
Larsen et al. BMC Genomics  (2018) 19:369 
https://doi.org/10.1186/s12864-018-4732-8

SOFTWARE Open Access

CoNVaQ: a web tool for copy number
variation-based association studies
Simon Jonas Larsen1* , Luisa Matos do Canto4, Silvia Regina Rogatto3 and Jan Baumbach2,1

Abstract

Background: Copy number variations (CNVs) are large segments of the genome that are duplicated or deleted.
Structural variations in the genome have been linked to many complex diseases. Similar to how genome-wide
association studies (GWAS) have helped discover single-nucleotide polymorphisms linked to disease phenotypes, the
extension of GWAS to CNVs has aided the discovery of structural variants associated with human traits and diseases.

Results: We present CoNVaQ, an easy-to-use web-based tool for CNV-based association studies. The web service
allows users to upload two sets of CNV segments and search for genomic regions where the occurrence of CNVs is
significantly associated with the phenotype. CoNVaQ provides two models: a simple statistical model using Fisher’s
exact test and a novel query-based model matching regions to user-defined queries. For each region, the method
computes a global q-value statistic by repeated permutation of samples among the populations. We demonstrate our
platform by using it to analyze a data set of HPV-positive and HPV-negative penile cancer patients.

Conclusions: CoNVaQ provides a simple workflow for performing CNV-based association studies. It is made available
as a web platform in order to provide a user-friendly workflow for biologists and clinicians to carry out CNV data
analysis without installing any software. Through the web interface, users are also able to analyze their results to find
overrepresented GO terms and pathways. In addition, our method is also available as a package for the R
programming language. CoNVaQ is available at https://convaq.compbio.sdu.dk.
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Background
Copy number variation (CNV) is a type of structural vari-
ation in the genome in which a large segment of the DNA
is either duplicated or deleted. Genome-wide association
studies (GWAS) have been an important tool for discov-
ering associations between genomic variants and disease
phenotypes. GWAS data analysis methods have generally
focused on single-nucleotide polymorphisms (SNPs) but
can be applied to CNVs as well in order to determine the
impact of larger structural variations on traits or pheno-
types. Recent studies have shown that a large number of
CNVs are present in healthy individuals, and are a signifi-
cant source of genetic diversity in the population [1]. Cur-
rently, the Database of Genomic Variants reports more
than half a million CNVs with most variations ranging
from 1 kb to 10 kb in size [2] .
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Copy number variations affecting individual genes have
been linked to the susceptibility of HIV/AIDS [3], risk to
develop psoriasis [4], and autism spectrum disorders [5],
amongst others. CNVs have also been shown to influence
gene expression [6, 7]. Functional genomic alterationsmay
contribute to the development and progression of dis-
eases [8]. Thus, measuring copy numbers of such genes
alongside their expression may potentially also improve
diagnostics.
Due to the high number of CNVs observed in healthy

individuals and the rarity of disease-associated CNVs
observed even in individuals with the disease, sophisti-
catedmethods are necessary in order to detect statistically
significant CNVs. A large number of tools for calling
CNVs from microarray and next-generation sequencing
data currently exists [9, 10]. However, few methods are
available for identifying CNVs associated with a pheno-
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type. CNVRuler [11] is a graphical desktop application
that builds CNV regions using one of three models: over-
lapping regions, reciprocal overlap and segmentation at
CNV boundaries. Associations between CNV regions and
phenotype are determined using either Fisher’s exact test,
a chi-squared test, linear regression or logistic regres-
sion. ParseCNV [12] is a suite of command line tools for
CNV-based association studies. It performs significance
testing on probe-level using Fisher’s exact test. Probes
in close proximity with similar p-values are then merged
into CNVRs. To our knowledge, no web service and no
query-based methods exist yet.

Implementation
In this work we present CoNVAQ, a new web-based tool
for copy number variation-based assocation study data
analysis. Our method allows users to upload two sets of
segmented CNVs (e.g. disease and healthy groups) and
search for CNV regions where the occurence of CNVs is
significantly associated with the classification of the sam-
ples (phenotype). Our software provides two models for
signifiance testing. The first model is a traditional statisti-
cal model using Fisher’s exact test for testing significance
of associations between CNV and phenotype similar to
what is implemented in previous methods. The second
model is a novel query-based model, that allows users to
specify what patterns are considered significant using sim-
ple queries through the web interface (Fig. 1). While not
as statistically robust, the second model is able to capture
patterns that may not show up using a statistical hypoth-
esis test, and is, in our opinion, easier to understand and
interpret. For each CNV region found, our method com-
putes an empirical q-value by repeated permutation of
the samples between the two groups, in order to esti-
mate significance on a genome-wide scale. Users are able
to inspect the individual reported regions to obtain a
distribution of events and examine in which samples a

variation is observed. Our web tool also provides a gene
set enrichment analysis allowing users to search for an
overrepresentation of Gene Ontology (GO) terms, KEGG
and Reactome pathways or disease associations (Fig. 2)
among the genes located in the discovered CNV regions.
Our web server works on segmented CNV calls and does
not produce CNV calls from raw data, which is left to
one of the many existing tools. Hence, our tool can be
applied to any CNV data set regardless of the technol-
ogy used. CoNVaQ is an easy-to-use web tool, where all
results are computed remotely on our servers, making it
usable from any desktop PC with a web browser installed.
Furthermore, we also provide CoNVaQ as a package for
the R programming language, allowing researchers to run
analyses locally.

Copy number variation region definition
We define a copy number variation region (CNVR) as a
genomic region within a single chromosome wherein no
sample changes state. Each chromosome is initially seg-
mented into regions such that a new region starts at every
end point (start or end) for every CNV among all samples
(Fig. 3). As a result of this, no sample changes state within
a region – only at region boundaries. Furthermore no two
adjacent regions will be identical because at least one sam-
ple must change state in order for a new region to start,
but two adjacent regions may have the same distribution
of CNVs.

Statistical model
The statistical model uses Fisher’s exact test for comput-
ing the significance of association between two groups of
samples for some CNV event. The method considers each
type of event (i.e. loss, gain and LOH) separately and clas-
sifies each sample as either having a variation of that type
in the region or not. For each CNVR a 2 × 2 contingency
table is built and a p-value is computed. Any region with

Fig. 1 Example of a query specified through the web interface for the query-based model. This query specifies that the method should look for
regions where at least 20% of the samples in the positive group have a gain in copy numbers and at least 90% of the samples in the negative group
have no variation
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Fig. 2 Example of output from gene set enrichment. The table shows KEGG pathways that are significantly enriched with the genes from a set of
CNV regions

a p-value less than the user-specified threshold will be
reported along with the observed event.

Query-based model
The query-based model works by extracting all regions
matching some user-specified query. The user must spec-
ify a predicate for the two groups of samples being
compared. Then, regions where both groups match their
respective predicate are identified and reported as part of
the result.
A predicate is defined as a tuple (I,R,E,T), where

I∈{≤, ≥}, R ∈ [0, 1], E ∈ {=, �=} and T ∈ {Normal, Gain,
Loss, LOH}. A query Q is defined by a pair of predicates
Q = (P1, P2). An example of such a query could be P1 =
(≥, 0.2,=, Gain) and P2 = (≤, 0.1, �=, Normal), describing
that all regions in which at least 20% of samples in the first
group have a gain in copy numbers while at most 10% of
samples in the second group may have any kind of CNV,

regardless of type, are considered significant. An example
is illustrated in Fig. 4.

Q-value computation
Empirical q-values are computed for each reported CNVR
by repeatedly perturbing the distribution of samples
among the two populations. Samples are distributed
among the two populations such that the original popu-
lation sizes are preserved. For each of the found CNVRs
we compute how often we see a CNVR that is equally
or more significant in each of the repetitions when per-
forming the same query. A region is considered more
significant if it spans a larger number of base pairs. This
is based on the following reasoning: The null hypothe-
sis is that the occurrence of each CNV is independent
of the phenotype of the sample. Under this hypothesis,
larger regions of overlapping CNVs are less likely to occur
by chance than smaller regions (under the assumption

Fig. 3 Example of chromosome segmented into ten CNV regions by CNVs from five patients. A new region is started whenever a segment from any
patient starts or ends
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Fig. 4 Example of matching query to CNV regions. The query ((≥, 0.60,=, gain), (≤, 0.40, �=, normal)) is evaluated against the ten CNV regions
generated in Fig. 3. LOH frequencies have been left out for simplicity. Four regions match the predicate for group 1 (R6-R9), and eight regions match
the predicate for group 2 (R1-R4, R7-R10). Three regions match the full query (R7, R8 and R9)

that most of the genome does not exhibit any varia-
tion).
Only CNVRs of the same type are compared, i.e. find-

ing a larger duplication will not affect the q-value of a
deleted region. The position, length and type of each
CNV is preserved under the perturbation. This preserva-
tion is important because we cannot reasonably assume
the positions in which CNVs appear in the genome are
random. By redistributing the samples among the pop-
ulations while preserving their size, we instead compute
the probability of observing a given overlap if there is
no contingency between phenotype and the classification
of samples.

Merging adjacent CNVRs
In some cases the CNV calling method might detect
two or more CNVRs in very close proximity, separated
only by a small number of base pairs. Such regions may
correspond to just one region with some internal vari-
ation. Furthermore, when segmenting the genome into
CNV regions as described above, we may produce several
regions in a row with very similar variation distributions.
In order to consider such regions as singular CNVRs,
CoNVaQ includes an option to merge adjacent regions
within some user-specified number of base pairs. After all
matching CNVRs have been selected, adjacent CNVRs of
the same type that are within this threshold will bemerged
into a single CNVR. Regions are merged before q-values
are computed, and the merging step is also performed
for each repetition when computing q-values as well. For
the statistical model, the p-value of the new region will
be the largest value (least significant) of regions being
merged. Regions returned from the query-basedmodel do
not have a type, meaning they can be merged with any
other region if within the threshold. The frequencies of
merged regions will be represented as a range, e.g. if two

regions with loss of copy numbers in 23 and 31% of sam-
ples, respectively, are merged, the new region will report
loss in 23-31% of samples. The length of the new region
will include the gap between merged regions as well. Note
that merged regions do not match the previous definition
of CNVRs as each sample is no longer guaranteed to have
the same state for the entire span of the region.

Enrichment analysis
For the reported CNVRs, users are able to select one or
more regions and extract all known genes overlapping
those regions. A database of known genes was obtained
from Ensembl [13]. A gene is said to be overlapping a
CNVR if their genomic regions share at least one base pair.
CoNVaQ also provides a gene set enrichment analysis.
For the set of reported genes overlapping a CNVR, users
can search for overrepresented Gene Ontology terms [14],
KEGG pathways [15], Reactome pathways [16], Disease
Ontology terms [17] and DisGeNET disease associations
[18]. Enrichment analysis is carried out using the DOSE
[19] and clusterProfiler [20] R packages. Statistical signif-
icance of enrichment is determined using a hypergeomet-
ric test. Let G be the set of genes overlapping the found
CNV regions and C be the gene set we want to investigate
for enrichment. Then a p-value is computed as

P(X ≥ k) =
min(K ,n)∑

i=k

(K
k
)(N−K

n−k
)

(N
n
) ,

where N is the number of all genes, K is the number of
genes in C, n is the number of genes in G and k is the
number of genes both in G and C. Adjusted p-values are
also computed using the Benjamini-Hochberg procedure,
as well as estimated q-values using the method described
in [21].
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Software requirements
CoNVaQ is implemented as a web tool accessible through
a web browser. All parsing of data and computation of
results is done remotely on the server, and results are
then displayed in the web interface. As such, only a mod-
ern, HTML5-enabled web browser supporting Javascript
is necessary in order to use CoNVaQ.

Results
To demonstrate our platform we analyzed the penile can-
cer (PC) data set from [22]. It contains segmented CNV
calls from 41 penile squamous cell carcinomas samples,
where 14 samples were identified as HPV-positive and
the remaining 27 as HPV-negative. We performed an
association study betweenHPV-positive vs. HPV-negative
samples in order to identify genomic variations that were
more common in the HPV-positive group, using the two
models implemented in CoNVaQ.

Statistical model
We first searched for significant CNVs using the sta-
tistical model. The statistical model uses Fisher’s exact
test to compute p-values for each individual CNV. Then,
q-values are computed to estimate the probability of see-
ing a significant CNV of this type and size over the entire
genome (statistical model and q-value computation are
detailed in Methods section). We used a p-value cutoff of
≤ 0.05 for significance and enabled merging of adjacent
CNVs with a distance threshold of 0 base pairs (i.e. only

directly adjacent regions are merged). The method found
16 CNV regions (CNVRs) with significant p-value in
chromosomes 2, 3, 4, 5, 8, 9, 16, 17 and 19 (Table 1).
Q-values ranged from 0.0955 to 0.8415, meaning none of
the regions had a statistically significant q-value (< 0.05).
The most statistically significant region was a large loss
event in chromosome 4. The 16 regions found here were
also previously reported in [22].

Query-based model
We next also searched for significant CNVRs using the
query-based model. The query-based model finds regions
matching some user-specified query, and q-values are
then computed using the same procedure as for the statis-
tical model (detailed in Methods section). We define two
queries Qloss and Qgain to search for loss and gain events,
respectively. The two queries are defined as follows:

Qloss = ((≥, 0.20,=, loss), (≤, 0.10,=, gain)),
Qgain = ((≥, 0.20,=, gain), (≤, 0.10,=, loss)).

These two queries specify that we are searching for
regions with at least 20% of cases (HPV-positive) and at
most 10% of controls (HPV-negative) having a gain or
loss, respectively.Merging of adjacent regions was enabled
with a distance threshold of 0 base pairs again. The Qloss
query found 23 regions in chromosomes 2, 3, 4, 5, and
17 (Table 2). The q-values ranged from 0.0120 to 0.911.

Table 1 CNVRs extracted from penile cancer data set using the statistical model with p-value ≤0.05

HPV-pos. HPV-neg.
Chr Start End Type P-value Q-value freq. (%) freq. (%)

4 9729740 24650257 Loss 0.0341 0.0955 21.4 0-3.7

2 230554659 234415376 Loss 0.0387 0.3650 28.6-35.7 0

17 15537019 18617236 Loss 0.0341 0.4632 21.4 0-3.7

2 204245506 207036312 Loss 0.0341 0.5235 21.4 0-3.7

2 237307835 238724893 Loss 0.0387 0.6505 28.6-35.7 0-3.7

9 33911175 34589574 Gain 0.0387 0.6977 28.6 3.7

4 40058630 40957235 Loss 0.0341 0.6977 21.4 0

17 19272468 20059509 Loss 0.0341 0.7198 21.4 0

17 7496965 8209436 Loss 0.0341 0.7295 21.4 3.7

8 37606006 38160563 Gain 0.0341 0.7325 21.4 0

19 51889824 52236621 Gain 0.0341 0.7465 21.4 0

16 779112 798699 Gain 0.0387 0.7907 28.6 3.7

5 130994540 131251586 Loss 0.0341 0.8083 21.4 0

2 218474389 218676793 Loss 0.0341 0.8163 21.4 0

3 53066401 53145339 Loss 0.0350 0.8387 35.7 0

2 240601010 240608450 Loss 0.0387 0.8415 28.6 3.7

Regions are sorted by q-value. The two rightmost columns contain the frequency of variations of the type corresponding to the type of event (column 4) for the case and
control groups, respectively
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The only region with a q-value < 0.05 was a large region
in chromosome 2 in which the frequency of copy num-
ber loss was between 21.4 and 35.7% for the HPV-positive
samples and between 0 and 7.4% for the HPV-negative
samples. The Qgain query found 15 regions in chromo-
somes 6, 7, 8, 9, 16, 17, 19 and 20 (Table 3). The q-values
ranged from 0.276 to 0.871, and thus none of the regions
had a significant q-value.
In some cases, one can tighten the thresholds in the

query in order to achieve more precise results. If we use
the query Q∗

loss = ((≥, 0.30,=, loss), (≤, 0.05, �=, normal)),
we instead find two smaller regions in chromosome 2
(Table 4) with q-values 0.038 and 0.047. Both regions a
part of the large loss event found with Qloss, but with a
stronger association to HPV-positive status.

Discussion
We used CoNVaQ to search for genomic regions where
the occurrence of copy number variations was signifi-
cantly associated to HPV status. The statistical model

found 16 CNVRs with p-value < 0.05. However, none of
the regions were reported to have a significant q-value
(< 0.05) after permutation testing. This means that for
all of the found CNVRs, if the samples are randomly
assigned to the two groups, we will likely see an equally
large region of same type with p-value < 0.05. This could
suggest that for these regions, further validation is nec-
essary to determine whether they are in fact associated
with the phenotype. The query-based model found 23
regions for Qloss and 15 regions for Qgain. One region
had a significant q-value, namely region in chromo-
some 2 with copy number loss associated with positive
HPV status.
The large discrepancy between the p-values and

q-values reported by the statistical model suggests that
looking at the individual regions is not sufficient to
determine whether a CNVR is indeed significantly asso-
ciated to a phenotype. The cohort used in our analy-
sis consists of only 41 samples which is evidently too
few to determine significance with high confidence. It

Table 2 CNVRs extracted from penile cancer data set using the query-based model with the Qloss query

HPV-pos. HPV-neg.

Chr Start End Q-value loss (%) loss (%)

2 204245506 240688770 0.0120 21.4-35.7 0-7.41

4 9729740 24650257 0.2037 21.4 0

4 40058630 47037351 0.3377 21.4 0-7.41

5 140934280 147709268 0.3785 21.4-28.6 3.7-7.41

5 60380235 66930240 0.3835 21.4 3.7-7.41

5 76699391 82660330 0.3955 21.4 7.41

17 13330532 18617236 0.4525 21.4 0-7.41

5 126804776 131251586 0.4948 21.4 0-7.41

5 72910129 75996874 0.5863 21.4 7.41

17 19272468 22200000 0.6252 21.4 0-7.41

17 7262327 9931292 0.6633 21.4 0-7.41

17 567713 3136246 0.6793 21.4 7.41

3 46788991 49028973 0.6957 28.6 7.41

17 4566909 6490288 0.7335 21.4 3.7-7.41

5 108507593 110029337 0.7552 21.4-28.6 7.41

2 241709000 242951149 0.7762 21.4 3.7-7.41

3 52397990 53145339 0.8732 21.4-35.7 7.41

5 148184554 148894433 0.8770 21.4 3.7

3 14191317 14755952 0.8862 21.4 7.41

5 140011232 140459066 0.8912 21.4 3.7-7.41

5 92966197 93334626 0.8935 21.4 7.41

5 55167345 55283138 0.9103 21.4 7.41

5 122689458 122739532 0.9113 28.6 7.41

Searching for regions with a loss of copy number in at least 20% of cases and at most 10% of controls. The two rightmost columns contain the frequency of copy nuber loss
for the case and control groups, respectively
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Table 3 CNVRs extracted from penile cancer data set using the query-based model with the Qgain query

HPV-pos. HPV-neg.

Chr Start End Q-value gain (%) gain (%)

9 70091642 90376569 0.2762 21.4 7.41

9 13045258 21368309 0.4562 21.4 3.7-7.41

9 119273838 124799603 0.4885 21.4-28.6 7.41

9 33871385 37132743 0.5633 21.4-28.6 3.7-7.41

20 43179131 45592378 0.6395 21.4 7.41

6 13768413 16036680 0.6512 21.4 3.7

19 50012054 52236621 0.6655 21.4 0-7.41

9 91369725 93273440 0.7047 28.6 7.41

16 463336 1664507 0.7648 21.4-28.6 3.7-7.41

17 77682387 78774742 0.7680 21.4 7.41

6 31191394 31875972 0.7963 21.4 3.7

8 37606006 38160563 0.8532 21.4 0

20 33204027 33688992 0.8565 21.4 7.41

7 54865060 55296001 0.8600 21.4 7.41

20 42433913 42557332 0.8710 21.4 7.41

Searching for regions with at least 20% of cases having a gain and at most 10% of controls having any kind of variation. The two rightmost columns contain the frequency of
copy number gain for the case and control groups, respectively

illustrates the need for doing proper permutation test-
ing and reporting q-values along with the standard p-
values. One factor, however, is that the q-value statistic
is computed over the entire genome. If the analysis is
restricted to a single chromosome, the q-values generally
become much smaller. However, given that association
studies generally aim to find any variation in any chro-
mosome associated to a trait or phenotype, we believe
the q-value statistic should be computed over the entire
genome.
Our method currently supports only discrete labels for

CNV calls. When the copy number for each CNV is
discretized before analysis, information that may poten-
tially be important is discarded. Future versions of CoN-
VaQ will be extended to also support numerical values
for CNV calls in addition to the three categories cur-
rently supported (gain, loss and LOH). This would enable
determining significance using regression analysis (e.g.
linear and logistic regression) and statistical hypothesis
tests such as Student’s t-test or the Mann-Whitney
U test.

Our platform does not currently support uploading and
processing raw genomic data. While this would improve
user-friendliness, we believe this is currently out of scope
for our method. For now we believe that quality control
and CNV calling is best handled by the software tools pro-
vided with the CNV detection platforms. By working with
processed CNV data instead, it makes our tool agnostic
to the detection method used, and can thus be used with
both aCGH and next-generation sequencing data.

Conclusions
In this paper we presented CoNVaQ, a web tool for
copy number variation-based association studies. CoN-
VaQ implements two models: a statistical model using
Fisher’s exact test for significance estimation and a novel
query-based model that extract CNV regions matching
some user-specified query. Our method provides a sec-
ondary significance method by computing an empirical
q-value by repeated random permutation of the samples
among the two groups. CoNVaQ is provided as a web
tool accessible online, making it very simple to use and

Table 4 CNVRs extracted from penile cancer data set using they query-based model with the Q∗
loss query

HPV-positive HPV-negative

Chr Start End Q-value Gain (%) Loss (%) Gain (%) Loss (%)

2 233245552 234392866 0.0382 0 35.7 0 3.7

2 237307836 238138001 0.0473 0-7.14 35.7 0 3.7

Searching for regions with a copy number loss in at least 30% of cases and any kind of variation in at most 5% of controls. Columns 5 and 6 show the frequency of copy
number gain and loss for the case group, and columns 7 and 8 shows the frequency of gain and loss for the control group
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requiring no additional software besides a web browser.
Through the web interface we also provide gene set
enrichment analysis to easily determine whether a set of
CNV regions are associated with GO terms, molecular
pathways or diseases. We used CoNVaQ to analyze a data
set containing segmented CNV calls for 41 penile cancer
patients categorized into HPV positive and HPV nega-
tive. While the standard statistical analysis found regions
with significant p-value (< 0.05), no region had a signifi-
cant q-value as well. Q-values were observed to generally
be significantly larger than the p-values for the corre-
sponding regions suggesting that looking at each region
in isolation is not sufficient for determining significance.
While the q-value measure appears to be conservative, we
argue that a global significance measure is necessary to
reduce type I errors.

Availability and requirements
Project name: CoNVaQ
Project home page: https://convaq.compbio.sdu.dk
Archived version: DOI: 10.5281/zenodo.1217803
(backend), DOI: 10.5281/zenodo.1217898 (frontend).
Operating system(s): Platform independent
Programming language: R and C++
Other requirements: Browser supporting HTML5 and
Javascript
License:MIT
Any restrictions to use by non-academics: None
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