
RESEARCH ARTICLE Open Access

A genome-wide association study reveals
novel genomic regions and positional
candidate genes for fat deposition in
broiler chickens
Gabriel Costa Monteiro Moreira1, Clarissa Boschiero1, Aline Silva Mello Cesar1, James M. Reecy2,
Thaís Fernanda Godoy1, Priscila Anchieta Trevisoli1, Maurício E. Cantão3, Mônica Corrêa Ledur3,
Adriana Mércia Guaratini Ibelli3, Jane de Oliveira Peixoto3, Ana Silvia Alves Meira Tavares Moura4,
Dorian Garrick5 and Luiz Lehmann Coutinho1*

Abstract

Background: Excess fat content in chickens has a negative impact on poultry production. The discovery of QTL
associated with fat deposition in the carcass allows the identification of positional candidate genes (PCGs) that
might regulate fat deposition and be useful for selection against excess fat content in chicken’s carcass. This study
aimed to estimate genomic heritability coefficients and to identify QTLs and PCGs for abdominal fat (ABF) and skin
(SKIN) traits in a broiler chicken population, originated from the White Plymouth Rock and White Cornish breeds.

Results: ABF and SKIN are moderately heritable traits in our broiler population with estimates ranging from 0.23 to
0.33. Using a high density SNP panel (355,027 informative SNPs), we detected nine unique QTLs that were associated
with these fat traits. Among these, four QTL were novel, while five have been previously reported in the literature.
Thirteen PCGs were identified that might regulate fat deposition in these QTL regions: JDP2, PLCG1, HNF4A,
FITM2, ADIPOR1, PTPN11, MVK, APOA1, APOA4, APOA5, ENSGALG00000000477, ENSGALG00000000483, and
ENSGALG00000005043. We used sequence information from founder animals to detect 4843 SNPs in the 13 PCGs.
Among those, two were classified as potentially deleterious and two as high impact SNPs.

Conclusions: This study generated novel results that can contribute to a better understanding of fat deposition in
chickens. The use of high density array of SNPs increases genome coverage and improves QTL resolution than would
have been achieved with low density. The identified PCGs were involved in many biological processes that regulate
lipid storage. The SNPs identified in the PCGs, especially those predicted as potentially deleterious and high impact,
may affect fat deposition. Validation should be undertaken before using these SNPs for selection against carcass fat
accumulation and to improve feed efficiency in broiler chicken production.
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Background
The chicken was the first domesticated animal species
that was whole-genome sequenced and it has emerged
as an excellent model for genomic studies in agriculture,
developmental biology, fatness and leanness [1]. The
main fat deposits in chicken are located in the skin
(including subcutaneous fat) and within the abdominal
cavity (abdominal plate) [2–4]. Excess fat deposition in
broiler chickens is a negative factor for the poultry in-
dustry because it decreases feed efficiency and reduces
the nutritional value of carcass parts and, consequently,
their commercial value [5–7].
Broiler chicken lines have been selected for rapid

growth, and carcass yield [7, 8]. Rapid growth results in
increased fat deposition within the carcass [8] and com-
mercial chickens exhibit higher fat deposition compared
with unselected chickens [7]. The selection of chickens
for rapid growth and reduced carcass fat deposition is
challenging because these two traits have a positive gen-
etic correlation [8].
Some studies have been conducted to map genomic

quantitative trait loci (QTLs) associated with variation in
abdominal fat [5, 9–13], and skin traits [9, 14]. However,
most previously published QTLs were mapped using low
density of markers (ranging from 102 to 410 markers),
and the detected intervals spanned tens of centimorgans
(cM) [15].
Previous genome-wide association studies (GWAS)

have been performed for abdominal fat weight and fat
percentage in an F2 chicken population’s using a 60 K
SNP chip (Illumina) [16, 17] and in a local population of
a local Chinese breed using approximately 90,000 SNPs
[18]. To the best of our knowledge, no GWAS was re-
ported for fatness traits in a meat-type population using
the high-density SNP chip (600 K) from Affymetrix [19].
Fat deposition is an economically-relevant trait in

fast-growing chickens, and knowledge about the genetic
regulation of this trait is essential for breeding programs.
Based on this fact, the main goal of this study was to
perform GWAS analysis using a high-density SNP panel
(600 K) to identify QTLs and positional candidate genes
(PCGs) and possibly candidate mutations for fat depos-
ition in broiler chickens.

Methods
All experimental protocols related to animal experimen-
tation in this study were performed in agreement with
resolution number 011/2010 approved by the Embrapa
Swine and Poultry Ethics Committee on Animal
Utilization (CEUA) in Concordia, Santa Catarina State –
South of Brazil, in agreement with the rules of National
Council of Animal Experimentation Control (CONCEA)
to ensure compliance with international guidelines for
animal welfare.

Chicken population
This study was conducted with a paternal broiler line
(TT) belonging to the Chicken Breeding Program of
EMBRAPA Swine and Poultry National Research Center,
in Concordia, Santa Catarina State – South of Brazil.
This line, originating from the White Plymouth Rock
and White Cornish breeds, has been under multiple trait
selection since 1992 mainly for body weight, feed con-
version, carcass and cuts yield, viability, fertility, hatch-
ability and reduced abdominal fat [13, 20–23]. The TT
Reference Population evaluated in this study was devel-
oped in 2008 and consisted of 1430 chickens (652 males
and 778 females) generated in five hatches from 20
males and 92 females (1:5). Previous genomic studies
have been performed in this population, and more
details can be found in [20–23].

Phenotype measurement
After 6 h of fasting, the chickens at 42 days of age were
weighted (BW42) and then euthanized by cervical dis-
location. In this step, a blood sample from each chicken
was immediately collected for subsequent DNA extrac-
tion then, the carcass was cooled. After 4 h of cooling,
the weights of the carcass, skin covering each carcass
part (thigh, drumstick, and breast) and abdominal fat
(abdominal fat pad) were measured. The percentage of
each trait was calculated dividing the weigh by BW42
and multiplying by 100. Total skin weight and percent-
age were used as indicators of subcutaneous fat, as dis-
cussed by Zerehdaran et al. [3]. More details about the
rearing conditions and phenotypes measurements are
available in Fornari et al. [22].

DNA extraction, genotyping and quality control
Genomic DNA from 1430 blood samples were extracted
using the PureLink® Genomic DNA (Invitrogen, Carlsbad,
CA, USA) kit and were quantified using Qubit® 2.0
Fluorometer (Thermo Fisher Scientific, Waltham, MA,
USA). After extraction, DNA integrity was evaluated on
agarose gel (1%) and diluted to 10 ng/μL. Diluted genomic
DNA was prepared following recommended Affymetrix
protocols in order to perform the genotyping analysis
using 600 K Affymetrix Axiom Genotyping Array
(Affymetrix, Inc. Santa Clara, CA, USA). This genotyping
array comprises segregating SNPs for different chicken
populations, including four commercial broilers (broiler
chicken lines), as detailed by Kranis et al. [19].
Initially, Axiom™ Analysis Suite (Affymetrix®) soft-

ware was used to filter genotypes based on the
DishQC parameter, after which PLINK v.1.9 [24]
software was used to perform quality control analysis
and for genotype calling. Only samples that exhibited
DishQC ≥0.82 and call rate ≥ 90% were kept for fur-
ther analysis. Considering these retained samples, in
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order to select markers with high quality, and to
avoid potential genotyping errors or even DNA con-
tamination, further edits were undertaken based on
literature recommendations [25], to remove single
nucleotide polymorphisms with a call rate ≤ 98%,
minor allele frequency (MAF) ≤ 2% or significant
deviations from HWE (p-value < 0.000001). Single
nucleotide polymorphisms located in the sex chromo-
somes, and those SNPs not mapped in the chicken assem-
bly (Gallus_gallus-5.0, NCBI) were excluded from the
analysis. Only the SNPs annotated to autosomal chro-
mosomes from GGA1 to GGA28 were used in statis-
tical analyses. After all the filtering steps, the few
remained missing genotypes were replaced by the
average of covariate values at that particular locus, as
described by Cesar et al. [26].
From a total of 1430 genotyped chickens, 22 samples

were removed from the analysis after applying the
DishQC criteria, and a filter on sample call rate ≥ 90%
loci. From the total of 580,961 SNPs available on the
SNP array, 355,027 informative polymorphic SNPs on
the autosomal chromosomes (GGA1–28) were kept after
filtering. The average density of SNPs was 520 SNPs/
Mbp, with the lowest chromosome-wise density ob-
served on GGA2 (268 SNPs/Mbp), and the highest
chromosome-wise density on GGA21 (898 SNPs/Mbp)
(Additional file 1).

Descriptive statistics and heritability
The mean and the standard deviation of each pheno-
type were calculated using R scripts. The estimation
of variance components (genetic variance, residual
variance, and total variance) was performed using a
Bayes C model in GenSel software [27] using the
samples and SNPs that remained after genotyping
and filtering. The resultant posterior means of the
variance components were used as priors in subse-
quent Bayes B models to estimate genomic heritabil-
ity for each trait.

Genome wide association analysis
The SNPs that passed the quality control filters were
used in the GWAS analysis using genomic prediction
methodology with a Bayesian approach in GenSel
software [27]. In the first step, a Bayes C model was
used to estimate the genetic and residual variances
for each trait and these values were then used as
priors to run a Bayes B model as performed by Cesar
et al. [26]. The Bayes B models sample the effects of
SNPs assuming some fraction of the effects are zero
and with unequal variance of each effect [28]. The
mathematical model was:

y ¼ Xbþ
Xk

j¼1

a jβ jδ j þ e;

In this model, y represents the vector of phenotypic
values; X is the incidence matrix for fixed effects; b is
the vector of fixed effects; K is the number of SNPs; aj is
the column vector representing the SNP as a covariate
in locus j coded with the number of B alleles; βj is the
random substitution effect for locus j assumed to be
normally distributed N (0, σ2βi) when δj = 1 but βj = 0
when δj = 0, with δj being a random variable 0/1 indicat-
ing the absence (with probability π) or presence (with
probability 1-π) of the locus j in the model, and e is the
residual associated with the analysis. Sex and hatch were
included as fixed effects in the model and BW42
(slaughter age) as a fixed covariate for ABF and SKINW.
We assumed π = 0.9970 in the BayesB models and ob-

tained 41,000 Markov chain Monte Carlo (MCMC) sam-
ples with the first 1000 samples being discarded. A map
file was used to position the markers into 947
non-overlapping 1 Mb windows. The windows that had
the marker with higher model frequency in the MCMC
interactions had their effect predicted as mentioned by
Van Goor et al. [29]. Each window is expected to explain
0.1054% of the genetic variance (100%/947) based on an
infinitesimal model [30, 31], and windows that explained
five times more than the expected (0.53%) were consid-
ered significant. Thus, we selected only significant win-
dows to characterize and identify PCGs.

Overlap with known QTLs
The overlap of our genomic windows with previously
mapped QTLs for fat-related traits in chickens was de-
termined using the information available at Chicken
QTLdb - release 33, accessed in September, 2017 [32].
We used the available BED file with the QTL coordi-
nates according to the last chicken genome assembly
(Gallus_gallus-5.0, NCBI) to check the overlaps using
in-house R scripts. The genomic windows that did not
overlap with previously annotated QTLs for fat traits
were considered to be novel discoveries. All the previ-
ously mapped QTLs were reported by QTL ID numbers,
available at Chicken QTLdb [32].

Identification of positional candidate genes
A list of annotated genes within each QTL (genomic
window) and their respective GO terms and biological
processes were obtained using Ensembl BioMart tool
[33, 34]. Genes that had GO terms and a biological
process related to fat deposition were initially selected.
Next, two different databases (NCBI, OMIM) were
searched to identify existing literature to support/refute
the positional candidate genes (PCG) identified.
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Enrichment analysis of gene list was performed with
the Functional Annotation Tool (FAT) in Database for
Annotation, Visualization and Integrated Discovery soft-
ware (DAVID bioinformatics resources v.6.8, [35, 36]) to
identify enriched clusters of genes. To select a gene clus-
ter as enriched, we considered an enrichment score >
1.00 and within the cluster, GO terms for biological
process (BP) with a raw p-value < 0.05 and p-value ad-
justed for multiple testing by Benjamini & Hochberg
[37] method < 0.1.

Candidate genes screening for SNPs from sequencing data
To refine our list of candidate genes, we screened
our PCGs for genetic variants using a dataset of
SNPs identified in the parental generation from our
genotyped population, which were generated by next
generation sequencing of 14 parental males (from
112) with approximately 13 X of coverage performed
by HiScanSQ (Illumina) with a read length of
101 bp. Further details about library preparation and
sequencing are available in Moreira et al. [38] and
Godoy et al. [39].
SNP calling was performed using the most recent

chicken genome assembly Gallus-gallus-5.0 (UCSC) with
SAMtools software v.1.2 [40], with mapping and base
qualities (Phred score) ≥ 20. The filtering criteria and
further details about SNP calling are available in
Boschiero et al. [41]. After variant filtering, the SNP
dataset was annotated using Variant Effect Predictor
(VEP) tool version 86 [42]. SNP density were deter-
mined considering all the unique SNPs annotated (in-
cluding 5 Kb up and downstream) in each PCG and
its gene length.
Variants located in coding regions can lead to

phenotypic changes [38, 39, 43]. To predict whether
SNPs that caused changes in amino acids were toler-
ant or not (may affect the function of the gene prod-
uct), we calculated the SIFT (sorting intolerant from
tolerant) score. This score is an assessment of the
level of conservation in homologous protein se-
quences using the SIFT algorithm [44] implemented
by the VEP tool version 86 [42]. SIFT scores were
calculated for all the non-synonymous and stop codon
(gained/lost) variants located in the PCGs.
High impact SNPs were also evaluated in the can-

didate genes. The VEP tool [42] provides an estima-
tion of the putative impact of the variant classified
as high impact, i.e. annotating all the mutations an-
notated as transcript ablation, splice acceptor, splice
donor, stop gained, frameshift, stop loss, start lost
and transcript amplification, mutations that may
cause protein truncation, loss of function or trigger
nonsense mediated decay [43].

Results
Descriptive statistics and genomic heritability
The number of animals, averages and standard errors,
variance components and estimated genomic heritability
from the Bayes B model are given in Table 1 for ABF,
ABFP, SKINW and SKINP. We estimated genomic herit-
ability values to be moderate for all traits evaluated; ABF
traits exhibited higher genomic heritability compared to
SKIN traits.

Genome wide association analysis (GWAS)
A list with all the SNP windows analyzed including the
proportion of the genetic variance explained by each one
(even those with effects close to zero) is provided in
Additional file 2. The QTLs (significant genomic win-
dows) associated with fat deposition are described in
Table 2. Nine unique significant 1 Mb windows (with
different unique positions) were identified on GGA 5, 9,
10, 13, 15, 20, 24, 26, and 27. The posterior probability
of association (PPA), as described by Onteru et al. [31],
ranged from 0.82 to 0.95 for each region, and the pro-
portion of genetic variance explained by the window
ranged from 0.54 to 1.49.
The Manhattan plot of the posterior means of the pro-

portion of genetic variance explained by each SNP win-
dow across the 28 autosomal chromosomes for ABF are
presented in Fig. 1. The Manhattan plots for ABFP,
SKINW and SKINP are in Additional files 3, 4, and 5,
respectively.
In order to support our findings, we checked the

effect of the markers within the associated genomic
windows. Manhattan plots of the SNP effect distribu-
tion within each significant SNP window for ABF are
colored by chromosome and presented in Fig. 2. The
Manhattan plots for ABFP, SKINW and SKINP are in
Additional files 6, 7, and 8, respectively.

Overlap with previously reported QTLs
Twenty-seven previously published QTLs for fat traits
overlapped with five of the QTLs identified in our
study. The QTL located on GGA5 at 38 Mb, associ-
ated with ABF and ABFP overlapped with three
known QTLs: two QTLs associated with for ABF
(QTL #3321, [45]; QTL #9432, [46]) and one associated
with ABFP (QTL #9433, [46]).
The QTL, which was located on GGA15 at 6 Mb and

associated with SKINW and SKINP, overlapped with 11
QTLs previously associated with fat traits: four were as-
sociated with for ABF (QTL #2337, [5]; QTL #9451,
[46]; QTL #2347, QTL #12631, [9]), three were associ-
ated with ABFP (QTL #2339, QTL #2340, [5]; QTL
#9450, [46]), one associated with fat distribution (total
weight of skin fat analyzed with ABF as covariate) (QTL
#12645, [9]), one QTL associated with subcutaneous
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neck fat weight (QTL #17331, [2]), one QTL associated
with total white fat weight (QTL #17337, [2]), and one
associated with visceral fat weight (QTL #17323, [2]).
The QTL located on GGA24 at 5 Mb that was associ-

ated with SKINW, overlapped with one QTL previously
reported to be associated with ABF (QTL #9405, [47]).
While, the QTL identified on GGA26 at 1 Mb that was
associated with ABF and ABFP, overlapped with two
QTLs: one associated with visceral fat weight (QTL
#17324, [2]), and one associated with total white fat
weight (QTL #17338, [2]).
The QTL identified on GGA27 at 3 Mb that was asso-

ciated with SKINW and SKINP, overlapped with 10
QTLs previously reported to be associated with fat traits:
three associated with ABF (QTL #66072, [48]; QTL
#11817, QTL #11809, [49]), three associated with ABFP

(QTL #11820, [49]; QTL #3354, [50]; QTL #11934,
[51]), two associated with carcass fat content (QTL
#17135, QTL #17126, [13]), one associated with
carcass fat content on a dry matter basis (QTL
#17125, [13]), and one associated with intramuscular
fat (QTL #3360, [50]).
No previously reported QTL overlapped with the QTL

identified on GGA9 at 4 Mb, GGA10 at 7 Mb, GGA13
at 3 Mb, and GGA20 at 5 Mb.

Positional candidate genes
We identified 419 genes in the nine QTL genomic win-
dows (Additional file 9). Further analysis against gene
ontology terms and the existing literature revealed 13
candidate genes for fat deposition (Table 3).

Table 2 Characterization of 1 Mb significant genomic windows for abdominal fat and skin traits in the TT Reference Population

Trait GGA (Mb)a SNP window
(first – last position)a

Number of
SNP/ window

Number of
genes/ windowb

Proportion of genetic variance
explained by the SNP window

PPAc

ABF 5 (38) 38,000,437–38,996,916 396 31 0.92 0.84

10 (7) 7,000,336–7,998,549 592 21 0.58 0.93

13 (3) 3,002,617–3,998,616 460 16 1.45 0.88

20 (5) 5,000,651–5,999,452 492 53 0.94 0.88

26 (1) 1,002,598–1,999,851 662 74 1.06 0.95

ABFP 5 (38) 38,000,437–38,996,916 396 31 0.64 0.82

10 (7) 7,000,336–7,998,549 592 21 0.61 0.90

13 (3) 3,002,617–3,998,616 460 16 1.49 0.89

26 (1) 1,002,598–1,999,851 662 74 0.54 0.92

SKINW 15 (6) 6,000,311–6,999,944 544 62 0.73 0.89

24 (5) 5,000,105–5,999,010 778 60 0.56 0.91

27 (3) 3,000,222–3,997,124 933 52 0.60 0.94

SKINP 9 (4) 4,000,836–4,999,336 482 50 0.73 0.83

15 (6) 6,000,311–6,999,944 544 62 0.71 0.91

27 (3) 3,000,222–3,997,124 933 52 0.57 0.95

ABF bdominal fat weight, ABFP abdominal fat percentage, SKINW skin weight, SKINP skin percentage
aMap position based on Gallus_gallus-5.0 assembly (NCBI)
bNumber of genes annotated within the genomic window based on Ensembl Genes 90 Database
cPosterior probability of association (PPA) as described by Onteru et al. [31]

Table 1 Descriptive statistics, variance components and genomic heritability for body weight at 42 days of age, abdominal fat and
skin weights and percentages in the TT Reference Population

Trait N Average ± SDa Genetic variance Residual Variance Total variance Genomic heritabilityb

BW42 1311 2220.30 ± 258.86 12,378.000 25,423.100 37,801.100 0.33

ABF 1287 47.10 ± 14.03 46.599 96.079 142.677 0.33

ABFP 1287 2.13 ± 0.62 0.094 0.205 0.299 0.31

SKINW 1303 94.55 ± 16.12 29.936 96.443 126.379 0.23

SKINP 1303 4.25 ± 0.56 0.063 0.203 0.266 0.23

BW42: body weight at 42 days of age in grams; ABF abdominal fat weight in grams, ABFP abdominal fat percentage, SKINW skin weight in grams, SKINP
skin percentage
aStandard deviation of the mean
bGenomic heritability estimated by Bayes B model
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Additionally, all 419 genes located within the detected
QTLs were used to perform enrichment analysis. One
cluster was enriched (enrichment score of 2.62) and
within this cluster, four GO terms were enriched: regula-
tion of intestinal cholesterol absorption; high-density
lipoprotein particle assembly, lipoprotein metabolic
process and positive regulation of fatty acid biosynthetic
process (raw p-value < 0.05 and p-value adjusted for
multiple testing by Benjamini & Hochberg [37] method
< 0.1). These GO terms were annotated for the same
genes: APOA1, APOA4, and APOA5.

SNPs in candidate genes
A previous study has been performed using sequencing
data to identify and characterize genome-wide SNPs,
INDELs, putative regions under selection, and also to

find putative pathways under selection in two Brazilian
chicken lines [41], but neither was based on the TT
broiler reference population.
We used a dataset of high quality SNPs from sequen-

cing data identified in 14 parental chickens from TT
Reference Population in order to screen for SNPs poten-
tially affecting gene expression and/or function and
identified 3639 SNPs located within the 13 PCG. SNP
density (SNPs/kb) within each PCG and the functional
annotation of the SNPs are presented in Fig. 3. The PCG
that had the greatest density of SNPs was FITM2
(84 SNPs/kb).
Single nucleotide polymorphisms were evaluated for

potentially deleterious and high impact mutation anno-
tation, which may potentially affect gene expression and/
or function. Two high impact variants were identified:

Fig. 1 Manhattan plot of the posterior means of the proportion of genetic variance explained by each 1-Mb SNP window across the 28 autosomal
chromosomes for abdominal fat weight (ABF): (a) genomic windows located on macrochromosomes, and (b) windows located on microchromosomes.
The X-axis represents the chromosomes, and Y-axis shows the proportion of genetic variance explained by each window from Bayes B analysis. Red lines
indicate the threshold to deem significant SNP windows
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one located within FITM2 and another located in
ENSGALG00000000483 gene. In addition, two poten-
tially deleterious variants were identified: one located in
PLCG1 and another in ENSGALG00000000477 gene
(Table 4). The non-synonymous SNP located in the
PLCG1 gene is novel.

Discussion
Genomic heritability
Genomic heritability estimates for abdominal fat and
skin traits in a broiler chicken population characterized
by close relatives (full and half-sibs) were obtained using
genotypes from a high-density SNP panel. Close relatives
may have long chromosome segments in common,
thereby sharing alleles and QTLs in the same pattern,
which may lead to less bias and consequently, higher
prediction accuracy for genomic heritability [52].
Heritabilities estimates for ABF and ABFP have been

reported to be 0.62 and higher, while the heritability of
skin traits is between 0.24 and 0.28 [3, 53]. The number
of generations of artificial selection and/or the genetic
background may differ for each chicken population thus,
different heritability estimates may be observed. The TT
broiler line, used to obtain the TT Reference population,
has been under multi-trait selection with emphasis on
body weight. This trait has a positive genetic correlation
with abdominal fat and feed conversion [54]. Therefore,
artificial selection may also affect the genetic variance
and may reduce heritability over the generations [55].
Comparisons between heritabilities reported in the lit-
erature should be interpreted with caution.

Using the same population reported here, Fornari
et al. [22] observed similar pedigree-based heritability es-
timates to those we obtained using genomic information,
namely for abdominal fat weight (0.33) and two skin re-
lated traits: drumstick skin weight (0.17) and thigh skin
weight (0.28). The existence of moderate genomic heri-
tabilities for the analyzed phenotypes indicates that a
reasonable proportion of the total variance for these
traits can be explained by a set of markers [52]. There-
fore, selection against fat deposition in this population
may be successful.

GWAS, QTL discovery and resolution
Bayesian approaches are commonly used in genomic
prediction and selection studies [56, 57] as well as for
GWAS [29, 30, 58, 59] in chickens. The main advantage
of this approach is that genotypes are simultaneously fit-
ted in the model, accounting for population structure,
and the use of high-density markers does not reduce the
power to detect association [60]. Thus, we decided to
use genomic prediction methodology to perform GWAS.
Five out of the nine QTLs detected were previously

identified in different populations, corroborating our re-
sults, and indicating that these QTLs probably origi-
nated from the founder lines used to generate the
broiler TT line used in this study.
The novel QTLs identified could be false positives, ex-

clusive to our population, or a consequence of the num-
ber of animals and the higher SNP density compared to
other QTL mapping studies for abdominal fat and skin
traits in chickens [5, 8–14]. The PPA (ranging from 0.83
to 0.93) and the proportion of the genetic variance

Fig. 2 Manhattan plot of the SNP effect distribution within each significant window for abdominal fat weight (ABF). The X-axis represents the significant
SNP window represented by the number of the respective chromosome and Y-axis shows the SNP effect from Bayes B analysis. Their respective start and
end positions are: GGA5 (38,000,437–38,996,916 bp); GGA10 (7,000,336–7,998,549 bp); GGA13 (3,002,617–3,998,616 bp); GGA20 (5,000,651–5,999,452 bp);
GGA26 (1,002,598–1,999,851 bp)
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explained by the novel QTLs (ranging from 0.58 to 1.49)
suggest that these novel QTL are not false positives. Besides
that, the Manhattan plots of the SNP effects within the

QTLs detected showed few peaks indicating that some
markers exhibit higher effects within the QTL (see the dir-
ection of the SNP effects; Fig. 2, Additional files 6, 7, and 8)

Table 3 List of candidate genes within the genomic windows associated with abdominal fat and skin traits that exhibited GO terms
related to lipid metabolic processes in the TT Reference Population

GGA (location, Mb) Trait associated Gene Name Ensembl Gene ID GO Term (GO Accession)a

5 (38) ABF, ABFP JDP2 ENSGALG00000010322 negative regulation of fat cell differentiation (GO:0045599)

15 (6) SKINW, SKINP PTPN11 ENSGALG00000004821 lipid metabolic process (GO:0006629)

triglyceride metabolic process (GO:0006641)

MVK ENSGALG00000013848 lipid metabolic process (GO:0006629)

cholesterol metabolic process (GO:0008203)

Novel gene ENSGALG00000005043 fatty acid biosynthetic process (GO:0006633)

acetyl-CoA carboxylase activity (GO:0003989)

20 (5) ABF FITM2 ENSGALG00000026285 lipid storage (GO:0019915)

lipid particle organization (GO:0034389)

PLCG1 ENSGALG00000003750 lipid metabolic process (GO:0006629)

lipid catabolic process (GO:0016042)

HNF4A ENSGALG00000004285 lipid metabolic process (GO:0006629)

regulation of lipid metabolic process (GO:0019216)

lipid homeostasis (GO:0055088)

fatty acid binding (GO:0005504)

24 (5) SKINW APOA4 ENSGALG00000007109 lipid homeostasis (GO:0055088)

multicellular organismal lipid catabolic process (GO:0044240)

positive regulation of triglyceride catabolic process (GO:0010898)

cholesterol homeostasis (GO:0042632)

cholesterol metabolic process (GO:0008203)

positive regulation of fatty acid biosynthetic process (GO:0045723)

APOA5 ENSGALG00000014368 triglyceride homeostasis (GO:0070328)

positive regulation of lipid catabolic process (GO:0050996)

positive regulation of fatty acid biosynthetic process (GO:0045723)

APOA1 ENSGALG00000007114 lipid transport (GO:0006869)

lipid metabolic process (GO:0006629)

lipid storage (GO:0019915)

cholesterol homeostasis (GO:0042632)

26 (1) ABF, ABFP Novel gene ENSGALG00000000477 lipid metabolic process (GO:0006629)

lipid catabolic process (GO:0016042)

lipid particle (GO:0005811)

lipid homeostasis (GO:0055088)

Novel gene ENSGALG00000000483 lipid catabolic process (GO:0016042)

lipid particle (GO:0005811)

lipid homeostasis (GO:0055088)

triglyceride lipase activity (GO:0004806)

triglyceride catabolic process (GO:0019433)

ADIPOR1 ENSGALG00000000094 regulation of lipid metabolic process (GO:0019216)

fatty acid oxidation (GO:0019395)
aAll GO terms were obtained from BioMart (Ensembl Genes 90 Database)
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providing helpful information for further studies aiming to
fine-map these QTLs.
In general, we observed small effects for the markers fit-

ted simultaneously within the QTLs detected. This could
be due to lack of power to capture the genetic variability
in our population or, due to artificial selection. As men-
tioned before, the artificial selection can lead to fixation of
specific loci [55, 61] and SNPs with higher effect on
fatness may have been fixed over the generations.
In contrast to the QTL mapped on GGA5 at 38 Mb,

previously reported QTLs for the same trait were larger
than 1 Mb [45, 46]. The use of a higher density of
markers (600 K) may help to explain the improved reso-
lution observed in QTL mapping.
The QTL mapped on GGA27 at 3 Mb overlapped with

known QTLs for fatness related traits, mapped in a
Brazilian F2 population established by crossing a broiler
male line (TT) and a layer line (CC), and these known
QTLs are segregating in different families from the
Brazilian F2 population [13, 49]. Furthermore, the
broiler male line (TT) used in the crossing to establish
this population, is the same line used to obtain the TT
Reference Population [13] thus, we should expect this
QTL segregating in our broiler population, corroborat-
ing our findings.
We identified only a few QTLs associated with fat

traits in this population. For quantitative traits, a greater
number of alleles are expected to present a small effect
[62], and the number of samples used in this study may
not have been sufficiently large enough to identify these

small effect QTLs. Despite this, novel QTLs for fat traits
in broiler were identified. These QTLs should be consid-
ered as novel QTLs may be population-specific.

Positional candidate genes for fat deposition
We identified 13 PCG in five of the nine QTLs identified
(Table 3). In the QTL on GGA5 at 38 Mb we identified
the Jun dimerization protein 2 (JDP2) gene. This gene
regulates lipid accumulation in adipose tissue acting as a
repressor of adipocyte differentiation [63, 64].
We identified PLCG1, HNF4A and FITM2 genes in the

QTL on GGA20 at 5-Mb. In human primary adipocytes,
Phospholipase C gamma 1 (PLCG1) gene is involved in
the calcium signaling pathway. The expression of PLCG1
has been show to affect adipocyte triglyceride content
[65]. Hepatocyte nuclear factor-4α (HNF4A) controls in-
sulin metabolism and triglycerides level [66]. Triglycer-
ides are the main lipid stored in avian fat cells. Thus,
different levels of plasma triglyceride may affect fat de-
position [67]. The Fat storage inducing transmembrane
protein 2 (FITM2/FIT2) gene belongs to a family of pro-
teins that play a role in fat storage [68]. In a study with
humans, the FITM2/FIT2 gene was reported to be asso-
ciated with lipid droplets biogenesis and accumulation
[69], which consequently, impacts lipid storage.
In the QTL on GGA26 at 1 Mb, we found ADIPOR1,

ENSGALG00000000477 and ENSGALG00000000483 genes.
In chickens, the adiponectin receptor 1 (ADIPOR1)
gene is expressed in fat, liver and muscle, and this
gene affect adipocyte differentiation [70]. ADIPOR1 is
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Fig. 3 a Plot of SNP density (SNPs/kb) for each PCG. b Plot with the percentage of functional annotation of SNPs identified in our 13 PCGs

Table 4 Characterization of potentially deleterious and high impact SNPs identified in the 13 PCGs

Associated Gene Name Ensembl Gene ID SNP ID SNP Positiona Consequence

FITM2 ENSGALG00000026285 rs315805239 5,614,711 Stop gained

Novel gene ENSGALG00000000483 rs740555722 1,514,268 Stop loss

PLCG1 ENSGALG00000003750 g.5072909A > T 5,072,909 Non-synonymous

Novel gene ENSGALG00000000477 rs737351616 1,509,828 Non-synonymous
aPosition based on Gallus_gallus-5.0 assembly
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the main receptor of adiponectin. It is negatively correlated
with fat deposition [70], and is involved in lipid-induced
mitochondrial biogenesis in chicken adipocytes [71].
ENSGALG00000000477 and ENSGALG00000000483 code
for uncharacterized proteins, but their gene ontologies are
related to lipid metabolism and storage (Table 3). Further
studies with those novel genes may help elucidate their role
in fat deposition.
In the QTL on GGA15 at 6 Mb, we found PTPN11,

MVK and ENSGALG00000005043 genes. The protein
tyrosine phosphatase, non-receptor 11 (PTPN11) gene
encodes for a Src homology-2 domain-containing pro-
tein tyrosine phosphatase 2 (SHP2). Its expression has
been reported to affect energy balance and lipid and glu-
cose metabolisms [72]. Additionally, in a study with
mice, SHP2 was reported to be associated with obesity
[73]. Mevalonate kinase (MVK) encodes for a mevalo-
nate kinase enzyme that plays an important role at the
beginning of cholesterol biosynthesis [74]. Changes in
the cholesterol biosynthesis, and consequently choles-
terol levels, may affect hepatic lipid metabolism [75].
ENSGALG00000005043 is a novel gene that has been
annotated with GO term related to the fatty acid biosyn-
thetic process and Acetyl-CoA carboxylase activity
(Table 3). Further studies with these genes may help to
better understand their role in fat deposition.
In the QTL located on GGA24 at 5 Mb we found

APOA1, APOA4 and APOA5 genes. These three genes be-
long to a gene family (Apolipoproteins – APO) that en-
codes important regulators of lipid biosynthesis and
metabolism [76]. Additionally, these three positional genes
were annotated with four enriched GO terms: regulation
of intestinal cholesterol absorption, high-density lipopro-
tein particle assembly, lipoprotein metabolic process, and
positive regulation of the fatty acid biosynthetic process.
Apolipoprotein A1 (APOA1) is involved with cholesterol
transport [77]. While, Apolipoprotein A-IV (APOA4) and
Apolipoprotein V (APOA5) are involved with triglycerides
metabolism [76]. Additionally, the APOA4 gene was
also reported as a regulator of triglycerides metabol-
ism in mice [77].
Corroborating our findings, no overlap between our

positional candidate genes, and genes under selective
pressure reported in a previous study with the same
dataset [23] was observed.
Additionally, comparing a dataset of SNPs and INDELs

identified in Brazilian broiler and layer lines, our group re-
cently identified regions under selection [41], harbouring
genes related to fat deposition. No overlap was observed
between our PCGs for fat deposition and the genes re-
ported in that study, except for APOA1. Possible explana-
tions for the observed lack of overlap, are the different
chicken lines used in these studies, and the removal of
fixed SNPs in the current study.

Potential causative SNPs in PCGs
We observed many SNPs annotated in intronic regions
of the PCGs (approximately 42% of the SNPs; Fig. 3b).
According to the literature, introns can play a role in the
regulation of alternative splicing, gene expression, and
may be associated with mRNA transport [78, 79]. Thus,
SNPs annotated in introns can play a role in the regula-
tion of any trait, including fat deposition in chickens.
Approximately 58% of the SNPs found in the 13 PCG were

in potentially functional regions such as up/downstream,
3’and 5’-UTRs, exons (synonymous and non-synonymous),
splicing site and stop codon (gained/lost; Fig. 3b). Genetic
variants within non-coding regions (3’and 5’-UTRs) may con-
trol gene expression by modulating transcription or mRNA
turnover [80]. We observed 36 SNPs in 3/5’-UTR regions
(Fig. 3b). Two of the 35 non-synonymous SNPs were
classified as potentially deleterious and were located
in PLCG1 and ENSGALG00000000477 genes (Table 4),
PCGs for fat deposition regulation. Potentially deleterious
SNPs in these genes could be causative mutations.
Two high impact SNPs were annotated in FITM2 and

ENSGALG00000000483 genes (Table 4). High impact
SNPs in these genes may affect lipid metabolism and
storage (fat deposition) in chickens.
From the four SNPs (Table 4), one is novel

(g.5072909A > T), and the others are not included on the
Affymetrix SNP array. Thus, the integration of GWAS
and genome sequencing brought additional information
in the search for potential causative mutations. Further
studies are necessary to achieve a better understanding of
the role of these SNPs in fat deposition.

Conclusions
This study confirmed previously published QTLs and
discovered novel ones, thus contributing to a better un-
derstanding of fat deposition in chickens. The use of a
high-density SNPs panel in our GWAS analyses pro-
vided a better resolution in QTL detection. The PCGs
identified in the QTL are involved in many biological
processes that regulate lipid storage. We found SNPs lo-
cated in the PCGs providing additional information in
the search for potential causative mutations and further
validation studies could be helpful to understand their
role in fat deposition regulation. Our findings can be po-
tentially applied to improve the accuracy of early selec-
tion against carcass fat accumulation and improve feed
efficiency in broiler chicken production.
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each significant window for skin weight (SKINW). The X-axis represents
the significant SNP window represented by the number of the respective
chromosome and Y-axis shows the SNP effect from Bayes B analysis. Their
respective start and end positions are: GGA15 (6,000,311–6,999,944 bp); GGA24
(5,000,105–5,999,010 bp); GGA27 (3,000,222–3,997,124 bp). (DOCX 1425 kb)
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