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Abstract

Background: Fractionation is the genome-wide process of losing one gene per duplicate pair following whole

genome multiplication (doubling, tripling, . .

.). This is important in the evolution of plants over tens of millions of

years, because of their repeated cycles of genome multiplication and fractionation. One type of evidence in the study
of these processes is the frequency distribution of similarities between the two genes, over all the duplicate pairs in

the genome.

Results: We study modeling and inference problems around the processes of fractionation and whole genome
multiplication focusing first on the frequency distribution of similarities of duplicate pairs in the genome. Our
birth-and-death model accounts for repeated duplication, triplication or other multiplication events, as well as
fractionation rates among multiple progeny of a single gene specific to each event. It also has a biologically and
combinatorially well-motivated way of handling the tendency for at least one sibling to survive fractionation. The
method settles previously unexplored questions about the expected number of gene pairs tracing their ancestry back
to each multiplication event. We exemplify the algebraic concepts inherent in our models and on Brassica rapa,
whose evolutionary history is well-known. We demonstrate the quantitative analysis of high-similarity gene pairs and
triples to confirm the known ploidies of events in the lineage of B. rapa.

Conclusions: Our birth-and-death model accounts for the similarity distribution of paralogs in terms of multiple
rounds of whole genome multiplication and fractionation. An analysis of high-similarity gene triples confirms the

recent Brassica triplication.

Keywords: Whole genome duplication, Gene loss, Birth and death process, Multinomial model, Paralog gene tree,

Sequence divergence, Brassica rapa

Background

While the genomic multiplicity of recent polyploids is
accessible through cytogenetics and other methodolo-
gies, the nature of early large-scale genome events like
auto- and allopolyploidization is obscured by interchro-
mosomal translocations, chromosome fusions and other
chromosomal rearrangements, by gene family expansions
and fractionated gene loss and by sequence divergence
between paralogs. One valuable line of evidence about
these ancestral events is the discovery of two sets of at
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least four or five collinear pairs of highly related genes —
paralogs — in close succession in different regions of the
genome, known as paralogous synteny blocks. Insofar as
all the paralog pairs in a paralogous synteny block resem-
ble each other to the same extent, this indicates that there
was a duplication of the chromosomal region containing
them, which can then be dated approximately according to
the degree of DNA sequence divergence. If there are many
syntenic blocks of the same age throughout the genome,
this is suggestive of a whole genome duplication at that
point in time.

In 2007 Jaillon et al. noted that syntenic regions in
the genome of grape (Vitis vinifera) were distributed as
triples, not just duplicates [1]. Much of the genome could
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be partitioned into seven sets of three syntenic regions,
indicative of a whole genome triplication over 100 M years
ago, producing a 21-chromosome grape ancestor from a
7-chromosome precursor. Of interest is that in each triplet
of regions, forming three pairs of regions, there were many
duplicate gene pairs — involving just two regions — but
very few actual triples of three highly related genes, one
in each region. In addition there were very few dupli-
cations within a single region, or between genes in two
different triplets among the seven sets of grape triplets
of regions. The 21-chromosome construct has since been
widely recognized as the ancestor of the core eudicots.
The principle of three-way similarities among syntenic
regions, indicated by

e some duplicated pairs between each two of the three
regions,

e with or without any triplicated genes,
no pairs within a single region and
no pairs between different triples of regions,

is the signature pattern for ancient whole genome trip-
lication, or paleohexaploidy. This may be generalized in
straightforward ways to octoploidy and higher multiplic-
ities of polyploidization. For example, an ancient octo-
ploidization would be reflected in 4-tuples of regions,
where the would be some duplicated gene pairs between
each of the (3) = 6 pairs of regions, but no gene
pairs within regions and no gene pairs between different
4-tuples.

Another type of important evidence in analyzing
ancient polyploidization events is the distribution of cod-
ing sequence similarities between two paralogous genes.
All flowering plants, and indeed most land plants, have at
least one, and generally two, three or more polyploidiza-
tions in their history. The distribution of similarities is
then a mixture of distributions, each of which is cen-
tered at a similarity value indicative of the age of one
of the polyploidizations. We have developed a model for
predicting the shape of these distributions based on the
event times, the ploidy multiplicities of the events, rates
of loss of duplicate genes from the genome (fractiona-
tion), and rates of sequence divergence [2]. This model
produces a paralog tree in the form of a birth and death
process with one biologically-motivated constraint, which
remains mathematically tractable and whose parameters
are well suited to statistical inference. Because of a trade-
off between ploidy and fractionation rates, however, in
many instances the multiplicity of the various ploidy
events in the evolution of a genome cannot be determined
uniquely, which is a severe problem for understanding its
history.

One goal of this paper is to remedy this shortcoming by
combining the syntenic approach pioneered in [1] with the
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paralog tree model of [2] to produce a method capable of
estimating the multiplicity of the polyploidization events,
as well as the fractionation parameters.

The next section summarizes the general model for
generating the distribution of paralog similarities. This is
followed by a brief section describing the inference of the
parameters. We then focus on two particular instances,
one where a hexaploidization (whole genome triplication)
precedes a tetraploidization (whole genome duplication),
and the other where the triplication follows the dupli-
cation. The difficulty of ploidy inference is illustrated
with data from the turnip, or Napa cabbage (Brassica
rapa) genome, and investigated in algebraic detail. In
a section entitled “Counting triples’, we introduce the
method inspired by [1] for distinguishing whole genome
triplication from whole genome duplication, given the dis-
tribution of duplicate gene similarity, and we apply this
to confirm the known sequence of events in the ancestral
history of this species.

Methods

The general model

We summarize and correct a new and general model [3]
for the repeated cycle of polyploidization events, each fol-
lowed by fractionation. This model allows an arbitrary
number of events and rates of fractionation of the progeny
of any gene holding across the entire genome after each
event. From this we calculate expected numbers of dupli-
cate gene pairs, at the time of observation (i.e., the present
time), originating at each of the historical polyploidization
events, leading to the prediction of the entire distribu-
tion of similarities, using standard models of mutational
processes.

The model is a continuous-time birth-and-death pro-
cess with the entire population synchronized as to birth
times and number of progeny, but with the number of
deaths of the siblings in each individual “litter” deter-
mined probabilistically.

The birth-and-death process

The process starts with 717 > 1 genes at time ¢;; at times
1 < -+ < ty—1 for some n > 1, each existing gene is
replaced by 7y, . . ., r,—1 progeny, respectively, where each
r; > 2. As illustrated in Fig. 1, for each gene’s progeny, at
least one and at most r; genes survive until time #;y1, as
governed by a probability distribution ui’), ceos uﬁf) .

The results are observed at time ¢,, namely a measure
of similarity (e.g., coding sequence similarity) between
all pairs of genes in the population, where the m; origi-
nal genes are considered to be unrelated or too remotely
related to be considered. ' ’

Let there be m; genes at time ¢, let aﬁ’), e aﬁf.)

be the number of cases where 1,...,7; copies survive
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time t; 81 8, 8 & 8s
m;=Zall =5
Il/ myy = Zjal =11
timet,, a,7 a)f! a,f? a,f!

Fig. 1 Event with ploidy r; = 4, showing population of m; = 5 genes
at time t;, each giving rise to 4 progeny, of which 1 < j < 4 survive
until time tj41. a® is the number of times j progeny survive. In the
diagram, thin solid lines represent individual progeny that survive,
and thick grey lines represent the total progeny of a gene that do not
survive. In this example the only gene, all of whose progeny survive, is
gaHerea” =2,00 =a =al =1,mp1 =2 x14+1x241x
3+1x4=11

fractionation until time #;41, so that Z (’) = m;. Note

that there is no provision for g to have zero surviving
descendants (i.e., a(()) = 0); these genes would be consid-
ered as leaving no evidence for their existence and are not

counted in m;. Note that that m; 11 = Z} lja(l)

We use u]@ to represent the probability that j of the r;
potential copies survive to time £;11, forj=1,...,r;.

Thus the probability distribution of the evolutionary
histories represented by r = {r;},_; ,,_; and the variable

~yi=1..n—1
a= {a@} is
/ j=1...r;

n—1
Pra) =[] ( 0 <,>>
ﬂl >

Pl oy

( (z)) ) )

j=1

The expected number of genes at time ¢, is then

E(m,) = Y P(r;a) m,. (2)
a
Similarly, we write
k—1 . ri o\ a?
i 13
puc (r;a) = 1_[ ( 0 (t)> 1_[ (u;:)) (3)
iy L\ a0

for the probability measure over all events starting at time
t; with m; genes, and preceding time f;. In this case the
expected number of genes at time £ is

EMOGmy) =) | PO (152) my. )

a

The paralog pairs

Having characterized the origin and survival of individual
genes and their descendants in the environment of recur-
rent polyploidization and fractionation, we can now focus
on the pairs of genes observed at time £,. Our discussion
is illustrated by Fig. 2.

(@)

For each of the a; genes with j surviving copies, j > 2,

there are (é) surviving pairs of genes. If j = 1 there are

m;
|
[ g other t, genes !
/- (N
Q/_)/_ , NN i
/ ab N \\r,-—kfractlonated
A AN
k surviving P \ \\prOgenV
’ ........ \ \\
\
(,) t, pairs at time t;,, AN
\
.

t, genes

From one pair at time t;,;
m, genes, m,” genes,
and m,m,” t; pairs at
time t,

Fig. 2 Counting t;-pairs. The three unfractionated progeny of gene g
define three t;-pairs, as indicated by three ovals. We follow the pair
contained in the uppermost oval, as the two members at time ¢4
independently (shaded triangles) evolve into m), and m/, genes,
respectively, at time t,, defining m),m}, t-pairs at time t,

no pairs. The total number of pairs created at time ¢; and
surviving to time ¢4 is thus

=3 (é >a]€”). (5)

j=2

J6i+D

These are called the ¢;-
number of such pairs is

ri .
E (d(i,i+1)> _ ZP(I,H—I) (r; 2) Z (;)a](i). 6)
a j=2

At time ¢j,for i + 1 < j < n, any two descendants of
the two genes making up a ¢;-pair with no more recent
common ancestor is also called a t;-pair (at time ¢). In
other words, for any two genes at time #;, they form a
t;-pair if their most recent common ancestor underwent
polyploidization at time ¢;.

For a given ¢;-pair ¢’ and g” at time ¢; 41, where i < n—1,
the expected number of pairs of descendants d* having
no more recent common ancestor than g’ and g”, will be

E (d(i,n)> —E (d(i,i+1)> (E(H-l,n) (m,,))z @)

where m;11 = 1. This follows from the independence of
the fractionation process between time ¢; and time ;4
and both parts of the process starting with g’ and g”.

Not all the m, genes in Eq. (2) are in pairs. Because
of fractionation after every polyploidization event, some
genes will remain unpaired. We have

pairs at time £;11. The expected
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m* €{0,...,m)
n—1 )
E(m*) = my [ | u, ®)

i=1

where m™* is the current number of unpaired genes.

The terms E (4*V) and E*1" (m,) in Eq. (7) both
involve calculating probabilites with Eq. (3). As # and the
r; increase, so do the m;, and this becomes computation-
ally very expensive, due to the product of multinomial
coefficients in Eq. (3) and the sum of many such probabil-
ities in Eq. (4). Nevertheless, making use of the recursive
nature of these calculations allows for more efficiency
than the explicit generation of evolutionary histories and
the counting of pairs within each one.

The Distribution of Similarities

Knowing the expected number of pairs of genes originat-
ing at each WGD in the past is the first step in predicting
the full distribution F of similarities. The second step is to
derive the actual distribution of gene pair similarities, or
an appropriate approximation to it, for ¢;-pairs.

One way gene pair divergence may be measured is in
terms of a probability p reflecting similarity — the propor-
tion of nucleotide positions that are occupied by the same
base in the two orthologs (or paralogs).

Besides p, the other important parameter is G, reflecting
average gene length in terms of the number of nucleotides
in the genes’ coding region. Because this length varies
greatly, in practice G needs to be estimated.

In the simplest case, the distribution of similarities is the
binomial B(G, p;), where

1 3 _,,
pi= E"‘;e Mi 6[0’1]) (9)

and is related to the time ¢; €[0, 00) elapsed since the event
that gave rise to the pair. This distribution has

mean: u; = Gp; (10)

1 3 )
= G (4 + 46_)\1:') E[O, 1]
variance : oiz =Gp;, (1 —p)

3 it g
:RG(I—F?:e Mi) (1 — e M),

where A > 0 is a divergence rate parameter.

The densities of similarities of ¢;-pairs can be approxi-
mated by a normal distribution N (,u,', 0i2) (as long as p; is
not too close to 1.0), and the expected frequency by

Fi=E (d”"”)) N (wi07). (11)
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We can predict the entire frequency distribution over all
t; as:

n—1

F@) =) F,

i=1

(12)

keeping in mind that the model also predicts unpaired
genes according to Eq. (8). Then the predicted relative
frequencies become
F@)
E(m*) + Zj F(j)
q = D R—
E(m) + Y F(j)

q(i) =

(13)

Inference

The distribution of gene pair similarities is of the form
f(k), where k = kmin, - - - » kmax- The data may also include
f*, the frequency of unpaired genes. The value of kmin
is set to eliminate pairs due to noise or to polyploidiza-
tion events earlier than those of immediate interest. At
the other extreme, kyax is set somewhat lower than 100%,
in order to remove any effects of heterozygosity, whereby
an apparent duplicate gene pair actually consists of two
alleles of a single gene, rather than two genes at different
positions in the genome.

The likelihood of a model, given some data set is

kmax
L=c [] a&/®@",

i=Kmin

(14)

where g depends only on the parameters of the model, and
the maximum likelihood estimators of the parameters of a
model can be found by maximizing

k max

fHlogq* + ) f()logq()

i:kmin

(15)

with respect to these parameters.

Results and discussion

Two models for one dataset

For a given instance of the above model, if we know some
of the parameters, we can infer the others. This includes

the ¢;: the times of each event,
the fractionation rates,

A: the divergence rate, and

G: the gene length parameter.

However, we cannot easily estimate the r;, the event
ploidies, from the distribution of paralog pair similarities.
To understand why, we consider an important example,
namely the outcome of two events, a tetraploidy leading
to a whole genome duplication and hexaploidy, leading to
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a whole genome triplication. We will illustrate with data
on the Brassica rapa genome [4], member of the Brassica
genus, known to have undergone a triplication after an
earlier duplication shared with other Brassicales genera,
such as Arabidopsis, as shown in Fig. 3.

The distribution of gene pair similarities derived from
SYNMAP (on the COGE platform [5, 6]) is shown in Fig. 4.
Only the recent event, the Brassica triplication, is clearly
visible as a distinct peak in the histogram, but the volu-
minous tail at early similarities attests to the effect of the
earlier Brassicales duplication. Brassicales is a rosid order
and as such also descends from the y core eudicot tripli-
cation, which would have produced pairs with around 70%
similarity, but very few remained in synteny blocks, so for
the purposes of our subsequent analysis, we ignore this
event. Indeed, we imposed no bounds kpin Or kmax on the
data produced by SYNMAP.

We can explore the discriminatory power of our method
by fitting two models to these data, one where a whole
genome duplication precedes a triplication, known to be
true, and an incorrect one where the duplication follows
the triplication.

The calculations leading to Egs. (7) and (8) are not
lengthy in the case of these two models, and are portrayed
schematically in Figs. 5 and 6, where u, v, w,x,y and z are
probabilities that can be fixed independently of each other,
aslongasu+v < landx+y < 1. (To avoid trivial models
in either case, u, w,x and z must be greater than zero and
less than 1, while v and ¥ must be greater or equal to zero
and less than 1. We will term these valid models.)

In Fig. 5, w = ugl), the probability that both offspring
survive until time £ after the first duplication at time ¢,
so that 1 — w is the probability that only one survives.
After the triplication at time #;, the probabilities are u =
ugz) and v = u(22) that three offspring or two offspring,
respectively, survive until time 3.

Looking at the second paralog tree in the left-hand
column of Fig. 5, for example, Eq. (1) becomes

whole genome triplication

B. rapa
B. oleracea

R. sativa

S. irio

A. lyrata
L A thaliana

a whole genome duplication

Fig. 3 Evolutionary history of the Brassicales, showing the « genome
duplication in the lineage of all the species and the more recent
Brassica triplication
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Fig. 4 Duplicate gene similarities in syntenic blocks in the Brassica
rapa genome self-comparison
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= 2wvu. (16)

The coefficient 2 in this expression corresponds to the
two “versions" of the diagram with the colours of the gene
pair and gene triple permuted. Note that the branches
without coloured dots in most of the paralog trees are sim-
ply meant to be suggestive of the fractionation process, do
not reflect anything in Eq. (1), and are not involved in the
colour permutations in counting the number of versions.
The number of ¢ and £, pairs at time £3, as calculated
in Egs. (5-8), can be counted directly for each tree in the
figure.

Turning to Fig. 6, z = ug), the probability that both
offspring survive until time 3 after the second event
(duplication) at time £y, so that 1 — z is the probability
that only one survives. After the triplication at time ¢, the
probabilities are x = uél) andy = uél) that three offspring
or two offspring, respectively, survive until time £,.

The expected number of pairs in the duplication pre-
cedes triplication model (Fig. 5) is given by:

E (¢; pairs) = (4u2 +duv + du + v+ 2v + 1)w
(17)

E(ty pairs) =3wu+wv+3u+v
E(unpaired) = (1 — w)(1 — u — v).
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E(t, pairs) = (4u?+ 4vu + 4u + v2 + 2v + 1)w
E(t, pairs) =3wu + wv +3u +v
E(unpaired genes ) = (1-v-u)(1-w)
Fig. 5 All paralog trees generated by a genome duplication at time t; followed by a triplication at time t,, both events followed by fractionation.
Present-day genes shaded according to most recent event. Numbers above probability are counts of t; + t; pairs, and numbers in parentheses
count the number of different trees (only one shown) with the same structure

The same quantities in the triplication-first model
(Fig. 6) are:
E(t1 pairs) = (v + 3y)(1 + 2)
E(ty pairs) =2yz+xz+z
E(unpaired) = (1 —2)(1 —x—y)

(18)

Can the principle of maximum likelihood discriminate
between the two models? The likelihood of either model
depends only on the g(i) and g* in Eq. (14). Then the

parameters of one model can be related to a set of param-
eter values in the complex field (i.e., not necessarily prob-
abilities) with the same likelihood in the other model
through the equations:

(4u2+4uv—|—4u+v2+2v—|—1)w:(x+3y)(1+z)2
3wu+wv+3u+v=2yz+xz+2

A=mwAd-u—-—v)=>10-2)0-x—y),
(19)
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(1)  12+3=15
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—
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(3) 8+2=10
{ yz%(1-2)
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-t -t, (1) 3+0=1
y(1-2)

E(t; pairs) = (x + 3y)z2+ (2x + 6y)z + x + 3y
E(t, pairs) =2yz+xz+z
E(unpaired genes ) = (1-x-y)(1-2)

4: (1) 4+2=6
xz2
-ty -t
4|__ (2) 2+1=3
xz(1-2)
-t -t
(1) 140=1
4|’_ x(1-2)?
-ty -t,
(1) 0+1=1
(1-x-y)z
-ty -t
(1) 0+0=0
(1-xy)(1-2)

Fig. 6 All paralog trees generated by a genome triplication at time t; followed by a duplication at time t,, both events followed by fractionation.
Present-day genes shaded according to most recent event. Numbers above probability are counts of t; + t, pairs, and numbers in parentheses
count the number of different trees (only one shown) with the same structure

This implies that all maximum likelihood solutions in
both models have the same likelihood. Furthermore, for
large enough samples we can expect at least one maxi-
mum likelihood solution in each valid model. Because the
parameters are underdetermined, the likelihood depend-
ing only on the g(i) and g* and not the absolute fre-
quencies f(i) and f*, there may be several solutions. In
addition, if in one model the maximum likelihood solution
involves parameters which satisfy the conditions of a valid

model, this is not necessarily true of the corresponding
parameters in the other model.

We may then ask, do Egs. (17) and (18) determine
a bijection between some valid model in (&, v,w)
space and some valid model in (x,y,z) space? The
answer is determined by the intersection of (u,v,w) €
[0,1PN{u+v <1} and (%32 €[0,1PN{x+y <1}
and the algebraic variety determined by the system in
Eq. (19).
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By systematically exploring a three-dimensional grid in
each cube, we located all points in the valid region of the
(u,v,w) cube for which Eq. (19) produced points in the
valid region of the (x,y,z) cube. This produced two sur-
faces as depicted in Fig. 7 between which the two models
have a correspondence. Outside of this volume, Eq. (19)
have only solutions that are complex or outside one or
both valid regions.

In Fig. 7, we see that the multiple maximum likelihood
solutions for the B. rapa data in (i, v, w) space form a lin-
ear subspace, only part of which also contains solutions
for the (%, y,z) model.

To restrict the set of solutions, we may make use of
f*, the observed number of unpaired genes, which is not
directly involved in the likelihood maximization - only
g* is. This number is 17,751. Unfortunately, we have no
access to the number of genes in the ancestral genome
preceding the two polyploidization events, but we can
guess, based on core eudicots that have escaped poly-
ploidization after y, such as grape [1] and Robusta coffee
[7], that 25,000 is a reasonable value. Of genomes that
have polyploidized and fractionated, many, such as Utric-
ularia, papaya, Mimulus or most pertinent, Arabidopsis,
have returned currently to gene numbers less than 29,000
[8]. This means that of 25,000-29,000 ancestral genes,
the average number of currently unpaired genes per orig-
inal gene is 0.61-0.71. In Fig. 7, the grey dots at the
extreme left represent valid solutions in the (u, w, v) space
but not the (x,y,z) space, predicting 0.65-0.68 unpaired
genes while for the blue dots corresponding to valid
solutions in both spaces the predicted number is only
0.53-0.55, suggesting an ancestral gene complement of
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32,000-34,000, which seems unlikely. These calculations
thus lend more credence to the model where duplication
precedes triplication.

In this model, we have used # and v as two independent
parameters controlling fractionation for the triplication
event, and similarly x and y in the triplication-first model.
This may represent excessive parametrization, however,
since there are very likely biological constraints on such
pairs of parameters, though this has not yet been modeled
or studied empirically. A reasonable way of modelling this
is to postulate a constrained binomial process for the frac-
tionation loss of one or two genes of each triple generated
by the triplication event. Thus we may replace & and v by
using a single parameter s and replace x and y by a single
parameter 4 as follows:

§2

T3(1—s) 452
3K —h)
T30+ r

3s(1 —s)
V= —
3(1—s)+s2
h2
Y= ST N
3A—-h+h

u (20)

The investigation into the connection between the two
models starts with

Iw (3h + 6hz + 3hzz)
2 = 2 (21)
(3—3s+s?) (3—3h+1)
(Bws + 3s) _ 3z
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There being only two parameters in each model, we
can use only two of the Egs. (21) to understand the cor-
respondences between these models. In this case there
is a bijection between (s,w) €[0,1]? and (4,z) €[0,1]%
However, corresponding points in the two spaces reflect
different numbers of unpaired genes (and of ¢; pairs and
Ly pairs).

The vertical axis in Fig. 8 represents the difference
between the predictions of unpaired genes in the two
models, with the red line tracing the values where the
difference is zero. The blue line represents the maxi-
mum likelihood solutions for the B. Rapa data. The yellow
dots identify (s, w) solutions that predict 0.6-0.68 cur-
rently unpaired genes per ancestral gene. Far from the red
line, we conclude that the triplication-first model does not
represent reality.

Counting triples

We have seen that in contrast to the divergence and
fractionation parameters, the ploidy of whole genome
multiplication events is not easy to infer from the dis-
tribution of gene pair similarities. There are more direct
ways, however, to establish the ploidy of these events.
Most obvious in our case is the detection of highly sim-
ilar, i.e., recently diverged, triples of genes or triples of
chromosomal regions, as evidence of the late triplication
model.

The total number of genes in the CoGe B. rapa data set
is 41,020. The application of SYNMAP to compare B. rapa
with itself (cf. Fig. 4) shows there are 14 triples of paralo-
gous regions made of long synteny blocks with relatively
little interruption. These regions cover 80% of the genome,
as can be seen in Fig. 9. For some of these triples, one or

Page 93 of 95

more of the three regions are divided among two or three
chromosomes, due to genome rearrangement processes.
But they all display the signature pattern of recent triplica-
tion enunciated by Jaillon et al. [1], namely large numbers
of highly similar gene pairs among the three regions and
relatively few highly similar gene pairs within each region,
or between the regions and other parts of the genome.

The total number of gene pairs detected by SYNMAP is
22,406, including 13,716 (61%) where the members are in
two paralogous regions and have high similarity, defined
as 81% or higher. Of these, for the overwhelming majority,
both members are in the 14 triples of regions.

Looking at all the high-similarity pairs, a large number
of these form gene triples, 2392 of them, that are not part
of a 4-tuple or higher. The great majority of these gene
triples, 2118, are located in the 14 triples of high-similarity
regions.

We can contrast this situation with the predictions of
the triplication-first model. If the time of the duplication
corresponded to p = 0.87, then there would be many pairs
with similarity > 0.81, but few triples where all the pairs
satisfied > 0.81. There would, however, be many triples
where all three pairs had similarity < 0.81. This is clearly
not the case.

Conclusion

The decomposition of gene pair similarity distributions
into a number of normal distributions has been staple
of comparative genomics. Statistical mixture of distribu-
tions methods [9] have been used extensively, to detect
the distributions, to find their means and to test their
significance. Because these are general methods, they do
not take into account the biological processes that gave
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1 23 45 6 7 8 910

Fig. 9 Regions of the 10 Brassica rapa chromosomes coloured by 14
triples of recently diverged regions. Grey regions: triple undetermined

rise to the distribution and thus may lead to meaning-
less results. For example, they can find significance in a
two-distribution decomposition, in which the one reflect-
ing an earlier event has smaller variance than the most
recent one, a biological impossibility. They can produce
a decomposition where a peak with a large amplitude
is succeeded by one with very small amplitude, again
biologically implausible.

For distributions reflecting genuine events, mixture
methods may provide accurate measures of the timing
of these events, but offer little else of biological inter-
est. Our models go further, allowing, for the first time,
the estimation of fractionation rates from pair similar-
ity distributions. We have proposed algebraic machinery
for comparing competing models, and as an illustrative
test, used it to confirm what was already well-known, that
the B. rapa genome triplication is more recent than its
duplication event.

At the end we must conclude, despite the unex-
pected insights provided by mathematically modeling the
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genome multiplication-fractionation cycle, that to decide
on the ploidy of the multiplication events, the strongest
evidence, at least for the most recent events, is found in
the tabulation of high-similarity pairs, triples, or other
multiples. If few of the high-similarity pairs are in triples
or other tuples, then the most recent event is likely to have
been a tetraploidization. If a large proportion of the pairs
are in triples but not in higher tuples, the event must have
been a hexaploidization.

By judiciously parsing the similarity axis using cut-off
values between peaks of the distribution, or between the
mean values of inferred normal components of the over-
all distribution, we might hope in some cases to extend
this simple approach to find the multiplicity of the earlier
events,
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