
Xie et al. BMC Genomics 2018, 19(Suppl 7):667
https://doi.org/10.1186/s12864-018-5031-0

RESEARCH Open Access

Deep learning-based transcriptome data
classification for drug-target interaction
prediction
Lingwei Xie1†, Song He2†, Xinyu Song2, Xiaochen Bo2* and Zhongnan Zhang1*

From IEEE International Conference on Bioinformatics and Biomedicine 2017
Kansas City, MO, USA. 13–16 November 2017

Abstract

Background: The ability to predict the interaction of drugs with target proteins is essential to research and
development of drug. However, the traditional experimental paradigm is costly, and previous in silico prediction
paradigms have been impeded by the wide range of data platforms and data scarcity.

Results: In this paper, we modeled the prediction of drug-target interactions as a binary classification task. Using
transcriptome data from the L1000 database of the LINCS project, we developed a framework based on a
deep-learning algorithm to predict potential drug target interactions. Once fully trained, the model achieved over
98% training accuracy. The results of our research demonstrated that our framework could discover more reliable DTIs
than found by other methods. This conclusion was validated further across platforms with a high percentage of
overlapping interactions.

Conclusions: Our model’s capacity of integrating transcriptome data from drugs and genes strongly suggests the
strength of its potential for DTI prediction, thereby improving the drug discovery process.
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Background
The identification of drug-target interactions (DTIs) is
significant to drug research and development (R&D). The
ability to predict DTIs has been applied widely for drug
repositioning and for anticipating adverse reactions [1, 2].
Large numbers of DTIs have been uncovered in databases
such as DrugBank, Matador, and CTD, but many DTIs
remain to be discovered [3–5]. Although high-throughput
screening technology is available, the traditional strategy
used for discovering new DTIs is still time consuming and
costly.

Researchers have developed a variety of computational
algorithms to facilitate the prediction of DTIs. For exam-
ple, Campillos et al. proposed an algorithm to predict
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whether two drugs share target protein based on similari-
ties of phenotypic side-effect [6]. Bleakley et al. developed
a supervised method, shown as a bipartite graph, to pre-
dict drugs targeting a given protein [7]. The AUC of the
bipartite local model method in different datasets vary
from 74.5 to 97.3%. Wang et al. introduced the framework
of restricted Boltzmann machines to predict DTIs with a
high AUC [8]. Yamanishi et al. predicted DTIs by integrat-
ing chemical and genomic spaces into a bipartite graph
[9]. The AUC of the bipartite graph learning method vary
from 84.3 to 90.4%.

In principle, both data source and prediction algo-
rithm contribute to the performance of DTI prediction.
Researchers have attempted to use various aspects of
drug informatics data, such as cellular response data,
pharmacological data, chemical data, and side effect
data, to identify novel DTIs [6, 10, 11]. However, the
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performance of in silico prediction has been held back by
the wide variety of data production platforms and scarcity
of data.

To address the problem of data scarcity, the National
Institute of Health (NIH) launched the pilot phase of the
Library of Integrated Network-based Cellular Signatures
(LINCS) project in 2010. This project aims to provide
a comprehensive map of multilevel cellular responses
when cells are exposed to various perturbations, including
small molecule compound stimulation and gene knock-
down (http://www.lincsproject.org/LINCS). The L1000
database of the LINCS project includes millions of
genome-wide expression profiles gathered from cell lines
stimulated by more than 20,000 small molecule com-
pounds, or when more than 4000 genes were knocked out
in the respective cell lines. The L1000 database provides
a unified and extensive gene expression profile source for
DTI prediction.

In this study, supported by increased availability of GPU
computing and expanded data sources, we explored the
possibility of deep learning method to discovery new
DTIs based on transcriptome data from drug perturba-
tion and gene knockout trials in the L1000 database.
Inspired by the intrinsic nonlinear patterns revealed by
the LINCS project, we proposed a framework that offers
better prospects for inferencing and for DTI prediction
[12]. First, we developed a permutation of gene expression
data of drugs and genes, both from the L1000 database, in
a serial manner according to known DTIs in the DrugBank
database [3]. Second, the input space, which consisted
of all positive samples and distributed negative samples,
is for training and evaluating our proposed deep neural
network (DNN) model that had only 2000 hidden units.
After forward propagation, the feature dimensionality was
reduced approximately 200 times. By the conclusion of
training, the DNN model derived a decision boundary
to classify positive and negative samples with the desired
accuracy, and the model was able to predict reliable DTIs.
Last, we analyzed the predicted results further using a dis-
tance metric (D-score) and cross-platform comparison.
Further research proved that our framework could pre-
dict a certain number of novel DTIs that were validated
by known experiments in other databases, including CTD,
DGIdb, and STITCH [5, 13, 14]. The experimental results
showed that our DNN model is capable of extracting
low dimensional features representation and can classify
samples accurately. Furthermore, our framework can inte-
grate transcriptome data from drugs and genes, indicating
the strength of its potential for DTI prediction, thereby
improving the drug discovery process.

Methods
In this section, we discuss methods for discovering new
DTIs, including the use of data from the L1000 and

DrugBank databases, the problem definition, and our
approach to deep learning.

To address the challenge of predicting unknown DTIs,
we modeled the problem as a binary classification task.
Firstly, for the original dataset, we selected a large
number of expression data from various drug per-
turbation and gene knockout trails. Some of genes
were target proteins while others were not. How-
ever, the number of negative data was far greater
than the positive data in PC3 cell line. The whole
input space contained all positive data, along with
uniformly sampled expression data from the nega-
tive sample space. Then we described the feature
space based on combinations of the expressions from
drugs and genes. Last, after fitting training achieved
highly accurate data, we used the model for DTI
prediction.

Data from the L1000 database
The LINCS project hopes to decipher how cells respond
to various genetic and chemical stresses. By the time
of completion, the pilot phase of the project had gen-
erated more than 660,000 gene expression profiles from
perturbation of more than 10,000 small molecule com-
pounds, and had gathered more than 440,000 gene expres-
sion profiles of more than 4000 genes with knockout
mutations.

The L1000 database provides direct measurement of the
expression profiles of only 978 landmark genes, and uses
correlations to these genes to infer the remaining ∼20,000
gene expressions. The data structure of the LINCS
project, like the TCGA project (https://cancergenome.
nih.gov/), consists of four levels. Level 1 data represents
the expression value of the 978 landmark genes. Level 2
data represents the normalized expression value of the
978 landmark genes. Level 3 data records genome-wide
expressions. Level 4 data records the Z-score of genome-
wide gene expressions, which is used in this research for
drug perturbations and gene knockdown perturbations in
the PC3 cell line.

Since the LINCS project is still on the way, few
perturbation’s name can map to the drugs from the
DrugBank database. We selected the Level 4 data of
480 FDA-approved drug perturbations and 4363 gene
knockout perturbations in the PC3 cell line. We used
the landmark genes’ Z-score to reduce the feature
dimensionality.

Firstly, we computed the Pearson correlation coeffi-
cient matrix for trails of a certain drug or a gene. Next,
we used the k-means algorithm to divide the drugs or
genes into several clusters. If the number of drug sam-
ples is more than 2 but less than 5, we set k as 2. If it
is more than 5 and less than 15, we set k as 3. And if
it is over 15, we set k as 4. And we chose the cluster
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with the maximum intra-class Pearson correlation coeffi-
cient as the representation of the drug or gene, denoted
by S1. Meanwhile, to retain more of the information
about the trials of the drug or gene, we averaged all
trial data as an independent sample S2. Last, we con-
structed a credible set S of the drug or gene using S1
and S2. The features of drugs in S are the 978 landmark
genes.

DTI database
In this paper, we used the DTIs in DrugBank database ver-
sion 5.0, a comprehensive drug informatics data source
that records chemical, pharmacological, and pharmaceu-
tical features of more than 8000 drugs, to train and eval-
uate our model [3]. To compare cross-platform data, we
used the PubChem ID as the identifier of drugs across
the L1000 and DrugBank database. Finally, we filtered 918
DTIs from 415 drugs and 350 targets in the DrugBank
database to use as the gold standard.

In addition, to validate the DTIs predicted by our
model from 623 drugs and 378 targets, we used three
datasets derived from CTD, DGIdb, and STITCH. For the
623 drugs, we selected 140,972 interactions from CTD,
19,654 interactions from DGIdb, and 958 interactions
from STITCH.

Problem definition
For our research, the transcriptional response data of
drugs and target proteins perturbation were taken from
L1000 database, and the DrugBank database provided the
relationships between them. To explore new DTIs, the
DTI prediction was modeled as a binary classification
task, and the proposed approach took two data channels
(drug channel and gene channel) as input. Each sample
was constructed by fusing a drug datum and a gene datum.
The definition details are as follows.
Definition 1. Drug matrix DM is an m by n matrix that
consists of all drugs, which is the drug perturbation profile
in the dataset S. m is the number of drugs, and n is the
number of landmark genes. Each line means one drug.
Definition 2. Gene matrix GM is an q by n matrix that
consists of all genes, which is the gene knockdown perturba-
tion profile in the dataset S. q is the number of genes, and
n is the number of landmark genes. Each line means one
gene.
Definition 3. Features DMi,j and GMi,j are both real
numbers; each corresponds to the expression of the jth
landmark gene for sample i.
Definition 4. Label matrix LM is a q by m matrix. LMi,j
is the single label for the interaction between gene i and
drug j. If LMi,j = 0, then the combination of gene i and
drug j is either an unlabeled sample or a negative sam-
ple, depending whether gene i is one of the target proteins
or not. Otherwise, gene i (also suggest target protein i) is

a target of drug j recorded in the DrugBank database,
and the combination of gene i and drug j is a positive
sample.
Definition 5. Classification matrix CM is an l by k
matrix. l = mq is the number of all possible DTIs between
m drugs and q targets, and k = 2 indicates the positive or
negative interaction between each drug-target pairs. CMi,0
is the probability of sample i (the ith DTI) belonging to
the negative class. CMi,1 is the probability of sample i
belonging to the positive class.

Supervised learning
In supervised learning, hypothesis space F is the set of
joint probability distributions and conditional probabil-
ity distributions. If the model f is selected as a decision
function, for any input X the predicted value Y *=f (X) is
obtained. The objective function L(Y, f (X)), a real-valued
function of f (X) and Y, is constructed for measuring
the nearness between predicted values and true values.
Since the loss value becomes smaller, the fit of the model
improves on the training sets.

As a result of the improved availability of data for cell
biology and drug chemistry, our proposed DNN was able
to serve as an powerful tool for DTI prediction. The com-
putational power was derived in two ways: first, through
a massively parallel distributed structure, and second,
through the network’s ability to learn and generalize. The
DNN had a built-in ability to adapt parameters according
to the changes of the surrounding environment.

Every neuron in the DNN was nonlinear. This prop-
erty was highly significant, particularly where the under-
lying physical mechanism responsible for generation of
the input signal was inherently nonlinear, and poten-
tially could be affected by the global activity of all other
neurons in neural network. Above all, the DNN auto-
matically extracted more abstract features representing
raw chemical and biological data. Nonetheless, the archi-
tecture remains a huge challenge when feature space is
high-dimensional.

In this study, DTI prediction was modeled as a binary
classification task in machine learning domain. There-
fore, the input layer contained two channels for stack-
ing drug data and gene data from the L1000 database
as input. There were two neurons in output layer for
binary classification that indicated the effectiveness of
the drug relative to the gene. The performance of the
network was impacted by the depth and breadth of
the layers. If the architecture was too complicated, the
risk of over-fitting increased; otherwise, the performance
declined. The optimal number of hidden layers and neu-
rons, the dropout rejection rate, and the class imbalance
weight were investigated on K-fold cross-validation. Last,
a Softmax regression, as defined in (1), was adopted for
output layer.
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During the training procedure, each layer was randomly
initialized first. Then each neuron was activated by ReLU
with strong biological stimulation and mathematical justi-
fication. To ensure that a trained model would have better
potential for DTI prediction, training was completed by
AdamOptimizer to minimize the cross entropy cost func-
tion with L1 penalty for the probabilty of negative samples
belonging to negative class, as defined in (2). After train-
ing, the model had better potential for DTI prediction
even though the ratio sacrificed a small amount of accu-
racy. As shown in Fig. 1, the DNN fit the training data
with a nonlinear decision boundary (middle plot) instead
of a hyperplane (left plot). Moreover, the ratio of positive
(3826) to negative (7652) samples provided more informa-
tion that made the network learn the features of negative
samples. The rebuilt objective function paid more atten-
tion to real negative class in order to push the decision
boundary closer to the center of the positive class cluster
(right plot).
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1

⎤
⎦

(2)

We compared the trained model with other methods
by using the F-score, validation accuracy, and predictive
error (as defined in (3)) at each sample xi. Every inter-
action prediction was measured by CMx,1, and further
analyzed through the distance from the unlabeled sam-
ple point to the decision boundary, as defined in (4).
This distance function was inspired by prior research that
converted the distance function to probability in a tree
kernel-based SVM [15], and the hypothesis of Softmax
was equivalent to SVM for binary classification.

PE (xi) = CMother
xi,yi − CMDNN

xi,yi (3)

D-score(f
∣∣X) = ln

(
CMX,1

1 − CMX,1

)
(4)

Results
As discussed earlier in this paper, we modeled the discov-
ery of new DTIs as a binary classification task. The whole
dataset contained all the expression data of drugs, target
and non-target protein genes. However, there were more
negative samples (combining drug data and non-target
protein gene data) than the number of positivie sam-
ples (combining drug data and target protein gene data).
Therefore, the input space consisted of all positive samples
and uniformly sampled negative samples. As the result of
some intrinsic linear and nonlinear patterns in the LINCS
project [12], linear regression (LR) was adopted to cap-
ture linear features [16], but some nonlinear features were
inevitably ignored. However, others, e.g., Random Forest
(RF) [17], were responsible for extracting nonlinear fea-
tures for classification. All models were implemented in
PC3 cell line with the same promising ratio of positive to
negative.

Fig. 1 The decision boundary of the DNN. The DNN fit training data with a nonlinear decision boundary rather than a hyperplane in high
dimensional space. The final decision boundary approximated positive clusters iteratively during training procedure, even though sacrificing a little
of validation accuracy
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Fig. 2 The architecture of DNN. The network included one input layer
with 1956 neurons, two hidden layers with 200 neurons and 10
neurons respectively, and one Softmax layer as the binary
classification layer

Deep learning results
DNNs are multilayer systems of connected and interacting
artificial neurons that perform various data transforma-
tions. They have several hidden layers of neurons, which
allows for adjustment of the data abstraction level. The
ability to learn at the higher abstraction level makes DNNs
an effective and promising tool for working with chemical
and biological data. In the LINCS project, linear features
can be captured by linear methods, but classification per-
formance reaches a plateau because such methods ignore
complex nonlinear relationships between the expressions
of genes.

In order to learn hierarchical nonlinear features sys-
tematically, we designed a DNN that included one input

layer with 1956 neurons corresponding to the dimension-
ality of features, two hidden layers with 200 neurons and
10 neurons respectively, and one Softmax layer as the
binary classification layer. After feature extraction, each
sample was represented as a 10-dimensional feature vec-
tor, and such feature learning contributed effectively to
classification. However, overfitting is a serious problem
for fully connected network, and a complicated network
is time consuming when using forward propagation. This
is why we adopted the dropout technique to simplify net-
work architecture. The critical idea is to drop neurons
randomly during training to prevent these neurons from
co-adapting too much [18]. The architecture of DNN as
shown in Fig. 2.

The trained model was used for exploring unknown
DTIs. The ratio of positive to negative samples was
selected as 1:2, and the objective function was rebuilt by
weighting the sum of CMi,0 of all negative samples, as
defined in (2). These steps made the network have better
potential for DTI prediction.

As shown in Fig. 3, the process flow of the framework
as a whole contained feature fusion, negative data sam-
pling, model training, and DTI prediction. In the PC3
cell line, too many negative samples introduce serious
class imbalance problem. Therefore, the negative samples
were selected at uniform intervals from the whole neg-
ative sample space. To model the relationships between
drugs and genes, the two data channels were used as
a combination instead of a separation. Thus, each sam-
ple was created by fusion of a drug datum and a gene

Fig. 3 The whole pipeline. The complete process flow of the framework contained feature fusion, negative data sampling, model training, and
prediction
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Fig. 4 The validation accuracy under different dropout rates. When the dropout rate equaled 50%, the performance of the DNN was the best,
because the trained model was assembled by sub-models, and the number of possible sub-models is 2t , where t denotes the number of hidden
neurons in second hidden layer

datum at the feature level without any drops before feed-
ing into any model. We used this procedure because
the original features that were sufficient statistics fully
contained information of original data at the feature
level. Although we tried direct methods to put drug data
and gene data together through simple operations (e.g.,
addition, subtraction, multiplication, and division), these
effort did not generate additional redundant features or
a more complex feature space. However, such operations
were irreversible and changed the expressions of sev-
eral key loci, resulting in information that contributed to
classification loss.

For the original feature combination from two data
channels, we constructed an expression map for each
sample in a serial manner. This method preserved all

original information, and did not introduce more redun-
dant noises. In the training procedure, the probabil-
ity of the dropout rate was selected as 50% (as shown
in Fig. 4). This selection meant that the final model
integrated 2t sub-models, where t denotes the num-
ber of hidden neurons in the second hidden layer. The
weight η in the objective function was selected as 10
based on observations of the learning curve (as shown
in Fig. 5). The AdamOptimizer functioned as an objec-
tive function optimizer with a learning rate of 1e−4
to train the DNN. The distribution of values in partic-
ular layers over time is shown in Fig. 6. The trained
model fit training data with over 98% train accuracy,
and generalized validation data with approximately 90%
validation accuracy.

Fig. 5 The experimental results of different penalty weights for negative samples. In order to keep the trade-off between validation accuracy and
the percentage of positive cases, the penalty weight for negative samples was selected as 10
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Fig. 6 The distribution for weights and activate values coming off particular layers. These histograms show weights and activation values varied over
time. The x-axis presents real value and the y-axis presents training steps

Ablation study
In this paper, different types of methods were introduced
for the ablation study, including RF, LR, Voting Classi-
fier (VC), and Gradient Boosting Decision Tree (GBDT)
using the L1000 dataset. We compared the performance
of our proposed DNN with other methods by examin-
ing the F-score, validation accuracy, percentage of positive
cases (PoPC), and predictive error. LR is responsible for
linear analysis because it can capture effective linear fea-
tures. RF and VC, as ensemble classifiers consisting of
multiple weak classifiers, are adopted widely in classi-
fication tasks. GBDT showed excellent performance in
recommender systems because it has the advantage of
combining different features.

As shown in Table 1, the F-score and validation accu-
racy of our DNN were better than other methods, and the
PoPC on totally 1032658 unlabeled data was at least six
times less. Such reliable PoPC that is premised on accu-
rate fitting benefit from the imbalanced ratio of positive
to negative samples. In addition, if the predictive error of
xi, as defined in (3), was less than 0, the performance of
the model was worse than the performance of the DNN.

Otherwise, the other models were shown to be better than
the DNN. As shown in Fig. 7, more than 89% of the dots
were below the 0 (horizontal) line in the PC3 cell line. In
other words, the results suggested that the performance of
the DNN that was designed by us was much better than
other classic classification models.

Validation and analysis of novel predictions
After training and evaluating our model, we utilized it
to predict novel DTIs. To validate whether our predic-
tion results were in accord with current knowledge, we
examined the predicted DTIs using other DTI database,

Table 1 Performance comparisons across methods

Validation accuracy F-score PoPC

LR 76.84%±0.96 68.88%±0.05 38.11%±2.85

RF 87.12%±1.50 77.57%±4.97 23.40%±1.77

VC 90.00%±0.05 84.45%±0.71 29.85%±3.01

GBDT 90.46%±0.02 85.86%±1.70 28.41%±2.01

DNN 90.53%±1.44 86.38%±1.96 03.98%±1.10
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Fig. 7 The predictive errors between other models and the DNN. Each dot represents the difference between the DNN and other models. If the dot
had a negative label, the predictive error was from the CMi,0 of other models minus the CMi,0 of the DNN. Otherwise, the predictive error was from
the CMi,1 of other models minus the CMi,1 of the DNN. Therefore, if more dots were below the horizontal line, the performance of the DNN was
better than the performance of other models. Otherwise, the DNN performance was worse

including STITCH, DGIdb, and CTD. A total of 221 pairs
were found in STITCH, 466 pairs in DGIdb, and 3254
pairs in CTD. After that, we used D-score to rank all
predicted DTIs, and calculated pairs count that overlap
between the predicted results and the interactions from
the other three databases. Then we counted the number
of overlapping pairs in the sliding bins of 500 consecutive
interactions (as shown in Fig. 8). It suggests that our model

can predict novel DTIs validated by known experiments
in other databases.

The distribution of prediction results across different
therapeutic property labels of drugs is illustrated in Fig. 9.
The distribution of labels for the gold standard and for
the predictions is almost same. However, we predicted
more targets for drugs with the label “J” (anti-infectives
for systemic use). This result suggests that drugs with

Fig. 8 The overlap curves between predicted interactions and known DTIs. We computed the difference in the number of overlapping DTIs
between the predicted results and the DTIs from the three databases. Then, we count the number of overlapping DTIs in the sliding bins of 500
consecutive DTIs
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Fig. 9 Distribution of ATC labels between DTIs in the known (left-top
panel) and predicted (left-bottom panel) interactions. The relative
ratio between predicted and known DTIs for each ATC label is shown
in the right panel. ATC labels include the following. A: alimentary tract
and metabolism; B: blood and blood-forming organs; C:
cardiovascular system; D: dermatologicals; G: genito-urinary system
and sex hormones; H: systemic hormonal preparations, excluding sex
hormones and insulins; J: anti-infectives for systemic use; L:
anti-neoplastic and immunomodulating agents; M: musculoskeletal
system; N: nervous system; P: anti-parasitic products; R: respiratory
system; S: sensory organs; and V: several others

that therapeutic property label have more potential to tar-
get proteins, and should be studied further for broader
use. Furthermore, we examined the association between
known targets and predicted targets for each drug. We
found that 111 out of 623 drugs known targets and pre-
dicted targets are neighbors in the protein-protein inter-
action (PPI) network based on the BioGRID database [19].
Notably, for the drug Flavopiridol hydrochloride (CID:
5687969), investigated for use/treatment in leukemia
(lymphoid), the predicted target HSP90AA1 (Entrez ID:
3320) is a neighbor to eight known targets in the PPI net-
work (Entrez IDs: 983, 1017, 1019, 1020, 1021, 1022, 1025,
1956). Recent research has shown the gene HSP90AA1 is
related to hematological malignancies [20].

Discussion
The ability of DTI prediction is essential and have
improved substantially in recent years, but a paucity
of data and lack of efficient algorithms leads to hardly
systematic DTI prediction. Currently, two advances are
poised to facilitate new strategies. First, the LINCS
project, launched in 2010, is able to provide rich tran-
scriptome data. Second, deep learning methods have been
applied successfully in biomedical research. Nonetheless,
even deep neural network has a strong ability of automati-
cally extracted high-level features, the performance of the

network is related with the depth and breadth of the lay-
ers, and the risk of over-fitting increases resulting from
too complicated architecture. Especially after the dimen-
sionality of genome-wide expression declines to 978, how
to design an effective architecture of deep neural network
for further learning features remains a challenge, and it is
difficult to explain such abstract representations.

In order to make the model have better potential for DTI
prediction, we rebuilt the objective function for decreas-
ing the PoPC, but validation accuracy went down as well.
Because whether a new DTI was reliable depended on the
distance score. In future work, we will explore a proba-
bility to find an inside property for evaluating new DTI
potential.

Conclusion
In this work, we proposed a framework for DTI predic-
tion based on transcriptome data in the L1000 database
gathered from drug perturbation and gene knockout tri-
als. The pipeline of our framework included a combina-
tion of data from drugs and genes, as well as negative
data sampling. As a result of the increasing availability
of data and GPU computing, the DNN employed in our
framework served as an effective tool for feature extrac-
tion and classification. Once the DNN was trained, the
results demonstrated that our framework can discovery
more reliable DTIs than found by other methods. Further-
more, this conclusion was validated across platforms with
a high percentage of overlap interactions. These findings
also demonstrated that our model can integrate transcrip-
tome data from drugs and genes, and has wider prospects
for predicting DTIs and improving the drug discovery
process.
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