r of
length m completely overlaps with the representative s
= rep(C) of length l ≥m at position a, then we update
the contig profile accordingly:

Complete overlap : C← Ca
1

��Caþm
aþ1 þ cns rð Þ C l

aþmþ1

��� �
: ð3Þ

If read r does not overlap with s or overlaps at a width
less than Oth, we simply add cns(r) to the contig pool as
a new seed. The overall contig growing procedure is as
follows:

Contig growing
Input: Ξ = {r1, r2,…, rN}
Initialization: Set seed contig, e.g., Ψ = {cns(r1)} and
remove r1 from Ξ.
Loop: For all r ∈ Ξ
A. Test alignment of r with s = rep(C) for all C ∈Ψ
B. If there exist C having overlap width n larger than
Oth (within distance nDth), select C having the widest
overlap with r and update C using (1), (2) or (3)
based on the overlap width and position
C. Otherwise, add r as new contig, i.e., Ψ←Ψ +
cns(r)
D. Remove r from Ξ.

End loop
Output: Ψ = {Ck : k = 1, 2,…}

Parameter settings
Two key parameters in the proposed contig growing
procedure are the normalized distance threshold Dth and
the overlap threshold Oth. Dth is the normalized value
per base such that nDth is the maximally allowed num-
ber of different letters for a portion of a read of length n
to be aligned with a contig representative, where n ≥
Oth. If Dth is too small, reads with more errors will not
be aligned with a target contig and may eventually be
disregarded. On the other hand, if it is too large, many
similar sequences from other isoforms might be merged
together, resulting in artificial gene fusion. Such artifacts
make the splicing graph complex and the subsequent
joint isoform detection and abundance estimation com-
plicated in exactly the same way as occurs the de Bruijn
graph-based approach. However, in contrast to the de
Bruijn graph-based approach, the artificial gene fusion
from short repeats can be avoided by setting Oth to be
relatively large (larger than the k-value in the de Bruijn
graph-based approach) as long as the read length is

much longer than a typical k. Moreover, note that it is
undesirable to set Oth to be too large, especially when
the read coverage is insufficient, i.e. for isoforms with a
low expression levels. If one sets Oth to be large, true
transcripts cannot eventually be connected in those re-
gions where the read coverage is low. On the other
hand, if one set it to be too small, the graph construction
is vulnerable to short repeats, resulting in the possible
merging of multiple isoforms with similar sequences. In
fact, there is a tradeoff between the error correction
capability and the complexity of the final splicing graph
to be used for joint detection and abundance estimation
and we need to be careful when setting the thresholds
for Dth and Oth.

Post contig combining and contig filtering
Post contig combining can be helpful, especially for
those isoforms with a low expression level, and can be
performed in the same way as contig growing but with a
smaller overlap threshold, for which we defined the con-
nection threshold denoted as Cth. Although setting Cth

smaller than Oth can result in undesired contigs becom-
ing connected to each other due to sequence repeats,
this can be identified at the junction search stage and
eventually be resolved through the subsequent steps.
One can also remove those nodes with a length of less
than a certain threshold value and a read coverage depth
of, say, less than 2 since they are highly likely to be short
fragments that could not be aligned due to many errors.

Junction search and graph construction
Junction search and contig grouping
In the second step of the procedure, we first search
junctions by testing the alignment of the prefix and suf-
fix of a contig with other contigs. As in reference-guided
assembly, the junction between two or more exons can
be identified by chimeric reads. That is to say, a contig
having chimeric reads at its prefix or suffix will have a
partial overlap in the middle of other contigs and, as
shown in Fig. 13, the inner end of the aligned prefix or
suffix will possibly be the junction point of two consecu-
tive exons. Note that wrong junction points can be iden-
tified due to sequence repeats and we need to select
carefully from among the many junction candidates (this
issue is discussed shortly). The alignment test here is
exactly the same procedure as the one in the contig
growing step. Note that (1) the overlap width around a
junction is smaller than the nominal read length as we
are employing the greedy approach and (2) we need to
carefully set the junction overlap threshold Jth since it
plays the same role as the overlap threshold in the
contig growing and filtering. Subsequently, based on the
junction information collected for all of the pairs of con-
tigs, one can group the contigs that are linked together,
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where each group (hopefully) represents a gene with
multiple isoforms. In this work, we set Jth = 24.

Junction filtering and group decomposition
Sometimes, the group size appears to be very large,
which corresponds to a complex graph when using a de
Bruijn graph-based approach, and in this case, the iso-
form detection that follows become very complicated.
At this stage, one can invalidate some of the junctions
according to their confidence levels. In this approach,
one can utilize not only the read coverage depth of the
two contigs involved in each junction but also the over-
lap width and distance within the overlap region. In fact,
it is quite risky to apply a fixed threshold to invalidate
junctions because the overlap width around it is roughly
proportional to the isoform expression level, which can
be quite uneven among genes. Although more sophisti-
cated junction filtering can be devised, we applied simple
filtering as follows. For the given junction information of
a group, we iteratively invalidate the junction with the
smallest overlap width until the group size become less
than or equal to a predefined number, say 40 (see [10]
for the justification of a reasonable group size).

Segmentation and graph construction
Now, for each group of contigs, we segment the contigs
(contig profiles) at each valid junction point (junction
boundary) and build a segment connection matrix to fi-
nally construct the splicing graphs for each group of
contigs having valid junctions with each other.
Splicing graph G(N,E) consisting of nodes N and edges

E is a directed graph, possibly with loops due to se-
quence repeats longer than Jth. In the splice graph, each
node represents a segment having a segment profile
(consensus matrix) and each edge connects one segment
to another. The read coverage profile v of a segment
with segment profile S of size 4 × l is obtained by sum-
ming all of the rows of S, column by column.

Compacting the graph to make it minimal
We define indeg(n) and outdeg(n) as the number of in-
put and output edge degrees, respectively, of node n,
and src(e) and dest(e) as the source and destination of
edge e, respectively. We say that two nodes n = src(e)
and n′ = dest(e) are singly connected if and only if out-
deg(n) = indeg(n′) = 1. Without any loss of information,
one can combine these two nodes to make the graph
minimal, in which none of the nodes is singly connected.
By performing this, we assume later on that the splicing
graph used for the joint isoform detection and abun-
dance estimation is minimal.

The joint isoform detection and abundance estimation
With splicing graph G(N,E) consisting of nodes N and
edges E, one can now jointly detect isoforms and esti-
mate their abundances based on the per-segment aver-
age coverage depth {yj: j∈N}. To this end, we tried
IsoLasso [3], for which we slightly modified the proce-
dures to make it fit into our framework.
Let Π be the set of all of the maximal paths starting

from a node with input degree 0 and end at one with
output degree 0. Typically, the number of all of the
paths |Π| is larger than the number of true isoforms.
The problem is to find the true isoforms only. At first,
one can resort to paired-end reads to filter out those
paths that are not compatible with any of the paired-end
reads used in the contig growing step. However, even
with such a filter, the problem still remains, i.e. there
exist many branches caused by read errors which are all
compatible with the reads as they come from the
same set of reads. One can use IsoLasso [3], which
was proposed to ease the problem of an under-determined
system, to select a plausible set of candidate isoforms while
taking into account cases where there are too many paths.
IsoLasso is a constrained minimum mean-squared-error es-
timator that can be concisely written as a quadratic
optimization problem:

min x;λ∥y−Ax∥2 þ λ∥x∥1 subject to x⪰0 ð4Þ

where x is a |Π|×1 vector in which each element is the
abundance of the candidate isoform being estimated; y is
an |N| |×1 vector in which the ith element is the average
read coverage depth of the ith node (segment) obtained
from the corresponding segment profile; and A = [ai, j] is
an |N|×|Π| matrix with ai, j being a non-negative integer,
representing the number of inclusions of node i in path
j. The constraint x ≽ 0 means that all of the elements of x
must be non-negative. Although the original IsoLasso
employed various additional constraints, we did not con-
sidered them here to make the problem simple.
Once we obtain x, we take those paths (candidate iso-

forms) with a length larger than length threshold Lth and
an estimated abundance larger than coverage depth
threshold CDth. IsoLasso is a good option, especially
when |Π| ≫; |N|, in which case one can reduce the sup-
port set by increasing parameter λ. The final step is to
discard those candidates with a length shorter than
length threshold Lth and an abundance less than cover-
age depth threshold CDth. A typical value of Lth is 200 if
we do not take the short non-coding RNA sequences
into account. On the other hand, setting CDth needs to
be carried out with care. With a high CDth, one can ob-
tain a better precision although true isoforms with a low
expression level may be removed, thereby degrading sen-
sitivity, and vice versa. Although a better joint detector/
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estimator can be designed that further improves the per-
formance, we use this rather simple estimator as our
focus is on the proposed contig growing and graph con-
struction scheme.

Dealing with loopy graphs
As mentioned, each element of A, ai, j, can be larger
than 1, which means that we allow a node to be included
more than once to resolve loopy graphs caused by rela-
tively long sequence repeats. Although it seldom occurs,
we allow a node in a loopy graph to be included twice,
i.e. by assuming that a sequence repeat will occurred
only once, we discard those paths that have any nodes
included more than twice or more than two nodes in-
cluded more than once.
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