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Abstract

Background: RNA-Seq has become one of the most widely used applications based on next-generation sequencing
technology. However, raw RNA-Seq data may have quality issues, which can significantly distort analytical results and lead
to erroneous conclusions. Therefore, the raw data must be subjected to vigorous quality control (QC) procedures before
downstream analysis. Currently, an accurate and complete QC of RNA-Seq data requires of a suite of different QC tools
used consecutively, which is inefficient in terms of usability, running time, file usage, and interpretability of the results.

Results: We developed a comprehensive, fast and easy-to-use QC pipeline for RNA-Seq data, RNA-QC-Chain, which
involves three steps: (1) sequencing-quality assessment and trimming; (2) internal (ribosomal RNAs) and external (reads
from foreign species) contamination filtering; (3) alignment statistics reporting (such as read number, alignment coverage,
sequencing depth and pair-end read mapping information). This package was developed based on our previously
reported tool for general QC of next-generation sequencing (NGS) data called QC-Chain, with extensions specifically
designed for RNA-Seq data. It has several features that are not available yet in other QC tools for RNA-Seq data, such as
RNA sequence trimming, automatic rRNA detection and automatic contaminating species identification. The three QC
steps can run either sequentially or independently, enabling RNA-QC-Chain as a comprehensive package with high
flexibility and usability. Moreover, parallel computing and optimizations are embedded in most of the QC procedures,
providing a superior efficiency. The performance of RNA-QC-Chain has been evaluated with different types of datasets,
including an in-house sequencing data, a semi-simulated data, and two real datasets downloaded from public database.
Comparisons of RNA-QC-Chain with other QC tools have manifested its superiorities in both function versatility and
processing speed.

Conclusions: We present here a tool, RNA-QC-Chain, which can be used to comprehensively resolve the quality control
processes of RNA-Seq data effectively and efficiently.
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Background
RNA-Seq has become a routinely and extensively applied
approach for transcriptome profiling that relies on high-
throughput sequencing (HTS) technologies, which pro-
vides a far more profound and precise measurement at
the transcript level than microarray and other traditional
gene expression analysis methods [1]. It could also be
used for identification of novel transcripts [2], alternative
spliced variants [3] and gene fusion events [4]. However,
due to intrinsic limitations of HTS technologies and
RNA-Seq protocols, quality problems are quite common
in raw RNA-Seq data. In addition to “HTS-common”
quality problems that are generally present in all kinds
of HTS data, such as sequencing-quality of raw read and
contamination from other species [5], there are some
“RNA-Seq-specific” quality issues, such as ribosomal
RNA (rRNA) residual, RNA degradation and varied read
coverage. Therefore, before downstream analysis, raw
RNA-Seq data must be checked and processed by quality
control (QC) procedures to ensure accurate transcript
measurements and correct knowledge acquirements
from the data.
Currently, a number of tools [6] are available for HTS

data QC, such as FastQC (http://www.bioinformatics.ba
braham.ac.uk/projects/fastqc/), FASTX-Toolkit (http://
hannonlab.cshl.edu/fastx_toolkit/), QC-Chain [5], NGS
QC Toolkit [7]. However, most of them mainly focus on
trimming of general HTS data, but not for specific
RNA-Seq QC problems. Though some tools are de-
signed specifically for RNA-Seq data, they suffer from
different kinds of restrictions. For instance, RSeQC

mainly provides QC summary statistics of read align-
ment and relies on UCSC (the University of California,
Santa Cruz) Genome Browser (http://genome.ucsc.edu/)
to some extent [8]. RNA-SeQC can evaluate different
quality aspects of reads and alignments [9]. However,
both of them lack functions of sequence trimming and
contamination filtering, and run slowly. Therefore, there
is a pressing need for a new and powerful QC method
for RNA-Seq data.
Here we present RNA-QC-Chain, an easy-to-use, highly

efficient and one-stop QC tool for RNA-Seq data. With
both quality check and data processing capability, RNA-
QC-Chain includes three related functional components,
called Parallel-QC, rRNA-filter and SAM-stats. In addition
to covering most types of quality assessments offered by
currently available tools, RNA-QC-Chain can filter out the
poor-quality reads and contaminations, and generate the
ready-to-use data for downstream analysis. Notably, parallel
computation is embedded in RNA-QC-Chain, which could
significantly accelerate its processing speed and makes it an
extremely fast QC software.

Implementation
The workflow of RNA-QC-chain
RNA-QC-Chain has three sequential QC procedures,
with parallel computation as the backbone to provide a
complete and high-performance QC solution for RNA-
Seq data (Fig. 1). Firstly, Parallel-QC [5] is used to assess
and trim low sequencing-quality reads. Secondly, by a
module called rRNA-filter, rRNA fragments are identi-
fied, extracted and used to identify the contaminating

Fig. 1 The workflow and functions of RNA-QC-Chain. Firstly, reads with sequencing quality defects are trimmed by Parallel-QC, secondly, internal
(ribosomal RNA) and external (non-target species) contaminations are identified and filtered by a tool called rRNA-filter. Finally, multiple statistics
based on the alignment results are reported by a tool called SAM-stats
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species. Finally, based on results of reads alignment (to
reference genome), multiple mapping metrics are pro-
vided to evaluate the RNA-Seq data and experiment by
another embedded module called SAM-stats.

Sequencing-quality assessment and trimming
Parallel-QC has been introduced in our previously estab-
lished QC method QC-Chain, which is suitable for all
kinds of NGS raw data and can accomplish basic read pro-
cessing procedures of base trimming, read trimming and
adapter trimming. Base trimming cuts bases with quality
value lower than Q (default Q value is 20) at each end of
reads. Read trimming filters reads by an given parameter-
pair (Q, R%): reads containing more than R% (default R
value is 10) of bases with quality value lower than Q will
be trimmed. Adapter trimming identifies and drops reads
with sequencing adapter or PCR primer sequences, using
either a list of ready-to-use Illumina standard tag se-
quence or user-specified adaptor sequences as a reference.
Pairing information could be kept in every processing pro-
cedure, which is essential to many subsequent transcript/
RNA analyses. Notably, the duplications in RNA-Seq data
should not be removed because this information is closely
relative to RNA abundance calculation. In our tests,
parameters for quality trimming was 20, 10% and the de-
fault list of tag sequences were used in adapter trimming.

Internal and external contamination filtering
Ribosomal RNA was considered as the internal contami-
nations since they are from the target sequencing species,
while external contaminations were defined as reads from
foreign species other than the sequencing targets. In
RNA-QC-Chain, a tool called “rRNA-filter” was developed
to extract rRNA reads and to identify both internal and
external contaminations. Firstly, the rRNA fragments were
predicted from input sequences using HMM (Hidden
Markov Model) search of HMMER [10] and then
extracted out. The rRNA pattern model was constructed
by all 16S/18S/23S/28S rRNA fragments from SILVA
database (version 123) [11]. Since the HMM algorithm
does not rely on the annotation of the source genome of
the rRNA, but the pattern of the rRNA sequences, the
RNA-QC-Chain makes the removal of the rRNA fragment
to be alignment and annotation free. As a result, internal
contaminations including both small (16S/18S) and large
subunit (23S/28S) rRNA sequences were removed. Then,
the extracted 16S or 18S rRNA fragments were mapped
onto the rRNA databases of SILVA for prokaryotic and
eukaryotic identification, respectively [12]. Based on the
assignment of the classification terms, the taxonomical
components of the RNA-Seq data were produced, which
indicated whether there was contaminating species, and if
so, what these species was.

Alignment statistics reporting
Furthermore, using a script called “SAM-stats”, RNA-
QC-Chain provides the assessment profiles based on
read alignment. These assessments include multiple
aspects:

(1)Reads:

� Number of total reads and mapped reads;
� Number of reads mapped to each specific genomic

region (such as CDS and exon), which is defined in
the user-specified gene model (GTF or GFF) file;

� Number of reads mapped outside the genomic
regions specified in the gene model (GFF/GTF) file.

(2)Coverage (gene is called “expressed” when 50% of its
sequence are mapped by reads):

� Number of expressed gene and its proportion out of
all genes;

� Coverage of each gene and the overall coverage
distribution;

� Distribution of mapped reads.

(3)Mapping:

� Genebody coverage bias: average mapping coverage
of each base position over the genes (scale all of the
transcripts into 100 bp windows);

� Strand specificity: reads mapped to positive/negative
strands, respectively;

� Library complexity: number of reads with varied
mapping starting point.

(4)Pair-ended read mapping:

� Number of paired mapped reads;
� Number of discordantly mapped pairs;
� Insert size distribution of mapped read pairs.

Input and output
Within the RNA-QC-Chain software package, sequencing-
quality trimming and contamination filtering steps could be
performed based on sequencing data in either FASTA or
FASTQ format. Alignment statistics reporting step accepts
alignment results in SAM format and gene structure file in
GTF or GFF format.
Output formats depend on the specific steps of RNA-

QC-Chain. Sequencing-quality trimming step exported
filtered high-quality read file, trimmed read file and an
analysis report. Contamination filtering step exported
the extracted rRNA which were decomposed into sub
data files with rRNA classification and filtered
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rRNA-free data. An active graph and text report of the
taxonomy information were also generated to indicate the
possible contaminating species. Alignment statistics
reporting step exported a general analysis report, showing
data statistics and gene mapping information. In addition,
four figures, along with a detailed statistical text file for
each plot, were also generated, including mapping region
distribution, coverage distribution, genebody coverage bias
and insert size distribution of mapped read-pairs.

Parallel computing and optimizations
Parallel computation optimization was applied on
RNA-QC-Chain in sequencing-quality trimming and
contamination filtering steps. Input reads were loaded
to RAM and then distributed to multiple CPU cores to
be processed in parallel. Number of threads could ei-
ther be automatically allocated based on the hardware
configuration, or be assigned by users. The task loading
balance was optimized based on the dynamic schedul-
ing technique using C/C+ OpenMP library to max-
imally take the advantage of computing resources. In
addition, since the sequence QC is also data-intensive,
in each of the three QC steps, most of the data ex-
change among different steps could be finished in RAM
so that all steps were conducted with only one disk I/O
operation.

Datasets used for testing
We used four datasets to test the performance of RNA-
QC-Chain (Table 1). Dataset 1 was a real in-house
sequenced RNA-Seq data of algae species Nannochlor-
opsis. The shotgun paired-end (PE) cDNA library with
an insert size of 280 bp was constructed and then
sequenced by Illumina Hiseq2000 sequencing platform,
producing a total of 7,045,705 read pairs with a read
length of 100 bp at each end (SRA accession number
SPR032930). Dataset 2 was a semi-simulated data, inte-
grating a real RNA-Seq data for a Sprague–Dawley rat
sample, and simulated contaminating reads from yeast
Saccharomyces cerevisiae. The rat sequences were down-
loaded from National Center for Biotechnology Informa-
tion (NCBI) (SRA ID: SRX871031, SRR1795728), with a
read length of 51 bp. The simulated yeast sequences
were generated from genome of S. cerevisiae S288C

using DWGSIM (https://github.com/nh13/dwgsim) with
a genome coverage of 200 and a same read length of
51 bp as that of rat. Finally, the merged dataset has a
total of 18,340,356 reads and the data size was 935 Mbp.
Dataset 3 and Dataset 4 were human RNA-Seq data,
which were produced under the ENCODE project and
downloaded from Gene Expression Omnibus database
(GEO accession number GSM958728) with data sizes of
9.6 Gb and 16.4 Gb, respectively.
All data analysis were performed on one single rack

server with dual Intel Xeon X5645 CPU (12 cores and
24 threads in total), 72 GB RAM.

Results and discussion
Compared to traditional technology like microarray,
RNA-Seq has a higher productivity and better resolution,
therefore, it has become the mainstream of high
throughput and large scale RNA-level study. However,
sequencing errors and contaminations may be intro-
duced into the raw data during the library preparation,
sequencing and base calling steps. Therefore, quality
control is a first essential step in bioinformatics analysis
of RNA-Seq data. RNA-Seq measures the abundance
and structure of genes at the RNA level, and employs
different analytical approaches compared with those for
DNA-Seq data: firstly, DNA is quite stable and the DNA
sequences are highly constant, while RNA are fragile
and gene expression values are very dynamic; secondly,
all DNA sequences could be recovered when the se-
quencing depth is high enough, while sequencing bias
may occur to a higher level in RNA-Seq data. These dif-
ferent features place distinguished and high demands for
accurate QC on RNA-Seq data to ensure highly reliable
subsequent analytical results. RNA-QC-Chain was devel-
oped based on our published QC tool called QC-Chain,
which provides basic QC solutions for general HTS data.
They share similar functionalities of sequencing quality
trimming [5] and rRNA identification. However, RNA-
QC-Chain can identify all kinds of rRNA reads in SILVA
database and automatically remove them, including 16S,
23S, 18S and 28S rRNA, while QC-Chain can only identify
16S or 18S rRNA and cannot remove the identified rRNA
reads. Another difference is that RNA-QC-Chain can

Table 1 Summary of datasets used in this paper

Name Type Species No. of read Read length (bp) Size (Gb)

Dataset 1 real data microalgae (Nannochloropsis oceanica) 7,045,705 2 × 100 1.4

Dataset 2 semi-simulated data Real: Sprague–Dawley rats (Rattus norvegicus) 9,809,056 51 0.9

Simulated: yeast (Saccharomyces cerevisiae) 8,531,300 51 0.4

Dataset 3 real-data Human (Homo sapiens) 25,536,632 2 × 75 9.6

Dataset 4 real-data Human (Homo sapiens) 54,477,454 2 × 75 16.4
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perform the alignment statistics, which is not applicable
in QC-Chain. Therefore, RNA-QC-Chain has essential
functional extensions that are particular for RNA-Seq
data.

Sequencing quality trimming
Sequencing quality trimming of raw reads is absolutely
necessary for all kinds of HTS data. Therefore, although
there are a number of tools that can perform this step,
we integrated Parallel-QC in our RNA-QC-Chain, to
make our pipeline as a one-stop and convenient tool for
RNA-Seq data QC. Common quality issues for raw reads
include base quality, tag sequences, GC content and
duplications. Notably, the GC content varies in different
species and regions within genomes. Therefore, although
it is difficult to identify the precise contaminating
species using the GC content, thus shift of GC content
or multiple GC peaks could be used to indicate whether

there is contaminations in this data. For Dataset 1,
20.65% of the raw reads were removed by sequencing
quality trimming step with default parameters and 8.01%
of the raw reads were trimmed as tag sequences
(Fig. 2a).

Contamination screening and filtration
NGS data often suffers from contaminations, which may
extensively influence data yield and analytical result. It is
an essential QC procedure to determine whether the
data is contaminated, what the contaminations are and
then filter out the contaminations. For RNA-Seq data,
the contaminations can be classified into two types of
“internal” (rRNA reads) and “external” (reads from
foreign species) according to their source.
In extracted total RNA, up to 80–90% are rRNA

sequences, thus a high quality RNA-Seq experiment
requires an intact total RNA extraction and efficient

Fig. 2 Selected outputs of RNA-QC-Chain for a RNA-Seq data of Nannochloropsis (Dataset 1). a Sequencing-quality and rRNA measurements. b External
contamination screening by 18S rRNA identification. c Distribution of read coverage on gene. d Distribution of mapped reads over different genomic
region. e Distribution of read coverage over genebody. f Comparison of running time of parallel and serial computation (speed-up shown in arrow)
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rRNA removal. However, by current technologies in the
sample preparation stage, rRNA cannot be easily and
fully digested [13]. Therefore, a high-performance rRNA
removal operation is needed in the data QC stage. More-
over, it is difficult to estimate whether there are external
contaminations by “wet” experiment before the sequen-
cing data is produced, but we can measure them by bio-
informatics analysis. Some standalone applications can
be used to identify contaminations. For example, Sort-
MeRNA can identify rRNA reads against SILVA rRNA
database [14]. However, it cannot report the taxonomic
assignment thus is unable to indicate what contamina-
tions are. FastQ Screen (https://www.bioinformatics.bab
raham.ac.uk/projects/fastq_screen/) and MGA [15] are
also commonly used for contamination screening. How-
ever, due to their dependency on the reference genomes,
they cannot complete unknown contamination identifi-
cation. After that, we developed a tool named rRNA-
filter to identify and extract rRNA reads, followed by a
detection of all organism species involved in the data by
rRNA annotation. For Dataset 1, a total of 21,630 rRNA
reads (0.25% of the raw data) were predicted and
extracted (Fig. 2a). Among them, 985, 8293, 2985 and
9367 reads were identified as 16S, 18S, 23S and 28S
rRNA sequences, respectively. Then, the identified rRNA
reads were used to examine possible external contamina-
tions. From the taxonomy graph obtained based on 18S
rRNA alignment results, we observed that the dominant
eukaryotic species was Nannochloropsis, which was our
target sequencing species (Fig. 2b). In addition, a high
diversity but no dominant bacteria species was identified
by 16S rRNA classification, which probably resulted
from random read alignment. Therefore, we would con-
clude that there was no significant contaminating reads
included in this sample. Sometimes a small fraction of
reads may map to phylogenetically close species due to

random alignment. In such cases, people need to draw a
conclusion according to combined consideration of the
reault of rRNA-filter, the fraction of alignment to each
species, background knowledge of the sample and clues
from other analysis, such as GC content.
In Dataset 2, we artificially added some yeast data as

external contaminations but are not aware in advance
that bacteria reads were also included in the downloaded
rat RNA-Seq data. As a matter of fact, these reads
significantly reduced the sequencing depth of the rat
transcripts. The identification of these contaminating
species can help imply in which sample preparation or
library construction step it might be introduced into the
sample, and thus give instructions to avoid similar
accident. Firstly, we directly aligned the reads to the ref-
erence genome of SD rat (UCSC rn5). The overall align-
ment rate was only 34.4%, which was significantly lower
than that the theoretical proportion of the rat reads in
Dataset 2 (53.5%). Then we checked the read quality
using Parallel-QC, and only 43.7% of the total reads
were retained as “good reads”, indicating that more than
half of the reads had poor sequencing quality. After that,
we used rRNA_filter to identify what contaminations
may be in the data. The number of identified 18S was
74,832 and 18S rRNA survey detected reads from both
rat and fungi (Fig. 3a), which is consistent to the
designed eukaryotic species constitution of Dataset 2.
Simultaneously, a total of 9303 16S rRNA were identi-
fied and species survey suggested that reads from
bacteria might also be contained in this sample (Fig. 3b).
Therefore, there were two kinds of quality issues of the Data-
set 2: poor sequencing quality and bacteria contaminations.
To check the correctness, we further investigated the un-
mapped reads using BLAST to NT database, and results
showed that a number of reads aligned to bacteria. Therefore,
even when the RNA-Seq data has a single end and a very

Fig. 3 Contamination identification for a semi-simulated RNA-Seq data (Dataset 2) using RNA-QC-Chain. a Eukaryotic species identified by 18S
rRNA screening. b Prokaryotic species identified by 16S rRNA screening
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short read length of 51 bp (Dataset 2), both the eukaryotic
and prokaryotic contaminations can be successfully detected,
demonstrating a high accuracy and efficiency of contamin-
ation identification of rRNA-filter.
On the other hand, our results demonstrated that the

sequencing quality trimming and contamination identifi-
cation steps are absolutely necessary and important for
the QC of RNA-Seq data, because either low sequencing
quality reads or contaminations may result in poor
usable data yield and thus might damage further down-
stream analysis results.
Herein we should point out that RNA-QC-Chain has a

limitation in external contamination identification in
very rare cases when rRNA sequences are not involved
in the data, since the foreign organism identification is
based on rRNA annotation.

Alignment statistics metrics
Read alignment to reference genome is essential for most
downstream analysis of RNA-Seq data. Quality check on
the read alignment results can indicate how well the target
RNA was captured, amplified and sequenced, thus
provides a comprehensive insight into the quality of RNA-
Seq experiment and data. Some quality problems, such as
incomplete mRNA amplification, sequencing bias and
inconsistent coverage, cannot be detected by the quality
trimming on raw reads and contamination filtering steps,
but can be effectively presented by statistics on alignment
result. Therefore, quality assessment of read alignment
has caused great concerns [16].
We took Dataset 1 as an example to manifest the per-

formance of the alignment statistics reporting step of
RNA-QC-Chain. Generally, 85.8% (8940) of the total
Nannochloropsis genes (10414) expressed in this sample.
Furthermore, detailed plots of “gene coverage”, “read distri-
bution” and “genebody coverage bias” implied mRNA in-
tegrity and sequencing bias in this sample. Specifically,
most of the expressed genes were mapped at 10–50%
coverage (Fig. 2c). The overall read distribution plot showed
that 1,417,677 reads mapped to exons, while much fewer
reads (5205) mapped to introns (Fig. 2d). Figure 2e illus-
trated the global coverage over the genebody, inferring
there was slight alignment bias along the genes in this
sample. This parameter can help indicate whether the tran-
scripts were completely transcribed, and a significantly low
coverage at 3′ and 5′ ends may cause difficulty in accur-
ately recognizing the start and stop sites of transcripts for
downstream analytical tools. Due to the innate features of
RNA-Seq data, such as alternative splicing and different
expression patterns, the indexes listed above may vary in
different RNA-Seq samples, and these assessment can
provide a global indication of the data status. We also
observed that the insert distance of mapped read pairs was
around 250 bp in the insert size distribution plot, which

was consistent to the designed insert size of the PE library.
The “strand specificity” monitors the template strand used
in the sequencing. Theoretically, a mapping ratio of 99%/
1% and 50%/50% is reasonable for strand-specific and non-
strand-specific libraries, respectively. The library size was
158,216 for Dataset 1, which measured the diversity of
mapping sites and reflected whether the RNA was ran-
domly fragmented. In most cases, a high read diversity is
expected and will benefit further analysis. In addition, detail
mapping information for each gene, including number of
mapped reads, gene coverage and read depth were reported
in a file called “Gene_report.txt”.

User friendliness and flexibility
RNA-QC-Chain is an easy-to-use and flexible tool. The
entire QC process can be completed with simple inputs.
Neither third-party files nor reference rRNA files are
needed, as these required data has been integrated in the
software. Additionally, each of the three processing steps
can be completed using a single command line and the
relatively independent three steps provide a flexible ana-
lytical strategy. Users can choose each step according to
their needs and the result of each step can get mutually
support. For example, both the identification of bacteria
in the second step and the significant low alignment rate
reported in the third step indicated and mutually
confirmed that there was contaminations in Dataset 2.

Parallel computing
By RNA-QC-Chain, all analytical tasks are automatically
distributed to different threads with dynamic scheduling
for optimization of the computing loading balance, and
the shared memory space among all threads also signifi-
cantly reduced the RAM usage. Compared to other pipe-
lines that integrated with multiple software packages to
depend on additional I/O operations for data transfer, the
high efficiency I/O strategy of RNA-QC-Chain signifi-
cantly decreased the entire analytical time. Consequently,
RNA-QC-Chain has the ability of fast processing massive
scale of RNA-Seq data. For Dataset 1, the whole QC
process was completed within 8 min using 24 CPU
threads, whereas serial computation cost more than
180 min (22.5 folds of time cost) with the same hardware
and environmental system configurations (Fig. 2f).

Comparisons with other QC tools for RNA-Seq data
We compared RNA-QC-Chain with two other QC tools
for RNA-Seq data, RNA-SeQC and RSeQC, which were
developed by different techniques with different features,
and have been widely used for RNA-Seq quality checking
[17]. RNA-SeQC is implemented in Java, which is
installation free [9]. RSeQC is a toolkit package that is con-
sisted of a number of python scripts [8]. RNA-QC-Chain is
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developed based on C++. Detailed comparisons of the
three QC tools are listed in Table 2.
Firstly, in functional aspects, both RSeQC and RNA-

QC-Chain can evaluate the sequencing quality of raw
reads, but only RNA-QC-Chain can complete the trim-
ming of poor quality sequences and produce the
trimmed reads. For contamination filtering, all the three
tools can estimate how many reads are possibly origi-
nated from rRNA genes, however, RNA-QC-Chain is the
only one that is capable of automatically removing them,
while other tools needs the user to provide an rRNA ref-
erence file. In addition, neither RNA-SeQC nor RSeQC
can identify the contaminating foreign species in the
data, whereas RNA-QC-Chain is unique in this function.
Therefore, when using RNA-SeQC and RSeQC, users
have to turn to other data processing tools to filter the
poor-quality reads and contaminations, but RNA-QC-
Chain can directly produce the usable data for further
analysis. For the statistical metrics on alignment result,
all the three methods can provide some important mea-
surements, such as mapped read count, strand specifi-
city, read distribution, 3′/5′ bias and coverage. RNA-
SeQC has a specific module to estimate the expression
correlation of multiple samples [9]. RSeQC can check
the sequencing saturation status [8]. These measure-
ments are based on reads per kilobases per millionreads
(RPKM) values, which are not necessary for all kinds of
RNA-Seq analysis. Therefore, we did not involve mea-
surements based RPKM values in RNA-QC-Chain.

Secondly, the usage of the three tools is different.
RNA-SeQC completes the alignment assessment with a
single command line, which is convenient but may be
time-consuming when not all the QC aspects are
required. RSeQC is consisted of a number of python
scripts, with each script for a specific assessment. There-
fore, it is time-economic to assess a certain quality
aspect, but the operation will be very complex when
running all the scripts. Giving considerations to conveni-
ence and flexibility, RNA-QC-Chain contains three rela-
tively independent QC components, each with a single
command line, to perform both quality check and data
processing functions.
Thirdly, the input and output files are quite different

between the three tools. For input files, a data file, a
gene structure file and a read alignment file are
commonly required for all the three tools. For RNA-
QC-Chain, no additional files are needed. In contrast,
both RNA-SeQC and RSeQC have other particular input
requirements. RNA-SeQC requires a reference sequence
and a sequence dictionary. Some special functional
modules even need more additional files [9]. To use
RSeQC, a chromosome size file should be downloaded
from UCSC Genome Browser and a BED file of the
sequencing species need to be downloaded from UCSC
or converted from GTF/GFF format file [8]. Therefore, it
would be more suitable for organisms with reference
genome and annotations listing in UCSC Genome
Browser. In particular, for both RNA-SeQC and RSeQC,

Table 2 Comparison of functions and features of different QC tools for RNA-Seq data

RNA-QC-Chain RSeQC RNA-SeQC

Functions

Quality evaluation of raw reads Yes Yes No

Quality trimming of raw reads Yes No No

rRNA detection Yes Yes Yes

rRNA removal Yes No No

Contaminating species identification Yes No No

Alignment statistics Yes Yes Yes

Features

Language C++ Python and C Java

Input file (except commonly
required files)

None A chromosome size file and
a BED file

An indexed bam file, a reference sequence,
the index of reference sequence and a
sequence dictionary

Output format FASTQ/FASTA, TXT, PNG, HTML PDF, TXT HTML

Usage One command line for each step Multiple separate scripts One command line

rRNA reference file A built-in rRNA database Requires user to provide Requires user to provide

Visualization dependence Gnuplot UCSC Genome Browser or
R scripts

N/A

Parallel computation Yes No No

Running time for Dataset 1 (min) 8 55 120
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users have to prepare a reference rRNA sequence file for
rRNA reads detection. On the contrary, RNA-QC-Chain
applied a different strategy with a built-in comprehensive
rRNA database, making the prediction of rRNA reads more
precise, comprehensive and easy-to-operate.
For output, RNA-SeQC can export HTML reports

containing mainly tables. The output of RSeQC are
multiple plots and texts, and the result visualization
relies on R scripts. The output of RNA-QC-Chain dem-
onstrates different quality aspects of data in different
formats, including the quality-filtered sequence file in
FASTA/FASTQ format that can be directly used for
downstream analysis, rRNA reads filtered out, an active
graph in HTML report suggesting the contamination
information and plots/texts for the alignment metrics.
Finally, HTS data analysis is both data- and computation-

intensive, therefore, there is a thirsty requirement for high
performance computation. RNA-QC-Chain was developed
to cope with such need for fast analyses. The running time
of RNA-QC-Chain, RSeQC and RNA-SeQC was compared
using datasets with different data size. Benefited by the
whole-process parallel scheduling, multi-thread memory
sharing and C++ programming, RNA-QC-Chain achieved
approximately 7–13 times faster than other tools (Fig. 4a).
Since many of the outputs are not commonly available
among the three tools, we further selected the same/similar
functions of the three tools and compared their running
time. The used scripts of RSeQC included bam_stat.py,
geneBody_coverage.py, infer_experiment.py, inner_distan-
ce.py, read_duplication.py, read_GC.py, read_distribu-
tion.py and split_bam.py. For example, for dataset 3 RNA-
QC-Chain only took about 6 min, while RSeQC and RNA-
SeQC ran more than 20 and 700 min, respectively (Fig. 4b).
This high speed running demonstrated the capability of
RNA-QC-Chain to accomplish the analysis of data in huge
size and large amount of samples, for which is essentially
important for high efficient bioinformatics analysis.

Conclusions
RNA-QC-Chain provides a comprehensive, one-stop and
high efficient solution for RNA-Seq data QC, which would
be very beneficial for knowledge discovery from RNA-Seq
data. It performs sequencing quality trimming for raw
read, automatic contamination identification and filtering,
and alignments statistics reporting, and is able to produce
data ready for further downstream analysis. It is very user-
friendly with convenient and flexible usage. Comparisons
with other QC tools indicated that RNA-QC-Chain out-
performed in both function and speed. Parallel computa-
tion makes its running significantly faster than serial
computation and other QC tools. This tool can be used as
the QC tool for the first step in analysis pipeline of RNA-
Seq data to quickly provide the data quality information
and the filtered reads ready for downstream analysis.

Availability and requirements
Project name: RNA-QC-Chain
Project home page: http://bioinfo.single-cell.cn/rna-

qc-chain.html or http://124.16.150.212/rna-qc-chain.html
Operating system(s): Unix/Linux
Programming language: C++
License: GPL-3
Availability: RNA-QC-Chain, including source code,

documentation, and examples, is freely available for
non-commercial use with no restrictions at http://bioin-
fo.single-cell.cn/rna-qc-chain.html or http://124.16.150.212/
rna-qc-chain.html

Abbreviations
HMM: hidden Markov model; HTS: high-throughput sequencing;
NGS: next-generation sequencing; PE: paired-end; QC: quality control;
RPKM: reads per kilobases per millionreads; rRNA: ribosomal RNA;
SD: Sprague–Dawley; UCSC: the University of California, Santa Cruz
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geneBody_coverage.py, infer_experiment.py, inner_distance.py, read_duplication.py, read_GC.py, read_distribution.py and split_bam.py
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