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Abstract

Background: RNA regulation is significantly dependent on its binding protein partner, known as the RNA-binding
proteins (RBPs). Unfortunately, the binding preferences for most RBPs are still not well characterized. Interdependencies
between sequence and secondary structure specificities is challenging for both predicting RBP binding sites and
accurate sequence and structure motifs detection.

Results: In this study, we propose a deep learning-based method, iDeepS, to simultaneously identify the binding
sequence and structure motifs from RNA sequences using convolutional neural networks (CNNs) and a bidirectional
long short term memory network (BLSTM). We first perform one-hot encoding for both the sequence and predicted
secondary structure, to enable subsequent convolution operations. To reveal the hidden binding knowledge from the
observed sequences, the CNNs are applied to learn the abstract features. Considering the close relationship between
sequence and predicted structures, we use the BLSTM to capture possible long range dependencies between binding
sequence and structure motifs identified by the CNNs. Finally, the learned weighted representations are fed into a
classification layer to predict the RBP binding sites. We evaluated iDeepS on verified RBP binding sites derived from
large-scale representative CLIP-seq datasets. The results demonstrate that iDeepS can reliably predict the RBP binding
sites on RNAs, and outperforms the state-of-the-art methods. An important advantage compared to other methods is
that iDeepS can automatically extract both binding sequence and structure motifs, which will improve our
understanding of the mechanisms of binding specificities of RBPs.

Conclusion: Our study shows that the iDeepS method identifies the sequence and structure motifs to accurately
predict RBP binding sites. iDeepS is available at https://github.com/xypan1232/iDeepS.

Keywords: RNA-binding protein, Sequence motifs, Structure motifs, Convolutional neural network, Bidirectional long
short term memory network

Background
RNA-binding proteins (RBPs) are highly involved in var-
ious regulatory processes, e.g. gene splicing and localiza-
tion, and provide important functional information for
patient care [1]. Finding the binding sites of the RBPs
is therefore an important research goal. Studies have
shown that RBPs bind to RNA molecules by recognizing
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both sequences (sequence motifs) and secondary struc-
ture contexts (structure motifs) [2–4]. For example, the
amyotrophic lateral sclerosis associated protein FET binds
to its RNA target within hairpin and loops structure
[5]. RBPs specifically recognize loop and stem regions
of miRNA precursors to regulate miRNA expression
level [6].
The current limited set of known RBPs have been found

using time-intensive and expensive high-throughput tech-
nologies such as RIP-seq and CLIP-seq [7]. Therefore,
recent research has focused on the development of sev-
eral fast and low-cost discovery tools for sequence-motifs
and structure-motifs as shown in Table 1. Some tools
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Table 1 Computational methods for RBP binding preference prediction

Method Sequence motif Structure motif Model Code Reference

MEMERIS Yes No Maximum likelihood estimation http://www.bioinf.uni-freiburg.de/~hiller/MEMERIS/ [2]

BEAM No Yes Simulated annealing http://beam.uniroma2.it/ [10]

CapR No Yes Turner energy model https://sites.google.com/site/fukunagatsu/software/capr [11]

Li et al. Yes Yes Iterative refinement - [3]

GraphProt Yes Yes Graph encoding http://www.bioinf.uni-freiburg.de/Software/GraphProt/ [13]

DeepBind Yes No CNNs http://tools.genes.toronto.edu/deepbind/ [19]

DeeperBind Yes No CNNs and LSTMs https://github.com/hassanzadeh/DeeperBind [23]

RNAcontext Yes Yes probabilistic models http://www.cs.toronto.edu/~hilal/rnacontext/ [12]

Zeng et al. Yes No CNNs http://cnn.csail.mit.edu [24]

iDeep Yes No DBNs and CNNs https://github.com/xypan1232/iDeep [28]

iDeepV No No CNNs https://github.com/xypan1232/iDeepV [22]

iDeepE Yes No CNNs https://github.com/xypan1232/iDeepE [29]

iONMF Yes No matrix factorization https://github.com/mstrazar/iONMF [14]

Deepnet-rbp Yes Yes DBNs https://github.com/thucombio/deepnet-rbp [21]

DanQ Yes No CNNs and LSTMs http://github.com/uci-cbcl/DanQ [27]

-means source code is not available

only search for sequence motifs. The widely used MEME
model fits a mixture model using expectation maximiza-
tion to discover multiple sequence motifs [8]. MatrixRE-
DUCE infers the sequence-specific binding motifs for
transcription factors [9]. Other tools also take secondary
structure into consideration to predict the binding site.
MEMERIS searches for RNA motifs enriched in regions
with high structural accessibility [2]. BEAM identifies rep-
resented structure motifs from sets of unaligned RNAs by
considering the evolutionary information [10]. Li et al.,
integrate the accessibility of RNA regions around the RBP
interaction sites to identify accessible sequence motifs
[3]. CapR models the joint distribution of residue posi-
tions and secondary structures to identify the binding sites
under different structure context [11]. RNAcontext trains
machine learning models using sequence and accessibil-
ity information to infer sequence and structure motifs
[12]. GraphProt [13] integrates the RNA sequence and
secondary structural contexts using a graph kernel model
to investigate the RBP binding preferences, and it rep-
resents input sequences using over 30,000 dimensional
graph features. Recently, the iONMF [14] integrates kmer
sequence, secondary structure, CLIP co-binding, Gene
Ontology (GO) information and region type using orthog-
onal matrix factorization to predict binding sites.
The methods discussed above require domain knowl-

edge to hand-design the input features. For example, we
need to first extract discriminate features, e.g. region type
and clip-cobinding [14], with domain-specific knowledge
for predicting RBP binding sites. To remove the need for
prior knowledge, fully data-driven approaches, such as

deep learning [15, 16], are being developed. Deep learning
has proved to be very successful in many research areas,
e.g. image recognitions [17] and information retrieval
[18]. Promising performances were also demonstrated on
predicting RNA-protein interactions and binding sites
[19–22] (Table 1). For instance, DeepBind applies CNNs
to automatically capture the binding sequence motifs
[19]. DeeperBind added another long short-term mem-
ory network (LSTM) layer to learn dependencies between
sequence features to enhance protein-DNA prediction
[23]. Zeng et al. provides a flexible framework for selecting
CNN architectures to predict DNA-protein binding [24].
Deepnet-rbp incorporates structure features using deep
belief networks (DBNs). It includes the RNA structure
information, obtained from another tool, as a count vec-
tor of kmers [21]. A disadvantage of Deepnet-rbp is that it
requires complicated steps to estimate the binding prefer-
ence [21]. Apart from CNN-based methods, LSTM is also
widely used in predicting subcellular localization of pro-
teins, precursor miRNAs and DNA-protein interaction
[25–27]. For example, DanQ applies LSTMs to capture
long-term dependencies between the motifs identified by
CNNs [27].
Our previous iDeep model predicts the RBP binding

sites on RNAs and sequence motifs using the hybrid
CNNs and DBNs by integrating multiple sources of hand-
designed representations, including region type and clip-
cobinding [28]. iDeepE trains local and global CNNs to
infer sequence binding motifs [29]. However, similar to
DeepBind [19], it can discover only the sequence bind-
ing preferences. In this study, we propose and evaluate an
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improved version, called iDeepS, which consists of CNNs
and a bidirectional LSTM. The iDeepS method identifies
the sequence and structure binding motifs simultane-
ously. To the best of our knowledge, iDeepS is the first
method to fully automatically capture both the sequence
and structure binding motifs using CNNs.

Results
In this study, we evaluate iDeepS on large-scale RBP bind-
ing sites derived from CLIP-seq [30]. Figure 1 shows the
flowchart of iDeepS for predicting RBP binding sites.
The details of the network architecture are shown in
Additional file 1: Figure S1. We evaluate the performance
of iDeepS for predicting binding sites on RNAs and com-
pare it with the state-of-the-art methods. Furthermore, we
identify the binding sequence and structure motifs using
CNNs integrated in iDeepS.

Performance of iDeepS
The performance of iDeepS is compared with both
sequence-based and structure-based methods as des-
cribed below.
First, we compare it with the sequence-based DeepBind

and Oli across the 31 experiments. iDeepS results in an
average AUC of 0.86, which is a little better than 0.85
of DeepBind, and similar to AUC 0.86 of DeeperBind.

The performance of Oli [31] is much lower than iDeepS,
with an average AUC of 0.77 across the 31 experiments.
For some proteins, Oli’s performance is close to random
guessing, e.g. protein Ago2-MNase with AUC 0.512. As
showed in Table 2, iDeepS outperforms DeepBind on 25
of 31 experiments, DeeperBind on 19 experiments, and
Oli on all experiments. It is interesting to note that the
three methods have large performance differences across
individual experiments. For iDeepS, the AUCs ranges
from 0.59 for protein Ago2-MNASE to 0.98 for protein
HNRNPC. For Ago2 protein, iDeepS cannot yield high
performance. The reason is that Ago2 binding specificity
is primarily mediated by miRNAs [32], the expressed
miRNAs have a high influence on Ago2-RNA interac-
tions, which results in more variable binding motifs than
RBPs that bind to RNAs directly. In addition, we compare
iDeepS with DBN-based DBN-kmer that uses kmer fea-
tures and a DBN to predict RBP binding sites. DBN-kmer
yields the mean AUC of 0.77 (Additional file 2: Figure S2),
which is much worse than CNN-based DeepBind and
iDeepS.
Second, we compare iDeepS with structure-profile-

based GraphProt, which demonstrates better perfor-
mance than RNAcontext [7]. Across the 31 experiments,
GraphProt yields the average AUC of 0.82, which is worse
than 0.86 of iDeepS. As shown in Fig. 2, iDeepS achieves

Fig. 1 The flowchart of proposed iDeepS. For each experiment, iDeepS integrates two CNNs (one is for sequences, the other is for structures
predicted by RNAshape from sequences) to predict RBP interaction sites and identify binding sequence and structure motifs, followed by the
bidirectional LSTM, which learns the long range dependencies between learned sequence and structure motifs. Finally, the outputs from
bidirectional LSTM are fed into a sigmoid classifier to predict the probability of being RBP binding sites
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Table 2 The AUC performance comparison between iDeepS and
other methods on 31 experiments

Protein iDeepS DeepBind DeeperBind Oli GraphProt

1 Ago/EIF 0.773 0.713 0.740 0.610 0.691

2 Ago2-MNase 0.591 0.595 0.606 0.512 0.595

3 Ago2-1 0.865 0.849 0.857 0.803 0.817

4 Ago2-2 0.868 0.830 0.868 0.800 0.823

5 Ago2 0.634 0.628 0.630 0.534 0.633

6 eIF4AIII-1 0.950 0.938 0.950 0.919 0.918

7 eIF4AIII-2 0.953 0.950 0.954 0.929 0.931

8 ELAVL1-1 0.932 0.924 0.930 0.889 0.915

9 ELAVL1-MNase 0.600 0.613 0.614 0.491 0.591

10 ELAVL1A 0.893 0.886 0.893 0.843 0.867

11 ELAVL1-2 0.919 0.914 0.919 0.875 0.895

12 ESWR1 0.917 0.912 0.915 0.808 0.840

13 FUS 0.934 0.942 0.939 0.846 0.860

14 Mut FUS 0.958 0.953 0.957 0.822 0.853

15 IGFBP1-3 0.717 0.702 0.713 0.569 0.697

16 hnRNPC-1 0.960 0.957 0.959 0.885 0.930

17 hnRNPC-2 0.975 0.973 0.976 0.941 0.953

18 hnRNPL-1 0.756 0.771 0.746 0.392 0.698

19 hnRNPL-2 0.747 0.769 0.746 0.474 0.708

20 hnRNPL-like 0.708 0.711 0.679 0.562 0.650

21 MOV10 0.813 0.804 0.812 0.783 0.803

22 Nsun2 0.835 0.803 0.801 0.754 0.779

23 PUM2 0.962 0.950 0.955 0.939 0.914

24 QKI 0.966 0.962 0.961 0.924 0.932

25 SRSF1 0.887 0.874 0.875 0.839 0.838

26 TAF15 0.964 0.956 0.963 0.804 0.850

27 TDP-43 0.930 0.926 0.930 0.883 0.907

28 TIA1 0.930 0.924 0.926 0.842 0.896

29 TIAL1 0.893 0.888 0.895 0.831 0.858

30 U2AF2 0.953 0.941 0.945 0.861 0.873

31 U2AF2(KD) 0.931 0.923 0.930 0.840 0.883

DeepBind, DeeperBind, Oli and GraphProt perform on the same datasets with
iDeepS. The boldface indicates this performance is the best among the compared
methods

better AUCs than GraphProt on 30 of the 31 experiments.
Our method improves the AUCs for some proteins by a
large margin. For example, iDeepS yields an AUC 0.77 for
protein Ago/EIF, which is an increase of 12% compared to
AUC 0.69 of GraphProt (Table 2).
In addition, iDeepS outperforms iONMF (reported

average AUC of 0.85 on the same data) using mul-
tiple sources of data, including kmer frequency, sec-
ondary structure, GO Information and gene type [14].
They also report that the iONMF surpasses the Graph-
Prot and RNAcontext. However, iDeepS performs a little

worse than our other deep learning based method iDeep,
which integrates multiple sources of data, including gene
type and clip-cobinding, instead of only sequences. It is
expected that the fully sequence-based method iDeepS
will have a more general application scope in the real-
world applications.
In summary, iDeepS not only on average achieves better

performance than other peer sequence-based methods, it
also outperforms some approaches integrating multiple
sources of hand-designed features. Our results demon-
strate that iDeepS benefits strongly from learning the
combination of sequence and structure features for pre-
dicting RBP binding sites.

Insights in sequence-structure motifs
A big advantage of iDeepS is that it also provides
biological insights, e.g. learned binding motifs, of the
RBPs. As compared to GraphProt, which requires a
complicated postprocessing step, iDeepS easily converts
learned parameters of the convolved filters to PWMs and
allows for identification of the sequence and structure
motifs.
In this study, we infer the binding motifs across

31 experiments. Of these, 19 experiments have known
sequence motifs in the CISBP-RNA database or the lit-
erature. As shown in Fig. 3, iDeepS is able to discover
experimentally verified sequence motifs for these 19
experiments, of which 15 are matched against CISBP-
RNA with significant E-value cutoff 0.05 provided by
TOMTOM [33]. The motifs of the remaining 4 pro-
teins resemble the motifs reported by other studies
based on visual inspection. iDeepS discovers repeated
UG dinucleotides motifs for TDP-43, which contains
these dinucleotide repeats in 80% of the 3’UTR region
by microarray analysis [13, 34]. iDeepS captures a known
motif, which is a crucial regulator in germline develop-
ment [35], for QKI with significant E-value 0.00008. The
motif for PUM2 has been found with an AU-rich sequence
motif by iDeepS, which is close to the motifs identi-
fied based on top sequence read clusters [7]. The results
show that the sequence motifs identified by iDeepS are
consistent with verified motifs.
The iDeepS method allows for discovery of structure

motifs. iDeepS has demonstrated that RBPs have prefer-
ences to generally structured regions. As shown in Fig. 3,
the proteins in the ELAVL protein family prefer bind-
ing to stem structures, which is consistent with the in
vivo and in vitro binding data [36]. iDeepS also discovers
that the protein hnRNPC prefers to bind to U-rich hair-
pin structures, the protein PUM2 binds to stem regions
which are UA-rich and the protein QKI interacts with
the multiloops region, which all agree with the finding
in [13]. Of the 19 structure motifs listed in Fig. 3 that
are similar to detected structure motifs by GraphProt,
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Fig. 2 The AUCs of iDeepS, DeepBind, Oli and GraphProt across 31 experiments. The performances are evaluated on the same training and
independent testing set across 31 experiments (x-axis) for iDeepS,DeepBind, DeeperBind, Oli and GraphProt. For Oli, DeepBind and DeeperBind,
only sequences are used. For iDeepS and GraphProt, sequences and predicted structures are used

15 are significantly enriched with adjusted p-value < 0.05
estimated by AME [37].
We further investigate the identified motifs for FUS,

MOV10 and IGF2BP1-3 (Fig. 4), who have no sequence
motifs in CISBP-RNA database. FUS has been found to
bind to AU-rich stem structure (adjusted p-value: 1.55e−2

for structure motif ) according to study [5], which is
captured by iDeepS (Fig. 4a). In addition, we find sim-
ilar motifs to GraphProt for protein MOV10 with AU
rich stem region (Fig. 4b, adjusted p-value: 3.89e−3 for
structure motif ), and IGF2BP1-3 protein with CA din-
ucleotides multiloop region (Fig. 4c, adjusted p−value:
5.01e−5 for structure motif ). iDeepS discovers another
AC-rich stem-loop motif identified in [38] for Ago2
(Fig. 4d, adjusted p−value: 4.28e−2 for structure motif ),
which is different from the motif of Ago2 listed in Fig. 3.
Compared to GraphProt, iDeepS is able to discover mul-
tiple binding sequence and structure motifs for each
protein.
We also discover many novel motifs that we could not

verify against currently available knowledge. All sequence
and structure motifs discovered by iDeep and the reports
of their enrichment analysis are available at https://github.
com/xypan1232/iDeepS/tree/master/motif. For instance,
iDeepS captures novel motifs for RBP EIF4A3 andNSUN2

(Fig. 4e and f), their sequence motifs are enriched with
adjusted p-value 5.18e−53 and 1.53e−8, respectively. Sim-
ilarly, their structure motifs are enriched with adjusted
p−value 4.20e−3 and 7.02e−5, respectively. They both
show preference for a hairpin region. These discover-
ies have not been found by any earlier studies and need
further verification.

Added value of BLSTM
To providemore insights in the added value of the BLSTM
we compare the results with a variant using only CNNs
and no BLSTM layer. As shown in Fig. 5, iDeepS yields
better performance than the variant using only CNNs for
most of the 31 experiments. After taking 2 times stan-
dard deviation of differences into consideration, iDeepS
significantly outperforms the variant only using CNNs on
6 experiments. For the CNN, we optimized the hyper-
parameters learning rate and weight decay by a few trials
of human-guided search (Additional file 3: Table S1). As
shown in Table S1, the performance of the variant is still
worse than iDeepS among those tested parameters. Espe-
cially a large learning rate of 0.01 will cause the model
not to converge, and the performance for some RBPs is
similar to random guessing. Based on these results, we
decided to use a default learning rate of 0.001 for this

https://github.com/xypan1232/iDeepS/tree/master/motif
https://github.com/xypan1232/iDeepS/tree/master/motif
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Fig. 3 iDeepS captures known sequence motifs and structure motifs. The predicted sequence motifs are compared them against known motifs in
study [48] from CISBP-RNA database and literature. E-value is the expected number of false positives for the predicted motifs against known motifs
using TOMTOM. The Adjusted p-value is estimated for the corresponding structure motif using enrichment analysis tool AME in MEME Suite. The
structure motifs are labelled as follows: stems (S), multiloops (M), hairpins (H), internal loops (I), dangling end (T) and dangling start (F). Note that
these listed logos do not represent the full extent of the matched motifs

study. The results indicate that BLSTM is better able to
capture motifs for predicting RBP binding sites, which
suggests long-term dependencies between sequences and
structures. In addition, iDeepS performs significantly bet-
ter on 3 experiments than the variant with CNN+ BLSTM

using only the sequences (Additional file 4: Figure S3),
which demonstrates that introducing structure informa-
tion improves RBP binding site prediction.
DeepBind achieves an average AUC of 0.85 across the

31 experiments by only using sequence CNN, which is a
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a b c

d e f

Fig. 4 The identified novel binding sequence and structure motifs by iDeepS for RBPs. a protein FUS. b protein MOV10. c protein IGF2BP1-3.
d protein Ago2. e protein EIF4A3. f protein NSUN2. In the structure motif logos, they are labelled as follows: stems (S), multiloops (M), hairpins (H),
internal loops (I), dangling end (T) and dangling start (F)

little better than 0.84 of simply concatenating the outputs
from sequence and structure CNNs. The reason is that the
structure information is predicted from sequences, there
exsits correlation between sequences and structures, lead-
ing to redundant information, whichmight hurt themodel
training. DeepBind performs worse than iDeepS (AUC:
0.86) with the added BLSTM layer after sequence and
structure CNNs. The results suggest BLSTM can learn
long-term dependencies between sequence and struc-
ture motifs, which may reduce the impact of redundant
information.

Discussion
iDeepS is a fully sequence-based method, which will
have a more general application scope in the real-world
applications than iDeep based on multiple sources of
hand-designed features. In addition, the other contribu-
tion of iDeepS is to identify the binding sequence and
structure of RBPs simultaneously. The iDeepS method
has many possible applications. When there are RNA
sequences available with potential target sites for RBPs

of interest, then these sequences can be fed into iDeepS
models. The iDeepS method estimates the probability of
those RNA sequences bound to certain RBPs. Pei et al.
[39] analyze HT-SELEX data to identify structure motifs
for ribosomal protein S15. iDeepS can directly identify
the binding sequence and structure motifs of RBPs from
sequences. The captured sequence and structure con-
text are an important basis for further research, which
could have high clinical impact. For example, these find-
ings could contribute to discovering the mechanisms
of diseases involving RBPs. Some structure specificities
increase the possibility of the disruption of the struc-
tures within binding sites, whichmight cause diseases, e.g.
protein FMR1 in fragile X syndrome [11]. Furthermore,
iDeepS has the potential application on predicting the
effects of mutations [19, 40]. For example, we can mutate
the nucleotides of binding sites, then use iDeepS to predict
whether the new binding sites have a big shift compared
to experimentally verified sites. In addition, iDeepS can
be first used to discover those RBPs that interact with
miRNAs, then depletion of those identified RBPs is used
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Fig. 5 The difference of predictive performance using CNN + BLSTM
and only CNN. On the y-axis the performance of the full model with
CNNs and BLSTM is shown. The x-axis shows the performance of the
model using only the CNNs without BLSTM. The two red lines indicate
the 2 times standard deviation of the difference between only using
CNN and using CNN + BLSTM

to control miRNA expression level [6]. This function
is especially of interest for those oncogenic miRNAs in
therapeutic applications.
In spite of the promising performance of iDeepS, there

still exists some limitations. 1) iDeepS applied the same
stringent criteria as described in iONMF [14] to create the
negative sites, those negative sites were constructed from
genes that were not identified as interaction targets in
any of 31 RBPs. This is a strong assumption, which could
impact the prediction quality. 2) iDeepS also fails in those
RBPs where other existing tools also have lowAUC values.
The reason might be that the quality of training dataset
for those RBPs is low, e.g. high false positives. Thus, more
studies are needed to further improve the data quality.
3) Different RBP families show RNA-binding specificities,
thus we train a RBP-specific model, a model per RBP. In
total, we train 31 models for the 31 experiments in this
study, thus iDeepS is only able to predict binding tar-
gets for those specific RBPs among these 31 experiments.
However, many computational methods [20, 41] train a
mixed model with RNA and protein sequences as inputs,
and they can predict the binding potential scores for any
pairs of RNAs and proteins.

Conclusion
In this study, we present a fully automatic deep learn-
ing method iDeepS to infer both sequence and structure
preferences of RBPs and predict the RBP binding sites
from RNA sequences. We evaluate iDeepS on RBP bind-
ing sites derived from the CLIP-seq datasets. iDeepS is
able to predict the RBP binding sites on RNAs with higher
accuracy than the state-of-the-art methods. The BLSTM

layer in the iDeepS algorithm ascertains long-term depen-
dencies between sequence and structure motifs, which
improves its predictive performance. Importantly, the
captured motifs align well with the previously reported
binding motifs obtained from CISBP-RNA and literature.
Moreover, iDeepS also discovers some novel motifs still
not experimentally verified. Compared to existing black-
box machine learning algorithms, iDeepS is able to find
verified sequence and structure binding motifs, which
are expected to provide important clues for understand-
ing the biological functional mechanisms of RNA and its
binding protein RBP.

Methods
Wedevelop the computational approach iDeepS (Fig. 1) to
predict the RBP binding sites on RNAs. We apply one-hot
encoding for the sequences and secondary structures pre-
dicted by RNAshapes [42], and feed these into CNNs and
a BLSTM to predict RBP binding sites. Finally, we extract
the sequence and structure motifs from the learned con-
volution filters of the CNNs and evaluate them against
known verified motifs.

Datasets
In this study, we train deep learning models for RBP bind-
ing sites derived from CLIP-seq data [14] available at
(https://github.com/mstrazar/ionmf), where original data
are retrieved from DoRiNA [30] and iCount (http://
icount.biolab.si/). This CLIP-seq dataset consists of 19
proteins with 31 experiments, including representative
RBPs Ago2, TIA1 and ELAVL1. For each experiment, each
nucleotide within clusters of interaction sites derived from
CLIP-seq were considered as binding sites. The nega-
tive sites were sampled from within genes that were not
identified as interaction sites in any of the 31 experi-
ments. In each experiment, a total 24,000 samples are
used for training, 6,000 samples for model optimization
and validation, and the other 10,000 samples for inde-
pendent testing, they are used to train and evaluate a
RBP-specific model.

Encoding sequence and structure
The RNA sequence is used as a one-hot representation
encoded into a binary matrix, whose columns correspond
to the presence of A, C, G, U and N [19, 43]. Given a
RNA sequence s = (s1, s2, ..., sn) with n nucleotides and
sequence motif detector with defined size m, the binary
matrix M for this sequence is represented as follows:

Mi,j =
⎧
⎨

⎩

0.25 if si−m+1 = N or i < m or i > n − m
1 if si−m+1 is (A,C,G,U)

0 otherwise
(1)

https://github.com/mstrazar/ionmf
http://icount.biolab.si/
http://icount.biolab.si/
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where i is the index of the nucleotide, j is the index of the
column corresponding to A, C, G, U.
We use abstract secondary structure annotation from

RNAshapes [42] implemented in https://github.com/
fabriziocosta/EDeN. The RNAshapes have six generic
shapes: stems (S), multiloops (M), hairpins (H), internal
loops (I), dangling end (T) and dangling start (F). For
each sequence s, we obtain the structure shapes str =
(str1, str2, ..., strn) by RNAshapes, which are converted
into a binary matrix R with columns corresponding to the
presence of F, H, I, M, S, T, and with k representing the
predefined structure motif size.

Ri,j =
⎧
⎨

⎩

0.16 if i < k or i > n − k
1 if stri−k+1 is (F ,H , I,M, S,T)

0 otherwise
(2)

where i is the index of the structure, j is the index of the
column corresponding to S, M, H, I, T, F.

Convolutional neural network
The Convolutional Neural Network (CNN) [44] is
inspired by the animal visual cortex. It consists of convo-
lution, activation, and max-pool layers.
The one-hot encoding matrix derived from RNA

sequences and structures are the inputs to the CNNs and
are used to learn the weight parameters of the convolu-
tion filters. The convolution layer outputs thematrix inner
product between input matrix and filters. After convolu-
tion, a rectified linear unit (ReLU) is applied to sparsify
the output of the convolution layer and keep only pos-
itive matches to avoid the vanishing gradient problem
[45]. Finally, a max pooling operation is used to reduce
the dimensionality and yield invariance to small sequence
shifts by pooling adjacent positions within a small
window.
Before feeding into the next layer, the CNNs of sequence

and structure are merged into one layer. The subsequent
layers of the iDeepS act jointly on the merged sequence
and structure layers.

Long Short TermMemory networks
LSTM belongs to the class of recurrent neural network
[46], it incorporates long-term dependent information
to assist the present prediction. In this study, LSTM is
used to identify informative combinations of the extracted
sequence and structure motifs [27], which projects the
original input into a weighted representation.
As the LSTM sweeps across each element of the input,

it first decides which information should be excluded by a
forget gate layer based on previous inputs. Then an input
gate layer is used to determine which information should
be stored for the next layer, and updates the current state
value. Finally, an output gate layer determines what parts
of state value should be output. Taking a sequence {x}Tt=1

as input, the LSTM have the hidden states {h}Tt=1, cell
states {C}Tt=1, and it outputs a sequence {o}Tt=1. The above
steps can be formulated as follows:

ft = σ
(
Wf xt + Uf ht−1 + bf

)
, (3)

it = σ (Wixt + Uiht−1 + bi) ,
ct = ft � ct−1 + it � tanh (Wcxt + Ucht−1 + bc) ,
ot = σ (Woxt + Uoht−1 + bo) ,
ht = ot � tanh(ct)

where� denotes element-wise multiplication, the σ is the
Logistic Sigmod function and tanh is the tanh function to
force the values to be between -1 and 1. Wf , Wi, Wo, Uf ,
Ui andUo are the weights and bf , bi, bc and bo are the bias.
In iDeepS, a bidirectional LSTM (BLSTM) is used, i.e.,

it sweeps from both left to right and right to left, and
the outputs of individual directions are concatenated for
subsequent classification.

Identifying the binding sequence and structure motifs
To explore the learned motifs, we investigate the learned
filters of sequence and structure CNNs in iDeepS. We
convert them into position weight matrices (PWM) like
DeepBind and Basset [19, 40], which are matched against
input sequences and structures to discover bindingmotifs.
Assuming we have a sequence or structure Sm and a

convolve filter with size L, if the activation value Amfi of
filter f at position i is greater than 0.5 maxmi Amfi, then this
sequence or structure in windows L centring the position
i is selected to align sequence motifs using WebLogo [47].

Amfi = ReLU
(

∑

l=1

D∑

d=1
wfld ∗ sm,i+1,d

)

(4)

where ReLU(x) = max(0, x), wf is the weights of filter f,
m is the sequence length. For sequence motifs, D is 4. For
structure motifs, D is 6.
To verify the predicted sequence motifs, we align them

against 102 known motifs in study [48] from CISBP-RNA
using the TOMTOM algorithm [33] with p−value < 0.05.
For some proteins, currently there are still no verified
motifs in the CISBP-RNA database, we investigate them
via the literature.
Furthermore, we also calculate motif enrichment scores

of predicted sequence and structure motifs using AME
[37] in the MEME suite [8]. Fisher’s exact test is used to
estimate the p−values, which are adjusted for multiple
tests using a Bonferroni correction. Take sequence motifs
as an example, we first scan the predicted motifs against
the input sequences, and do the same for the shuffled
sequences considered as the background sequences. Then
we compare them to calculate the enrichment scores. We
do the same enrichment analysis for predicted structure
motifs.

https://github.com/fabriziocosta/EDeN
https://github.com/fabriziocosta/EDeN
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Implementation
The iDeepS is implemented in python using keras 1.1.2
library https://github.com/fchollet/keras.We set the max-
imum number of epochs to 30, and the batch size to 50.
The validation dataset is used to monitor the convergence
during each epoch of the training process, so the train-
ing process can be stopped early. The model is trained
by back-propagation using categorical cross-entropy loss,
which is minimized by RMSprop [49]. In addition, we
employ multiple techniques to prevent or reduce over-
fitting, e.g. batch normalization [50], dropout [51] and
early stopping.
The number of motifs for both sequence and struc-

ture CNNs is set to 16 as suggested by DeepBind
[19]. As indicated in iDeep [28], ReLU leads to infor-
mation loss for some bits in motifs. As proposed by
DeepBind, the the filter_length (motif width) should
be 1.5 times the verified motif width, which is 7
in CISBP-RNA database [48]. Therefore, we choose
a filter length of 10 in this study. When convert-
ing the filters to PWMs, we only use the first 7
bits of 10.

Baseline methods
There are many computational methods developed for
predicting RNA-protein binding sites [13, 14, 19, 31].
In this study, we compare iDeepS with the state-of-the-
art sequence-based methods DeepBind [19], DeeperBind
[23], Oli [31], iONMF [14] and GraphProt [13]. Deep-
Bind, uses a sequence CNN with the same architecture
as iDeepS to predict RBP binding sites. For GraphProt
(v1.1.3), it encodes the sequence and structure into high-
dimensional graph features, which are fed into a SVC
to classify RBP bound and unbound sites. In this study,
we use a window size of 80 in GraphProt and the other
parameters are set to the default. iONMF uses matrix
factorization to predict RBP binding sites by integrating
different sources of features [14]. Oli uses linear SVC to
classify RBP binding sites based on tetranucleotide fre-
quency features [31]. The performance is measured using
the area under the receiver operating characteristic (ROC)
curve (AUC).

Additional files
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(PNG 45 kb)

Additional file 2: Figure S2. The AUCs of using DBN and k-mer features
to predict RBP binding sites. (EPS 54.4 KB)
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Additional file 4: Figure S3. The difference of predictive performance
using sequence + structure and only sequence. On the y-axis the
performance of the full model with sequence + structure is shown.

The x-axis shows the performance of the model using only sequences. The
two red lines indicate the 2 times standard deviation of the difference
between only using sequence and using sequence + structure. (EPS 39 kb)
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