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Abstract

Background: CRISPR/Cas9 enables the targeting of genes in zygotes; however, efficient approaches to create loxP-
flanked (floxed) alleles remain elusive.

Results: Here, we show that the electroporation of Cas9, two gRNAs, and long single-stranded DNA (lssDNA) into
zygotes, termed CLICK (CRISPR with lssDNA inducing conditional knockout alleles), enables the quick generation of
floxed alleles in mice and rats.

Conclusions: The high efficiency of CLICK provides homozygous knock-ins in oocytes carrying tissue-specific Cre,
which allows the one-step generation of conditional knockouts in founder (F0) mice.
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Background
The Cre/loxP system is one of the most valuable tools
for genome engineering. In this system, Cre recombinase
efficiently catalyzes recombination between two 34-bp
consensus loxP sequences in any cellular environment,
enabling the conditional transgenesis or knockout of
genes in mice to study gene functions in specific tissues
or at specific time points during development [1, 2].
Within ten years, the high-throughput generation of
conditional alleles for virtually all mouse genes in em-
bryonic stem (ES) cells has been achieved by the Inter-
national Knockout Mouse Consortium [3, 4]. However,
more than 10% of mouse ES genes have still not been
modified because of targeting problems. Furthermore,
the substitution of alternative exons or specific DNA
fragments, such as promoters or enhancers, requires the
generation of new targeting alleles.
Recently, the clustered regularly interspaced short pal-

indromic repeats (CRISPR)/CRISPR associated (Cas)

system has enabled the knockout of genes in zygotes via
non-homologous end-joining (NHEJ) with unprecedented
simplicity and speed [5–7]. Regarding conditional alleles,
targeted insertions of two loxP sites have been generated
by genome editing tools with two loxP-containing single-
stranded oligodeoxynucleotides (ssODNs) [8, 9] or with a
single double-stranded DNA template, containing flanking
homology arms (HA) via homology-directed repair (HDR)
[6, 10]. However, the efficiency of these methods is not op-
timal in zygotes because of the lower rate of HDR com-
pared with NHEJ. In addition, when only one of two loxP
sites, or two loxP in trans are inserted at the targeted site,
it is very difficult to obtain recombination between the
two sites by further crossing. In this study, we have devel-
oped a one-step generation method for floxed mice using
the CRISPR/Cas system with a long single-stranded DNA
(lssDNA) composed of a targeted exon flanked by two
loxP sites, which was constructed using a simple method
using nicking endonucleases as we previously reported
[11] (Additional file 1: Figure S1).
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Results
Microinjection of CRISPR/Cas9 with lssDNA to generate a
floxed allele
The proof of concept experiment started with the de-
sign of two gRNAs targeting introns on either side of
exon 4 of the serine peptidase inhibitor clade A
member 3 N (Serpina3n) gene, and lssDNA, which
contains exon 4 flanked by two loxP sequences with a
60-bp 3′ HA and an extended 300-bp 5′ HA to avoid
the effect of possible 5′ exonuclease activity, as previously
described [11] (Fig. 1a and Additional file 2: Figure S2).
To increase Cas9 endonuclease activity, we also used
Cas9-polyA plasmids (RIKEN BRC: RDB13130), which
appended an 81-bp polyadenine tail to the transcrip-
tion terminator [11]. Microinjection (MI) of two
gRNAs (25 ng/μl each), Cas9-polyA mRNA (50 ng/l),
and lssDNA (25 ng/μl) into 371 fertilized eggs from
C57BL/6 mice resulted in 56 live births delivered
from foster ICR mice (Table 1). PCR analysis of their
tail tips using external primers outside HA sequences
(Additional file 2: Figure S2) showed multiple bands,
which appeared as mosaicism (more than three

bands) in pups (Fig. 1b). Direct sequencing analysis of
the PCR products demonstrated various insertions or
deletions (indels) as well as large deletions (LDs) or
inversions between the two cutting sites (Fig. 1c and
Additional file 3: Figure S3). We found 16 pups car-
ried loxP sequences, of which nine had two loxP sites
floxing exon 4 (Table 1 and Fig. 1c). Among the 9
floxed mice (F0), 5 carried either homozygous floxed
alleles or were heterozygous floxed with LD alleles,
indicated as ‘Conditional’ knockouts in Table 1.
This method was repeated for exon 2 of the Tyrosinase

(Tyr) gene and for exon 3 of the mKIAA1322 gene, which
resulted in 3 mice carrying a floxed allele among 17 live
births and 4 mice carrying a floxed allele among 5 live
births, respectively (Table 1, Additional file 4: Figure S4,
Additional file 5: Figure S5, Additional file 6: Figure S6,
and Additional file 7: Figure S7). Crossing several F0 mice
(#3, #22, #23 for floxed allele and #15, #20, #28 for single
loxP-allele) with B6 mice confirmed the germline trans-
mission of the floxed alleles into the next generation
(Additional file 8: Figure 8). We observed no insertions or
deletions at any off-target site for gRNAs targeting

Fig. 1 Mouse floxed alleles generated by microinjection of two gRNA, Cas9 mRNA and lssDNA into zygotes. a An approach to generate
Serpina3n floxed alleles using the CRISPR/Cas system with long single-stranded DNA (lssDNA) composed of the targeted exon flanked by two loxP
sites (Additional file 2: Figure S2). b PCR analysis of representative delivered mouse pups (#1–15) showing different types of mutations, indels, LD,
and floxed alleles (black arrow) at the targeted Serpina3n locus. The primer sets (‘small’ in Additional file 2: Figure S2) were used for PCR and
sequence analysis. Asterisks indicate pups used for testing germline transmission (Additional file 15: Table S1). M: 100 bp DNA ladder marker. c
Representative examples of the targeted Serpina3n loci generated by the microinjection of two gRNA (gRNA-1 and gRNA-2), Cas9 mRNA and
lssDNA into B6 mouse zygotes (Additional file 3: Figure S3)
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Serpina3n and Tyr genes across the whole genome in the
F0 mice (Additional file 9: Figure 9).

Floxed alleles generated by zygote electroporation in
mice and rats
We have previously reported the easy and efficient gen-
eration of knockout (KO) or knock-in (KI) mice using
the CRISPR/Cas9 system with zygote electroporation
(EL) instead of MI [12, 13]. For KI of floxed alleles, we
used lssDNA with CRISPR/Cas9 for the transfer into
embryos by electroporation. The zygote EL of two
gRNAs (100 ng/μl each), Cas9 mRNA (400 ng/μl), and
lssDNA (40 ng/μl) for Serpina3n or Monocarboxylate
transporter 4 (Mct4) genes into 180 and 134 fertilized eggs
resulted in 18 and 21 live births, respectively (Table 1).
PCR and sequence analysis demonstrated carriers
with various mutations, indels, LDs, and floxed alleles
(Additional file 10: Figure S10, Additional file 11: Figure S11
and Additional file 12: Figure S12). The live birth
rate, indel mutation rate, and loxP insertion efficiency
were similar to those of MI, except for the higher survival
rates of two-cell embryos (80–90%) by EL, as previously re-
ported [12, 13] (Table 1). Moreover, crossing the floxed mice
with Cre-driver mice (B6.Cg-Tg(CAG-Cre)CZ-MO2Osb:
RBRC01828) provided site-specific recombination events
between the two loxP sites, which confirmed that the floxed
alleles were functional (Additional file 13: Figure S13).
Therefore, we named this method CLICK: CRISPR with
lssDNA inducing conditional knockout alleles (Fig. 2a).
To test whether CLICK can be applied to other species

such as rats, we designed lssDNA including two loxP se-
quences floxing exon 2 of the rat vesicle-associated
membrane protein-associated protein B/C (Vapb) gene

with a P56S mutation, which is associated with amyo-
trophic lateral sclerosis in humans [14] (Fig. 2b and
Additional file 14: Figure S14). EL of the lssDNA and
CRISPR components into rat zygotes resulted in the
birth of six pups, which contained indels, LD, and inver-
sion mutations between the cut sites (Table 1, Fig. 2c
and d). Rats #1, #2, and #6 showed floxed alleles with
the P56S mutation. Crossing these F0 rats with F344
rats or Cre-driver rats (W-Tg(CAG-cre)81Jmsk (NBRP-
Rat No.0283)) provided the transmission of the floxed
alleles or site-specific recombination that removed
exon 2, respectively (Additional file 8: Figure S8 and
Additional file 13: Figure S13).

One-step generation of conditional knockout animals in
the founder generation
Finally, we applied the CLICK method to in vitro fer-
tilized eggs of B6 mice with the sperm of Cre-driver
mice (Emx1-cre: RBRC00808) expressing Cre in the
cortical neurons and glia [15] (Fig. 3a). Among 8 and
27 live births by MI and EL, respectively, 6 mice car-
ried floxed alleles for exon 2 of the Serpina3n gene
(Table 1, Fig. 3b and Additional file 15: Table S1).
Interestingly, 3 floxed mice, #14, #16, and #24, carried
homozygous floxed alleles or heterozygous floxed with
LD alleles in addition to the Emx1-Cre allele. PCR ana-
lysis of multiple tissues of #14 indicated a brain-specific
recombination that removed exon 2 of the Serpina3n gene
in this animal (Fig. 3c). These results indicate that CLICK
can be used for the one-step generation of conditional
knockout mice (F0) without further crossing, using
fertilized eggs expressing tissue-specific Cre (Fig. 3d
and Additional file 16: Table S2).

Table 1 CRISPR/Cas-mediated insertion of loxP sequences at targeted sites in mice and rats

Species Strain Target gene lssDNA
size (bp)

Transfer
method

Embryos
injected
(n)

Embryos
transferred
(%)

Live births
(%)

F0 animals

LD (%) loxP (%) flox (%) Conditional
(%)

Mouse C57B6 Serpina3n 708 MI 371 255 (68.7) 56 (22.0) 28 (50.0) 7 (12.5) 9 (16.1) 5 (8.9)

C57B6 Tyr 892 MI 222 149 (67.1) 17 (11.4) 2 (11.8) 4 (23.5) 3 (17.6) –

C57B6 mKIAA1322 1429 MI 166 134 (80.7) 5 (3.7) 1 (20.0) – 4 (80.0) 2 (40.0)

C57B6 Serpina3n 708 EL 180 160 (88.9) 18 (11.3) 9 (50.0) 2 (11.1) 2 (11.1) 2b (11.1)

C57B6 Mct4 1095 EL 134 130 (97.0) 21 (16.2) 11 (52.4) 3 (14.3) 2 (9.5) 1 (4.7)

Rat F344 Vapb 674 EL 160 77 (48.1) 6 (7.8) 2 (33.3) 1 (16.6) 3a (50.0) 1 (16.6)

Mouse Emx1-cre Serpina3n 708 MI 150 74 (49.3) 8 (10.8) 4 (50.0) 1 (12.5) 1 (12.5) –

Emx1-cre Serpina3n 708 EL 150 113 (75.3) 27 (23.9) 10 (37.0) 1 (3.7) 5 (18.5) 3c (11.1)

Transfer method: gRNA/Cas9 and long single-stranded DNA (lssDNA) transferred by microinjection (MI) or electroporation (EL). Embryos transferred: two-cell em-
bryos were transferred into a surrogate mother. LD: large fragments deleted between two gRNA targeting sites. loxP and flox: positive for either one or two loxP
sites, respectively
aAll three rats carried a missense mutation, P56S, together with floxed alleles. Conditional: conditional knockouts by homozygous floxed alleles or heterozygous
floxed with LD alleles in F0 animals
bSite-specific recombination confirmed by crossing with Cre-driver mice
cSite-specific recombination confirmed in Cre-expressing tissues of F0 mice
- not identified
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Discussion
Compared with MI, CLICK with EL was less time-
consuming, easier to prepare, and highly efficient at tar-
geting the generation of floxed alleles in zygotes. lssDNA
was easily prepared from custom-made plasmids within
one day (Additional file 1: Figure S1). Zygote EL does
not require expensive micromanipulator systems with
special injection skills, allowing this approach to be used
in numerous non-specialized laboratories (Fig. 2a). Fro-
zen embryos or in vitro fertilized eggs are also available
for zygote EL, facilitating the high throughput gene tar-
geting of multiple genes with low costs (Fig. 3a). F0 mice
generated by CLICK showed both homozygous floxed
alleles and heterozygous or mosaic alleles, which in most
cases were passed to the offspring (Additional file 15:
Table S1). In principal, two gRNA and Cas9 transferred
into zygotes provided double-strand breaks (DSBs) on
each targeted site (Fig. 4). These DSBs were repaired by
NHEJ, causing indel mutations at each site or a LD mu-
tation. DSBs repaired by HDR using the lssDNA elicited
a single loxP insertion or a floxed allele. Our data indi-
cated a positive correlation between the observed

number of large deletions and the occurrence of floxed
alleles. To generate more LDs, three or four gRNAs may
be used as previously reported [16, 17].
Although random integrations of single-stranded DNA

are an infrequent event in contrast to those of double-
stranded DNA, NHEJ-mediated mutations or DNA in-
sertions at off-target sites may eventually occur. In the
F0 founders we tested, no off-target insertion of the
lssDNA donors was observed or determined by checking
the heritability of the targeted floxed alleles in F1 mice.
However, further backcrossing to wild-type animals
might segregate such off-target integrations if detected.
We previously reported lssDNA, formerly named

lsODN, for CRISPR-mediated efficient KIs of GFP-coding
sequences in rat zygotes [11]. CLICK with lssDNA includ-
ing Cre-coding sequences in mouse zygotes also provided
efficient KIs of Cre alleles at an endogenous targeted gene
(T Mashimo, pers. comm.). Recently, Quadros et al. re-
ported highly efficient KIs of Cre or floxed alleles (about
10–100%) using the microinjection of Cas9 protein with
lssDNA into mouse embryos [18, 19]. However, Remy et
al. reported no integration of a GFP reporter cassette with

a c

b d

Fig. 2 Rat floxed alleles generated by zygote electroporation. a Schematic representation of CLICK: CRISPR with lssDNA inducing conditional
knockout alleles. b Schematic approach to generate rat Vapb floxed alleles using the CRISPR/Cas system with lssDNA composed of the targeted
exon flanked by two loxP sites (Additional file 11: Figure S11). c PCR analysis of rat pups (#1–6) generated by CLICK, showing different types of
mutations, indels, LD (via NHEJ), inversions, and floxed alleles (via HDR) (black arrow). The primer sets were used for PCR and sequence analysis
(Additional file 2: Figure S2). M: 100 bp DNA ladder marker. d Sequence analysis of 6 pups showing a variety of mutations, indels, inversion or LD
indicated by red letters, and loxP insertions and flox indicated by orange letters. All pups were used for testing germline transmission
(Additional file 15: Table S1). Asterisks indicate pups used for testing the Cre-loxP system (Additional file 17: Table S3)
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lssDNA by zygote electroporation, although the large
DNA fragment was transferred into embryos [20]. The
three different protocols used for the preparation of
lssDNAs [11, 19, 20] might result in the different effi-
ciency of KIs. According to our reports [11] and a previ-
ous report [19], lssDNA generally provides more efficient
KIs of approximately 10–50% in zygotes compared with
double stranded DNA that normally provides less than
10%. In addition, Cas9 protein rather than Cas9
mRNA provides more efficient KIs with short or long
ssDNAs. The limitations of the current lssDNA ap-
proaches are the maximal length of the synthetic

lssDNA is up to 3 kb, although this size is sufficient
to generate floxed alleles for a single exon of most
genes.
The novel aspect of this study was the zygote elec-

troporation of lssDNA from 600 to 1.5 kb to generate
floxed alleles. In addition, CLICK in oocytes carrying
tissue-specific Cre allowed the one-step generation of
‘conditional knockouts’ in F0 founder mice. In this
study, F0 floxed mice showed brain-specific recom-
bination that removed exon 2 of the Serpina3n gene
(Fig. 3c). Immunostaining of brains with an anti-
Serpina3n antibody showed the reduced expression of

a

b c

d

Fig. 3 One-step generation of conditional knockout animals (F0) by CLICK. a Schematic representation of applying CLICK in oocytes for in vitro
fertilization (IVF) with Cre-driver mice, Emx1-cre, resulting in brain-specific recombination at the targeted floxed alleles. b PCR analysis of representative
delivered mouse pups by microinjection (#1–8) or electroporation (#9–15) showing different types of mutations, indels, LD, and floxed alleles (black
arrow) at the targeted Serpina3n locus. The primer sets (‘small’ in Additional file 2: Figure S2) were used for PCR and sequence analysis. c Genotyping in
several tissues: cerebrum (Cr), cerebellum (Cl), heart (H), liver (L), spleen (S), and testis (Ts), indicating recombination (red arrow) by brain-specific Cre ex-
pression in #14 mouse carrying heterozygous floxed with LD alleles. M: 100 bp DNA ladder marker. d Time-schedule comparisons of targeting methods
using ES cells by CRISPR in B6 oocytes, and CLICK in Cre oocytes. CLICK saves about 6 months of crossing and reduces breeding costs during the study
period (Additional file 13: Figure S13)
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Serpina3n protein in F0 mice compared with wild-
type mice (Additional file 17: Table S3). To the best
of our knowledge, this one-step generation of condi-
tional knockout mice has not been reported previ-
ously. This method could be used to generate
conditional knockout mice routinely. However, the
potential risk of mosaicism should be characterized in
F0 mice. The conditional knockout phenotypes must
be reconfirmed in the cohorts of the next F1 gener-
ation to distinguish tissue specific recombination or
the extent of mosaicism. If the germline of F0 mice is
not recombined by Cre expression, conditional knock-
out phenotypes could be easily reconfirmed in the
next generation.

Conclusions
In summary, the use of CLICK in the zygote electropor-
ation of two gRNAs, Cas9 and lssDNA, provides the
easy and quick generation of floxed alleles in zygotes
(Fig. 3d). Furthermore, CLICK in fertilized oocytes ex-
pressing tissue-specific Cre enables the one-step gener-
ation of conditional knockout mice, skipping two
generations for subsequent crossing, which facilitates
high-throughput gene targeting in mice and rats.

Methods
Animals
C57BL/6JJcl mice and F344/Jcl rats were obtained from
CLEA Japan Inc., Tokyo, Japan. B6.Cg-Tg(CAG-Cre)CZ-
MO2Osb (RBRC01828) and Emx1-cre (RBRC00808)
mice were provided by RIKEN BRC (www.en.brc.riken.
jp), and W-Tg(CAG-cre)81Jmsk (NBRP-Rat No.0283)
rats were from the National Bio Resource Project for the
Rat in Japan (www.anim.med.kyoto-u.ac.jp/nbr). The an-
imals were kept under conditions of 50% humidity and a
12:12 h light:dark cycle. They were fed a standard pellet
diet (MF, Oriental Yeast Co., Tokyo, Japan) and tap
water ad libitum.

Preparation of Cas9, gRNA and lssDNAs
We formally constructed pCas9-polyA and deposited it
into the Addgene repository (ID #72602; www.addgene.
org/CRISPR). mRNA was transcribed in vitro using a
mMESSAGE mMACHINE T7 Ultra Kit (Life Technolo-
gies, Carlsbad, CA, USA) from linearized plasmids and
was purified using a MEGAClear kit (Life Technologies).
To design gRNAs, software tools (www.crispr.genome-
engineering.org) predicting unique target sites through-
out the mouse and rat genome were used. gRNAs were
transcribed in vitro using a MEGAshortscript T7 Tran-
scription Kit (Life Technologies) from synthetic double-
strand DNAs obtained from IDT (Integrated DNA Tech-
nologies, IA, USA) or Life Technologies.
lssDNAs were prepared by a simple method using

nicking endonucleases as we previously reported [11]
(Additional file 1: Figure S1). Briefly, double-stranded
DNA plasmids comprising of a floxed allele, hom-
ology arms, and two nicking endonuclease sites were
obtained from Thermo Fisher Scientific (MA, USA)
as GeneArt® Gene Synthesis. For digestion, 100 μg of
the purified plasmid DNA was incubated at an
optimum temperature for 2 to 3 h with nicking
endonucleases, such as Nt.BspQI and Nb.BbvCI (New
England Biolabs Inc., MA, USA). After purification by
ethanol precipitation, the DNAs were denatured with
3-fold amounts of formamide (Nacalai Tesque, Inc.,
Tokyo, Japan) at 80 °C for 10 min, and then sub-
jected to agarose gel electrophoresis with DynaMar-
ker®Prestain Marker for RNA High concentrations
(Biodynamics Laboratory Inc., Tokyo, Japan). Bands
corresponding to a single-strand DNA fragment were
extracted using NucleoSpin® Gel and PCR Clean-up
(Takara Bio, Shiga, Japan). Finally, 2–4 μg of lssDNA
was obtained with this method.

Microinjection and electroporation into mouse and rat
embryos
Pronuclear-stage mouse embryos were prepared by
thawing frozen embryos (CLEA Japan Inc.), or in vitro

Fig. 4 Schematic representation of various mutations generated by CLICK. Two gRNAs and Cas9 formed double-strand breaks (DSB) on each
targeted site or a large deletion between the two sites. DSBs repaired by NHEJ caused indel mutations or LD. DSBs elicited a single loxP insertion
or floxed allele by HDR repair
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fertilized embryos, or fresh embryos collected from nat-
urally mated female mice that were superovulated by in-
jection with pregnant mare serum gonadotropin (PMSG:
ASKA Animal Health Co., Tokyo, Japan) and human
chorionic gonadotropin (HCG: ASKA Animal Health
Co.). Rat embryos were collected from 8 to 12 weeks of
age females that were superovulated by the administra-
tion of 150 U/kg of PMSG followed by 75 U/kg of HCG.
After natural mating, pronuclear-stage embryos were
collected from the oviducts of the females and cultured
in a modified Krebs–Ringer bicarbonate medium or
KSOM medium (ARK Resource, Kumamoto, Japan).
In MI, 50 ng/μl Cas9 mRNA, 25 ng/μl gRNA, or

50 ng/μl lssDNA were microinjected into the male pro-
nuclei of embryos using a micromanipulator (Narishige,
Tokyo, Japan). In targeting mouse KIAA1322, 30 ng/μl
Cas9 protein (PNA Bio, Thousand Oaks, CA, USA) was
used instead of Cas9 mRNA [21]. This was cultured in
modified Krebs–Ringer bicarbonate or KSOM medium
overnight and divided two-cell embryos were transferred
into pseudopregnant females.
For EL, 50–100 embryos at 1 h after thawing or 3–4 h

after collection were placed into a chamber with 40 μl of
serum free media (Opti-MEM, Thermo Fisher Scientific)
containing 400 ng/μl Cas9 mRNA, 200 ng/μl gRNA, or
40 ng/μl lssDNA. They were electroporated with a
5 mm gap electrode (CUY505P5 or CUY520P5 Nepa
Gene, Chiba, Japan) in a NEPA21 Super Electroporator
(Nepa Gene, Chiba, Japan).The poring pulses for the
electroporation were voltage 225 V, pulse width 1.5 ms
for mouse embryos and 2.0 ms for rat embryos, pulse
interval 50 ms, and number of pulses 4. The first and
second transfer pulses were voltage 20 V, pulse width
50 ms, pulse interval 50 ms, and number of pulses 5.
Mouse or rat embryos that developed to the two-cell
stage after the introduction of RNA and lssDNA were
transferred into the oviducts of female surrogates anes-
thetized with isoflurane (DS Pharma Animal Health Co.,
Ltd., Osaka, Japan).

Genotyping analysis
Genomic DNA was extracted from the tail tip using the
KAPA Express Extract DNA Extraction Kit (Kapa Bio-
systems, London, UK). For PCR and sequence analysis,
we used external primers outside the HA, which amplied
the targeted region (Additional file 18: Table S4). PCR
was performed in a total volume of 15 μl under the fol-
lowing conditions: 1 cycle of 94 °C for 3 min; 35 cycles
of 94 °C for 30 s, 60 °C for 1 min and 72 °C for 45 s; and
1 cycle of 72 °C for 3 min. The final reaction mixture
contained 200 μM dNTPs, 1.0 mM MgCl2, and 0.66 μM
of primer. The PCR products were then directly se-
quenced using the BigDye Terminator v3.1 cycle sequen-
cing mix and the standard protocol for an Applied

Biosystems 3130 DNA Sequencer (Life Technologies).
To confirm mosaic mutations, we sequenced individual
TA clones in some cases.
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