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Abstract

Background: Feed intake and body weight gain are economically important inputs and outputs of beef
production systems. The purpose of this study was to discover differentially expressed genes that will be robust for
feed intake and gain across a large segment of the cattle industry. Transcriptomic studies often suffer from issues
with reproducibility and cross-validation. One way to improve reproducibility is by integrating multiple datasets via
meta-analysis. RNA sequencing (RNA-Seq) was performed on longissimus dorsi muscle from 80 steers (5 cohorts,
each with 16 animals) selected from the outside fringe of a bivariate gain and feed intake distribution to
understand the genes and pathways involved in feed efficiency. In each cohort, 16 steers were selected from one
of four gain and feed intake phenotypes (n = 4 per phenotype) in a 2 × 2 factorial arrangement with gain and feed
intake as main effect variables. Each cohort was analyzed as a single experiment using a generalized linear model
and results from the 5 cohort analyses were combined in a meta-analysis to identify differentially expressed genes
(DEG) across the cohorts.

Results: A total of 51 genes were differentially expressed for the main effect of gain, 109 genes for the intake main
effect, and 11 genes for the gain x intake interaction (Pcorrected < 0.05). A jackknife sensitivity analysis showed that, in
general, the meta-analysis produced robust DEGs for the two main effects and their interaction. Pathways identified
from over-represented genes included mitochondrial energy production and oxidative stress pathways for the main
effect of gain due to DEG including GPD1, NDUFA6, UQCRQ, ACTC1, and MGST3. For intake, metabolic pathways
including amino acid biosynthesis and degradation were identified, and for the interaction analysis the pathways
identified included GADD45, pyridoxal 5’phosphate salvage, and caveolar mediated endocytosis signaling.

Conclusions: Variation among DEG identified by cohort suggests that environment and breed may play large roles
in the expression of genes associated with feed efficiency in the muscle of beef cattle. Meta-analyses of
transcriptome data from groups of animals over multiple cohorts may be necessary to elucidate the genetics
contributing these types of biological phenotypes.
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Background
Feed costs are the major component of production costs
in the beef cattle industry, accounting for 55–75% of
total production costs [1–3]. One way to potentially re-
duce these costs is to improve efficiency of beef cattle.
Feed intake and weight gain are two measureable compo-
nent phenotypes that are often used to characterize the
feed efficiency of an animal. Dry matter intake (DMI), re-
sidual feed intake (RFI), average daily gain (ADG), and
feed conversion ratio (FCR) have been shown to be under
genetic control, with heritabilities estimated between 0.2
and 0.5 [3, 4], indicating that these traits could be im-
proved through selection.
National cattle evaluations routinely include informa-

tion from gain to predict genetic merit for growth. How-
ever, individual feed intake measurements are difficult
and expensive to obtain. Hence, information is lacking
for generation of predictions of total genetic merit for
feed intake and efficiency in major cattle breeds. An im-
proved understanding of the regulation of genes under-
lying efficiency could improve the effectiveness of
selection for efficiency as well as significantly reduce the
cost of doing so.
Skeletal muscle is responsible for approximately 25% of

an animal’s requirements for maintenance energy due to
its size and involvement with energy production [5, 6]. Bo-
vine skeletal muscle has been the subject of several tar-
geted gene expression studies, attributable to its link with
feed efficiency via roles in mitochondrial energy produc-
tion [5–8]. To date, a small number of studies have exam-
ined the bovine skeletal muscle transcriptome and its role
in feed efficiency [9, 10]; however, none of these encom-
pass more than one contemporary group (or cohort) of
cattle. Weber et al. [10] conducted a study comparing dif-
ferential gene expression of low and high RFI animals
using RNA sequencing (RNA-Seq) from skeletal muscle of
16 Angus steers sired by one high RFI bull and one low
RFI bull. Genes involved in fat deposition, immune/in-
flammatory function, and cell damage were identified as
differentially expressed among these animals. Another
skeletal muscle transcriptome study was performed by
Guo et al. [11] on 48 Brahman steers that identified cell
cycle, extracellular matrix and fat deposition genes in-
volved in gain.
Non-reproducibility of results is a major problem in

high-dimensional experiments such as gene expression
analysis, where thousands of hypotheses are being tested
simultaneously [12]. Due to the cost of sequencing,
RNA-Seq experiments are typically performed on a small
number of biological replicates, which limits their power
for detecting differentially expressed genes (DEG). Add-
itionally, variability between studies due to technical differ-
ences (e.g., sample preparation, library protocols, batch
effects) as well as biological differences (e.g. environmental

and genetic effects) also contributes to reproducibility
issues. One way to improve reproducibility is by integrat-
ing multiple datasets via meta-analysis. Meta-analysis
procedures have been previously shown to produce
results that are more likely to be valid in independent
datasets [13–15].
A major aim of this study was to discover differentially

expressed genes that will be robust across a large seg-
ment of the cattle industry. As such, crossbred steers
from a population representing 19 Bos taurus and Bos
indicus breeds were used in this study. Many of the pre-
vious studies in cattle have used RFI as the phenotype,
which is the difference between actual and expected feed
intake. The calculation of RFI is based on several factors
including, ADG, average daily feed intake (ADFI),
growth rate, weight, and efficiency of growth [16]. In
order to gain a more detailed understanding of the role
of DEGs in feed efficiency we incorporated two compo-
nents of RFI: ADG and ADFI. Samples were collected
from animals in five separate feeding trials, and a meta-
analysis procedure was implemented to identify DEGs
across the cohorts that could be attributed to gain and
feed intake, as well as the gain by intake interaction.

Methods
Animal care and use
The U.S. Meat Animal Research Center (USMARC)
Animal Care and Use Committee reviewed and ap-
proved all animal procedures. The procedures for
handling cattle complied with the Guide for the Care and
Use of Agricultural Animals in Agricultural Research and
Teaching [17].

Population
A total of 80 steers, originating from the continuous
phase of the USMARC Germplasm Evaluation project
[18], were used in this study. The Germplasm Evaluation
project is a breeding program intended to develop sev-
eral populations of cattle with a high percentage of top
U.S. beef breeds, including Angus, Beefmaster, Brahman,
Brangus, Brown Swiss, Charolais, Chiangus, Gelbvieh,
Hereford, Limousin, Maine Anjou, Red Angus, Romosi-
nuano, Bonsmara, South Devon, Salers, Santa Gertrudis,
Shorthorn, and Simmental.

Gain and feed intake
Crossbred steers were collected as groups of 16 animals
from 5 cohorts. Feed intake and body weight gain were
measured on steers from 2012 to 2014 (Additional
file 1(A)). Steers were 350 ± 54 days of age at the begin-
ning of the feeding trial and trials lasted 64–92 days,
during which they were fed a corn-based finishing diet
(Tables 1 and 2). Steers were housed in pens (15.2 × 45.7 m)
in a facility that was equipped with an Insentec Roughage
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Intake Control Feeding System (Insentec B.V., Marknesse,
The Netherlands). Each pen housed approximately 50
steers and had 8 feed bunks. Steers had access to all of the
feed bunks in the pen and the bunks measured individual
feed intake. Feeders and waterers were located inside an
open-sided barn. The barn was 4.8 m high at the front
and covered 162 m2 of the pen.
Steers were weighed on the first two and last two days

and every three weeks during the study. Total gain was
calculated by regressing body weight on days on study
using a quadratic polynomial. Average daily gain was cal-
culated as total body weight gained divided by days on
study. Sixteen steers were selected from each cohort by
ranking them based on their standardized distance from
the bivariate mean (of ADG and ADFI) assuming a bi-
variate normal distribution with calculated correlation
between ADG and ADFI. The four steers with the great-
est deviation from the bivariate mean in each Cartesian
quadrant were sampled. This resulted in the selection of
16 steers, 4 steers from each of 4 quadrants: the high
gain-high intake quadrant, the high gain-low intake
quadrant, the low gain-high intake quadrant, and the
low gain-low intake quadrant (Fig. 1). To ensure that
breed composition was not confounded with quadrant
within cohort, steers were selected to ensure that each
quadrant had multiple breeds represented. In the event a
sire breed was over represented within a quadrant, a steer
with the next highest ranking of a different breed was se-
lected. Breed percentages for the selected animals in each
quadrant in each cohort are shown in Additional file 1(B).

Animals with medical or health issues that might affect
gain or intake were also excluded from selection
(Additional file 1(C)). A summary of the gain and feed in-
take means, minimums, and maximums for each quadrant
in each cohort is provided in Table 3.
After the feed trial ended, selected animals were

comingled in a pen with ad libitum access to the same
diet. Length of time between the feed trial and slaughter
varied slightly by cohort: cohort 1 was 12–18 days, co-
hort 2 was 19–22 days, cohort 3 was 5–8 days, cohort 4
was 20–28 days, and cohort 5 was 11–14 days. Animals
were allowed to consume feed and water until they were
weighed on the day of slaughter and transported to the
US Meat Animal Center abattoir (under 6.4 km). Cohort
5 was transported to a small commercial abattoir and pro-
cessing plant approximately 20 miles away. Aside from
transport location and distance, all other parameters
remained the same. On each day of slaughter, four of the
animals selected (one from each phenotypic group) were
stunned with captive bolt, exsanguinated, and processed
serially within a three-hour time frame.

Tissue collection and RNA isolation
Tissue collection and RNA extraction were performed
using the same procedures in each cohort. A longissimus
dorsi sample between the sixth and seventh rib from the
right side of the carcass was taken 25–30 min post

Table 1 Length of time and diets used for feed trials

Year Born Time of Slaughter Start Date End Date Days on Study Dieta

2011 Spring 2012 04/11/12 06/14/12 64 ME02

2011 Fall 2012 07/10/12 10/10/12 92 ME01

2012 Spring 2013 04/16/13 06/19/13 64 ME01

2012 Fall 2013 07/24/13 10/16/13 84 TM01

2013 Fall 2014 07/29/14 10/15/14 78 TM01
aDiet composition provided in Table 2

Table 2 Composition of diets used in feed trials

ME01 ME02 TM01

Dry rolled corn 57.35% 0% 57.35%

Ground alfalfa hay 8% 8% 8%

High moisture corn 0% 57.75% 0%

Steakmaker®a 4.25% 4.25% 0%

Steakmaker with Tylanb 0% 0% 4.25%

Urea 0.4% 0% 0.4%

Wet distiller’s grains with solubles 30% 30% 30%
aManufactured by Land O’Lakes (Arden Hills, MN)
bTylan manufactured by Elanco Animal Health (Greenfield, IN)

Fig. 1 Total gain versus total dry matter intake over the trial period
was plotted for all animals (n = 80) used in this study. Cohorts are
represented by the color of the dots
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exsanguination. Sample collection time frame was consist-
ent across cohorts. The sample was diced into approxi-
mately one cubic centimeter pieces, flash frozen in liquid
nitrogen, and stored at − 80 °C until RNA isolation. Muscle
samples (50 to 100 mg) from the 80 animals were homoge-
nized with a six station Omni Prep homogenizer (Omni
International, Kennesaw, GA, USA) in one milliliter
of Trizol. Total RNA was isolated according to the manu-
facturer’s protocol and was resuspended in 50–100 μL
RNase-free water.
Genomic DNA was removed from the total RNA with

the Qiagen RNeasy mini-kit (Valenci, CA, USA), accord-
ing to the manufacturer’s protocol. The concentration of
the RNA was determined with a Nanodrop 8000 spectro-
photometer (Thermo Scientific, Wilmington, DE, USA).
The average 260/280 ratio was 2.04, with a range of
1.95–2.13. An Agilent Bioanalyzer RNA 6000 nano kit
(Santa Clara, CA, USA) was used to determine the RNA
integrity number (RIN). Only samples with a RIN of 7.0
and higher were used for the RNA sequencing. The aver-
age RIN was 7.8, with a range of 7.0–8.5.

RNA sequencing
Samples were prepared for RNA sequencing with the Illu-
mina TruSeq Stranded mRNA High Throughput Sample
kit and protocol (Illumina Inc., San Diego, CA, USA). The
libraries were quantified with qRT-PCR using the NEBNext
Library Quant Kit (New England Biolabs, Inc., Beverly,
MA, USA) on a CFX384 thermal cycler (Bio-Rad, Hercules,
CA, USA), and the quality of the library was determined
with an Agilent Bioanalyzer DNA kit (Santa Clara, CA,
USA). The libraries were diluted with Tris-HCL 10 mM,
pH 8.5 with 0.1% Tween 20 to 10 nM samples (Teknova,
Hollister, CA. USA). The libraries were pooled into eight
pools of 12 libraries in each according to Illumina’s dual-
index protocol (samples were submitted for sequencing
with 16 libraries from another RNA-Seq study). All 80 sam-
ples were paired-end sequenced with 150 cycle high output
sequencing kits for the Illumina NextSeq instrument.

Processing RNA-Seq data
Read alignment of the RNA-Seq data was carried out as
follows. First, quality of the raw paired-end sequence

Table 3 Summary statistics for ADG and ADFI (Kg/day) in the animals selected from each of the cohorts

Mean ADG Min. ADG Max. ADG Mean ADFI Min. ADFI Max. ADFI

Spring 2012

High Gain-High Intake 2.22 1.98 2.49 26.83 22.08 31.10

Low Gain-High Intake 1.55 1.42 1.64 23.48 21.83 25.61

Low Gain-Low Intake 1.21 1.05 1.52 14.54 12.25 18.97

High Gain-Low Intake 1.85 1.75 2.05 15.29 13.91 16.65

Fall 2012

High Gain-High Intake 2.26 2.09 2.36 8.49 8.00 8.91

Low Gain-High Intake 1.68 1.53 1.90 8.24 7.8 8.55

Low Gain-Low Intake 1.54 1.43 1.70 5.81 5.30 6.20

High Gain-Low Intake 2.02 1.35 2.31 7.31 6.19 9.70

Spring 2013

High Gain-High Intake 2.06 1.90 2.26 13.82 12.40 14.65

Low Gain-High Intake 1.28 1.14 1.51 12.22 11.41 13.40

Low Gain-Low Intake 0.90 0.86 0.99 8.48 7.39 9.22

High Gain-Low Intake 1.70 1.56 1.79 9.35 8.60 10.04

Fall 2013

High Gain-High Intake 2.23 1.93 2.43 14.40 12.09 16.53

Low Gain-High Intake 1.48 1.02 1.84 13.51 12.06 14.93

Low Gain-Low Intake 1.61 1.33 1.88 8.84 8.52 9.43

High Gain-Low Intake 1.98 1.90 2.07 9.08 7.51 9.98

Fall 2014

High Gain-High Intake 2.43 2.20 2.63 12.27 10.92 13.67

Low Gain-High Intake 1.65 1.51 1.76 10.52 10.10 10.79

Low Gain-Low Intake 1.47 1.10 1.73 7.12 6.74 7.37

High Gain-Low Intake 2.24 2.19 2.31 9.13 9.06 9.19
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reads in individual fastq files was assessed using FastQC
(Version 0.11.5; www.bioinformatics.babraham.ac.uk/
projects/fastqc), and reads were trimmed to remove
adapter sequences and low-quality bases using the Trim-
momatic software (Version 0.35) [19]. The remaining
reads were mapped to the UMD 3.1 genome assembly
using Tophat2 (Version 2.1.1) [20], and the NCBI anno-
tation for UMD 3.1 was used to guide the alignment.
We used the HTSeq package [21] to estimate the count
of uniquely mapped reads for each of the 28,451 anno-
tated genes in the NCBI UMD 3.1 gene transfer format
(GTF) file. Genes with low read counts, < 15 reads in at
least 16 samples, were removed resulting in a set of
13,511 genes to be used in our downstream analysis.

Meta-analysis of differential gene expression
Recently, generalized linear models (GLMs) have been
utilized for analyzing differential gene expression in
RNA-Seq experimental designs involving multiple ex-
planatory factors [22–24]. In such a GLM, analysis of
deviance (ANODEV) is used to identify DEGs associated
with individual factors and their interactions. We used
the following GLM with a negative binomial link func-
tion, which simultaneously considers two explanatory
variables, gain (H vs. L) and intake (H vs. L), to analyze
differential expression:

Y ¼ Gain þ Intake þ Gain� Intake ð1Þ
We used the R package DESeq2 [23] to perform our

differential expression analysis. DESeq2 uses a negative
binomial distribution to model gene read counts and
shrinkage estimators to estimate the per-gene negative
binomial dispersion parameters.
The function nbinomLRT, which performs a likelihood-

ratio test between a full and a reduced negative binomial
GLM, was used to test three separate null hypotheses.
Null hypothesis 1 tested whether each gene was signifi-
cantly affected by gain, null hypothesis 2 tested whether
each gene was significantly affected by intake, and null hy-
pothesis 3 tested whether each gene was significantly af-
fected by the interaction between gain and intake.
In the meta-analysis, each cohort was analyzed separ-

ately using the GLM in Eq. (1). The raw P-values for
each gene from each of the five analyses were combined
using Fisher’s method [25], which combines P-values
from each experiment into one test statistic defined as

X ¼ −2
Xs

s¼1

ln pgs
� �

; ð2Þ

where pgs denotes the raw P-value obtained from gene g in
experiment s and S is the number of experiments being
combined. Under the null hypothesis, the test statistic
X follows a χ2 distribution with 2S degrees of freedom.

This test provides a meta P-value, and classical procedures
for multiple testing correction can be applied to obtain P-
values adjusted to control the false discovery rate. The
Benjamini-Hochberg method [26] was used to correct for
multiple testing. Genes with adjusted meta P-value ≤0.05
were considered statistically significant. DEGs associated
with a main effect and also the interaction term were
excluded from the main effect list of DEGs since this
indicates that the main effect is dependent on the
interaction term.

Jackknife reproducibility analysis
Robustness of the results was evaluated using a jackknife
sensitivity analysis; i.e. the meta-analysis procedure was
repeated multiple times, each time with removal of a
single cohort from the baseline group of cohorts [27].

Functional analysis of DEGs
Functions of DEGs were determined using the PAN-
THER classification system (Version 11.0) [28]. Enrich-
ment analysis of gene function was performed using
PANTHER’s implementation of the binomial test of
overrepresentation. Significance of gene ontology (GO)
terms was assessed using the default Ensembl Bos taurus
GO annotation as background for the enrichment ana-
lysis. Data from PANTHER was considered statistically
significant at Bonferroni corrected P ≤ 0.05.

QIAGEN ingenuity® pathway analysis
Ingenuity® Pathway Analysis (IPA®, QIAGEN Redwood
City, CA; https://www.qiagenbioinformatics.com/products/
ingenuity-pathway-analysis/) was used to deduce direct
and indirect molecular relationships among differentially
expressed genes for the gain main effect, intake main ef-
fect, and gain x intake interaction. Each of the data sets
was imported with a Flexible Format using Gene symbol as
the identifier. A core analysis was performed on genes in
each set, where a P-value for each network is calculated ac-
cording to the fit of the users set of significant genes and
the size of the network. P-values were considered statisti-
cally significant at Benjamini-Hochberg adjusted P ≤ 0.05.

Results
Sequencing throughput, read mapping, and read counts
RNA-Seq libraries from the longissimus dorsi muscle tis-
sue of 80 steers with divergent components of feed effi-
ciency were sequenced. We generated over 6 billion 75-
bp paired-end reads using an Illumina NextSeq instru-
ment. The range of raw sequence reads per sample was
23.4 million to 194.7 million, with an average of 79.9
million reads per sample (Additional file 1(D)). Adapter
sequences and low quality bases were trimmed with the
Trimmomatic software, which resulted in approximately
a 0.02% reduction in the number of reads across the 80
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samples. The resulting high quality reads were mapped to
the Bos taurus UMD 3.1 genome assembly with an aver-
age 93.4% overall mapping rate. Computing read counts
for each gene and filtering out genes with low read counts
resulted in a set of 13,511 genes to be used for down-
stream analysis.

Meta-analysis of DEGs associated with gain and feed
intake across cohorts
Selection of individuals with extreme gain and feed in-
take phenotypes to be used in this study was done
within cohort. Figure 1 shows ADG versus ADFI over
the feeding period for all animals (n = 80) used in this
study. This plot clearly illustrates that there is a segrega-
tion of phenotypes across cohorts.
Since our goal was to identify DEGs that could explain

the overall variation in gain and feed intake across all co-
horts, we performed a meta-analysis of differential expres-
sion across the 5 cohorts. In this procedure differential
gene expression analysis was performed independently for
each cohort using the GLM shown in Eq. (1). There was
variation among the cohorts in the number of genes iden-
tified as differentially expressed with P ≤ 0.05 after FDR
correction (data not shown). For the gain main effect,
there were 4, 0, 14, 10, and 0 DEGs in Cohort 1, 2, 3, 4,
and 5, respectively. For the intake main effect, 0, 0, 14, 10,
and 0 genes were identified as differentially expressed.
The analysis of the gain by intake interaction produced 0,
0, 14, 10, and 0 DEGs.
Raw P-values for each gene from each individual cohort

analysis were then combined using Fisher’s method. After
multiple testing correction, we identified 51 significant
genes for the gain main effect, 109 genes that were signifi-
cant for the intake main effect, and 11 significant genes for
the gain x intake interaction (Additional files 2, 3 and 4).
Significant genes were inspected for consistency, defined as
having the same log-fold change direction across all 5 co-
horts. We found that only 4 significant genes (LOC515676,
UQCRQ, NPR3, C5H12orf5) were consistent for the gain
main effect, while 8 DEGs (IQANK1, LOC101904159,
LOC101904117, CD163, MCHR1, MFSD4, OAT, TNNI1)
were consistent for the intake main effect. No DEGs were
consistent for the gain x intake interaction.

Jackknife analysis
Robustness of the results were assessed using a jackknife
sensitivity analysis, where for each term in the model
five separate meta-analyses were performed each omit-
ting a single cohort. The results are shown in Additional
files 5, 6 and 7. For the gain main effect, the jackknife
analyses produced similar numbers of DEGs to that of
the original meta-analysis (51 DEGs): 69, 25, 17, 44, and
51 DEGs for the jackknife analysis that removed Co-
hort 1, 2, 3, 4, and 5, respectively (Jacknife P < 0.05 in

Additional file 5). The number of DEGs identified in the
jackknife analyses for the intake main effect varied more
than for gain, with 219, 60, 56, 59, and 38 DEGs for the
jackknife analysis that removed Cohort 1, 2, 3, 4, and 5, re-
spectively (Jacknife P < 0.05 in Additional file 6). The jack-
knife analyses for the interaction effect identified 21, 16, 2,
3, and 6 DEGs for the jackknife analysis that removed
Cohort 1, 2, 3, 4, and 5, respectively (Jacknife P < 0.05 in
Additional file 7), which was highly similar to the number
of DEGs identified in the full meta-analysis (11 DEGs).
For the gain main effect, there were no DEGs that

were robust enough to pass all five jackknife analyses.
Eleven DEGs failed only one jackknife analysis, while 19,
18, 3, and 0 DEGs failed to pass 2, 3, 4, and 5 jackknife
analyses, respectively. For the intake main effect, there
were 2 DEGs, ZNF775 and CST6, that passed all five
jackknife analyses, and there were 2 DEGs, TMEM120A
and LOC508916, that failed all five jackknife analyses.
Thirty DEGs failed only one jackknife analysis, while 32,
32, and 11 DEGs failed to pass 2, 3, and 4 jackknife ana-
lyses, respectively. For the interaction effect, there were
no DEGs that passed all five tests and none that failed
all five, while 3, 6, 1, and 1 DEGs failed to pass 1, 2, 3,
and 4 tests, respectively.

Function of DEGs
PANTHER gene ontology analysis of the DEGs indicated
that genes that were significant for the gain main effect
were involved in catalytic activity (47.4%), binding (31.6%),
structural molecule activity (15.8%), and antioxidant activ-
ity (5.3%). No GO terms were significantly over- or under-
represented in this gene set.
Similar to the gain main effect genes, genes that were

significant for the intake main effect were involved in
binding (38.8%), catalytic activity (36.7%), transporter ac-
tivity (10.2%), receptor activity (8.2%), structural mol-
ecule activity (4.1%), and signal transducer activity (2%).
Again, no GO terms were significantly over- or under-
represented in this set.
Genes that were significant for the gain x intake inter-

action were involved in catalytic activity (50%), binding
(16.7%), transporter activity (16.7%), and structural mol-
ecule activity (16.7%). Enrichment analysis of GO terms
did not identify any over- or under-represented GO
terms in these genes.

Ingenuity pathway analysis (IPA)
Ingenuity® Pathway Analysis was performed in order to
characterize the functional consequences of gene expres-
sion differences for the gain main effect, intake main ef-
fect, and gain x intake interaction. IPA identified thirteen
significant canonical pathways for the DEGs associated
with the gain main effect (Table 4). The top five canonical
pathways included mitochondrial dysfunction represented
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by the genes BCL2, NDUFA6, UQCRQ (P < 0.01),
glycerol-3-phosphate shuttle due to GPD1 (P < 0.01), gly-
cerol degradation I from gene GPD1 (P = 0.0101), death
receptor signaling from DEGs BCL2, ACTC1 (P = 0.0107),
and VEGF signaling due to ACTC1, BCL2 (P = 0.013). Mo-
lecular and cellular functions related to these genes in-
cluded amino acid metabolism, molecular transport, small
molecule biochemistry, cellular growth and proliferation,
and cell death and survival.
For the intake main effect, IPA identified twelve sig-

nificant pathways (Table 5), including 4-hydroxyproline
degradation I due to HOGA1 (P < 0.01), methyglyoxal
degradation I because of HAGHL (P = 0.012), D-
glucuronate degradation I due to DCXR (P = 0.0120),
glycerol-3-phosphate shuttle because of GPD1 (P = 0.016),
and arginine degradation (arginase pathway) due to OAT
(P = 0.016). Molecular and cellular functions related to

these genes included cellular movement, cell cycle, cellular
development, cellular growth and proliferation, and cell
death and survival.
Lastly, for the interaction effect there were four signifi-

cant pathways (Table 6), GADD45 signaling due to
GADD45B (P < 0.01), pyridoxal 5′-phosphate salvage
pathway due to PDXK (P < 0.001), caveolar-mediated
endocytosis signaling due to ALB (P = 0.0327), and ATM
signaling due to GADD45B (P = 0.0368). Molecular and
cellular functions related to these genes included cellular
movement, amino acid metabolism, antigen presentation,
carbohydrate metabolism, and cell death and survival.

Discussion
To date, there have been very few transcriptome meta-
analyses for livestock species reported in the literature.
RNA-Seq experiments, especially those performed in

Table 4 Significant pathways for DEGs associated with the gain main effect identified using IPA

Pathway P-valuea DEGs in Pathway

Mitochondrial Dysfunction 0.00296 BCL2, NDUFA6, UQCRQ

Glycerol-3-phosphate shuttle 0.00672 GPD1

Glycerol degradation I 0.0101 GPD1

Death receptor signaling 0.0107 ACTC1, BCL2

VEGF signaling 0.013 ACTC1, BCL2

Oxidative phosphorylation 0.0145 NDUFA6, UQCRQ

Phosphatidylethanolamine biosynthesis II 0.0151 ETNK2

Pancreatic adenocarcinoma signaling 0.0169 BCL2, RALGDS

Gai signaling 0.0174 NPR3, RALGDS

nNOS signaling in skeletal muscle cells 0.025 SNTA1

Glutathione redox reactions I 0.0397 MGST3

NRF2-mediated oxidative stress response 0.0418 ACTC1, MGST3

ILK signaling 0.043 ACTC1, LIMS2
aCorrected for multiple testing using Benjamini Hochberg method

Table 5 Significant pathways for DEGs associated with the intake main effect identified using IPA

Pathway P-valuea DEGs in Pathway

4-hydroxyproline degradation I 0.00803 HOGA1

Methylglyoxal degradation I 0.012 HAGHL

D-glucuronate degradation I 0.012 DCXR

Glycerol-3-phosphate shuttle 0.016 GPD1

Arginine degradation I (arginase pathway) 0.016 OAT

Arginine biosynthesis IV 0.0239 OAT

Proline biosynthesis II (from arginine) 0.0239 OAT

Arginine degradation VI (arginase 2 pathway) 0.0239 OAT

Glycerol degradation I 0.0239 GPD1

CNTF signaling 0.0267 CNTFR, HRAS

Citrulline biosynthesis 0.0318 OAT

PPARa/RXRa activation 0.0362 CHD5, GPD1, HRAS
aCorrected for multiple testing using Benjamini Hochberg method
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livestock, are routinely performed on a small number of
biological replicates due to the cost of sequencing. The
limited power in these studies coupled with both tech-
nical and biological variability between studies can lead
to issues with reproducibility and cross-validation. Meta-
analysis can help improve research findings in these
types of studies by eliminating false-positive findings
pertaining to experimental and design conditions. More-
over, integrating data across multiple experiments may
enable extraction of deeper biological insights compared
to that achieved through single-study analysis. To our
knowledge, this is the first RNA-Seq study in livestock
where data was collected over multiple cohorts, each co-
hort serving as a separate experiment, and analyzed
using a meta-analysis procedure.
The purpose of this study was to identify genes differ-

entially expressed in the muscle of beef cattle associated
with gain and feed intake that will be robust across the
cattle industry for selection of more feed efficient ani-
mals. There were a total of 19 breeds (plus MARC II
and MARC III composites) represented in the study with
all but three of them, Bonsmara, Romosinuano, and
South Devon, represented in multiple cohorts and in
more than one phenotypic class (for example, animals
with Chiangus as a portion of their breed-of-origin are
represented in the low gain-high intake class in Fall
2012 and the low gain- high intake and low gain-low in-
take classes in Fall 2013). Moreover, both fall and spring
seasons over 3 years are represented among the five co-
horts. The rationale for this design was to generate data
that would include the most robust drivers of gene ex-
pression affecting feed intake and gain.
The variation among the lists of genes identified as dif-

ferentially expressed by cohort in this study underscores
the importance of including animals from more than one
cohort of livestock to obtain biologically relevant data for
complex traits. Validation of transcriptomic or proteomic
data is likely to produce poor reproducibility from study
to study due to the large amount of biological variation
from sources that include breed and environmental fac-
tors. For this reason, we chose to measure reproducibility
by replication validity rather than in independent data,
such as cross-validation.

Genes passing all five jackknife analyses can be consid-
ered highly robust, as they are not dependent on any
one cohort. Genes that fail multiple jackknife tests can
also be interpreted as robust, where the higher number
of failed tests indicates greater robustness. This inter-
pretation can be derived as follows. If a gene fails only
one jackknife test, this indicates that the meta P-value is
being driven by the P-value arising from this single co-
hort. Hence, there may be some cohort bias for that
gene. On the other hand, if a gene fails multiple jack-
knife tests, then the meta P-value is being driven by the
P-values of multiple cohorts, i.e. there is a reduced level
of cohort bias.
We saw that only two genes passed all five jackknife

tests and two genes failed all five jackknife tests for the
intake main effect, and none passed or failed all five tests
for gain and interaction. That is, there were more highly
robust genes observed for the intake main effect than
the gain main effect. It has been shown that DMI is a
moderately repeatable trait, while ADG exhibits low re-
peatability [29, 30]. In general, DEGs associated with
both main effects tended to be moderately robust, with
41.1 and 41.3% of DEGs failing at least 3 jackknife ana-
lyses. Genes being driven by a single cohort in the meta-
analysis (i.e. those failing exactly one jackknife test) rep-
resent potential false-positives. The addition of more co-
horts to the meta-analysis should efficiently remove
those that are false findings, as increasing the number of
large P-values in the multiplication performed in Fisher’s
method will increase the meta P-value. Moreover, adding
more cohorts to the meta-analysis will increase the ro-
bustness of the results.
Some of the robust genes in this study have been pre-

viously identified as candidate genes for feed efficiency
or as DEG associated with feed efficiency in livestock.
For example, CST6, which passed all 5 jackknife tests for
intake was also found to be differentially expressed in
the muscle tissue of pigs with variation in RFI [31]. In
addition, one of the genes that failed all 5 jackknife tests
for intake was LOC508916, which is potentially a car-
boxylesterase 1-like gene. Two carboxylesterase genes
(CES1, CES3) were identified as two of the most highly
differentially expressed genes in the adipose tissue of
pigs with low RFI [32].
One of the four genes identified in the interaction ana-

lysis was albumin (ALB). Plasma and serum levels of al-
bumin have been associated previously with feed
efficiency in steers and lambs. Paula et al. [33] demon-
strated that the most efficient lambs had lower serum al-
bumin concentrations. This phenomenon was also
identified in the plasma of beef steers [34]. Another
study by Connell et al. [35] showed a relationship be-
tween serum albumin levels and DMI in sheep. In this
study, the transcript abundance of ALB is higher in

Table 6 Significant pathways for DEGs associated with the gain
by intake interaction effect identified using IPA

Pathway P-valuea DEGs in Pathway

GADD45 signaling 0.00886 GADD45B

Pyridoxal 5′-phosphate salvage pathway 0.03 PDXK

Caveolar-mediated endocytosis signaling 0.0327 ALB

ATM signaling 0.0368 GADD45B
aCorrected for multiple testing using Benjamini Hochberg method
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animals with low gain and high intake. Our analysis in-
cluded gain and intake phenotypes, suggesting that the
level of albumin transcripts may either be influencing or
responding to both phenotypes, rather than intake alone.
The gene UQCRQ was identified as being associated

with gain. This gene had the same direction of expres-
sion in all five cohorts of animals (i.e., lower transcript
abundance with higher gain). The UQCRQ gene is in-
volved in mitochondrial energy production and has also
been associated with feed efficiency in previous studies.
Kong et al. [36] identified higher transcript abundance
of UQCRQ in the rumen tissue of animals with low RFI.
While it is difficult to cross compare these two pheno-
types, it is of interest that this gene and the mitochondrial
energy pathways were identified in both studies. One im-
portant detail to note about the UQCRQ gene is that it
was one of the genes that failed only one of the jackknife
tests, indicating potential cohort bias. As mentioned be-
fore, data from additional cohorts is needed to determine
if this gene is indeed a robust biomarker of gain.
Recently, lower expression of MYOZ2 was detected in

the muscle of chickens with high feed efficiency [37],
while another study found the expression of MYOZ2 in
a different population of chickens to be opposite in dir-
ection, with lower expression among birds with higher
feed efficiency [38]. We found MYOZ2 to be expressed
in higher transcript abundance in four of the five cohorts
of steers with higher gain. Similar to the two studies in
which MYOZ2 was associated with feed efficiency in
chickens, this gene does not show 100% concordance in
its direction of gene expression. The differences in expres-
sion studies in chickens were potentially attributed to dif-
ferences in genetics or other factors [37]. In our study,
there is some variation in breed representation among our
phenotypic groups, but there is also variation in environ-
ment for each of the 5 cohorts, which may also be contrib-
uting to the variation in the direction of gene expression.
Most of the DEGs identified in our analysis exhibited

variation in the direction of expression among cohorts.
This supports the hypothesis that the expression of
DEGs may be environmentally driven. It is also possible
that other genes that were not significant in our differ-
ential expression analysis are involved in the regulation
of these DEGs and pathways. Future work will focus on
using gene expression profiles and clustering analysis to
identify additional regulatory genes that may play a role
in ADG and ADFI phenotypes.

Conclusions
Data presented here demonstrate that finishing beef cat-
tle with divergent ADFI and ADG phenotypes have gene
expression differences that indicate that there are poten-
tially differences in mitochondrial energy production
and oxidative stress pathways, amino acid metabolism

pathways, and cell signaling pathways. This work is a
first step in integrating sequence data from multiple co-
horts to identify potential biomarkers related to the gain
and feed intake of beef cattle. Further study is needed to
understand the role of natural variation in the skeletal
muscle and its contribution to feed efficiency.
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