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Abstract

Background: The potential utility of microRNA as biomarkers for early detection of cancer and other diseases is
being investigated with genome-scale profiling of differentially expressed microRNA. Processes for measurement
assurance are critical components of genome-scale measurements. Here, we evaluated the utility of a set of total
RNA samples, designed with between-sample differences in the relative abundance of miRNAs, as process controls.

Results: Three pure total human RNA samples (brain, liver, and placenta) and two different mixtures of these
components were evaluated as measurement assurance control samples on multiple measurement systems at
multiple sites and over multiple rounds. In silico modeling of mixtures provided benchmark values for comparison
with physical mixtures. Biomarker development laboratories using next-generation sequencing (NGS) or genome-scale
hybridization assays participated in the study and returned data from the samples using their routine workflows.
Multiplexed and single assay reverse-transcription PCR (RT-PCR) was used to confirm in silico predicted sample
differences. Data visualizations and summary metrics for genome-scale miRNA profiling assessment were developed
using this dataset, and a range of performance was observed. These metrics have been incorporated into an online
data analysis pipeline and provide a convenient dashboard view of results from experiments following the described
design. The website also serves as a repository for the accumulation of performance values providing new participants
in the project an opportunity to learn what may be achievable with similar measurement processes.

Conclusions: The set of reference samples used in this study provides benchmark values suitable for assessing
genome-scale miRNA profiling processes. Incorporation of these metrics into an online resource allows laboratories to
periodically evaluate their performance and assess any changes introduced into their measurement process.
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Fig. 1 The relative input proportions from three total RNA components
are shown for Mix1 and Mix2
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Background
Studies to identify potential biomarkers typically in-
volve comparing two conditions and identifying fea-
tures that distinguish the two classes; for example,
disease versus normal or treated versus control.
Quality measurements made during this discovery
phase are essential for the success of all subsequent
phases of biomarker development. Reference samples,
with known differences, can enable laboratories to as-
sess and improve their ability to detect relevant bio-
markers. Within the framework of the Early
Detection Research Network (EDRN) of the National
Cancer Institute [1], we are developing a measure-
ment assurance paradigm for genome-scale measure-
ment systems currently used for microRNA (miRNA)
biomarker discovery.
Comparisons of the results for genome-scale mea-

surements of two different biological samples or two
different reference samples have been used to assess
both microarray [2, 3] and RNA sequencing (RNAseq)
measurements of messenger RNA (mRNA) [4]. Evalu-
ations derived from this type of comparison are lim-
ited to metrics such as concordance of gene lists and
correlations of rank order because, in both cases, the
true difference between samples is not known. For
both microarray and RNAseq, titration designs have
also been used, which provide some information re-
garding signal trends [4, 5].
Composite reference samples with designed-in differ-

ences provide additional metrics for performance assess-
ment and have been demonstrated to be useful with
both microarrays [6–9] and RNAseq [10]. These same
technologies have been applied more recently to profil-
ing miRNA, a class of small non-protein-coding RNAs
that regulate the expression of hundreds of target genes
by translational repression, controlling biological func-
tions involved in differentiation and development.
Characterizing miRNA measurements on multiple plat-
forms has been performed with biological samples [11]
and titrations of biological samples [12]. In an interla-
boratory study spanning multiple rounds of measure-
ment, we demonstrate the utility of one of these mixture
designs [9], a three component reciprocal ratio design
(Fig. 1) for assessing miRNA measurement performance.
Metrics for summarizing genome-scale measurement of
mRNA: diagnostic accuracy [7, 8], reliable region of the
dynamic range [9], and sample composition [10] were
evaluated; and a revised metric for estimating the reli-
able region based on deviations from predicted values is
introduced. Multiple data visualizations and metrics have
been combined into a single standardized view, or “dash-
board”, for each participant and round (see Fig. 2 for an
example). These are available in Additional file 1. Repre-
sentative panels are described in detail in the results.
Results
Selection of human tissue total RNA
Previous studies have demonstrated the feasibility of
using a pair of reference mixtures with designed-in
differences to provide performance benchmarks [6–10].
These rely on a combination of pure total RNA
components with a large number of transcripts that are
distributed across a broad dynamic range of relative
abundance. Each component should contain a subset of
miRNA that are either unique to that tissue or enriched
relative to the other two components. These tissue-
selective miRNAs will be used in metrics to assess assay
performance. The tissue-selectivity can be quantified [7]
and used to assess whether a sufficient number of differ-
entially abundant miRNA are available in each subset to
span the dynamic range of the measurement process.
Laboratories performing biomarker discovery may prefer
one of the components be similar in nature to the tissue
being profiled in their own research.
To select components for reference mixtures described

in this paper, a published study comparing the miRNA
expression profiles of nine different tissues using both
microarrays and RT-PCR was utilized [13]. The two
sources of human RNA with the most tissue-selective
content were placenta followed by brain. These two
tissue RNAs were used as variable components in a
reciprocal two-to-one design, with liver as the invariable
(one-to-one) component (Fig. 1) [14].

In silico modeling
The miRNA signals in each mixture should be an
additive and linear combination of the signals from pure
tissue components [6–10]. Therefore, an expected signal
and predicted ratio can be calculated based upon the
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Fig. 2 Dashboard view combining visualizations and metrics. Metrics table displays values derived from data visualizations. The legends for Figs. 3, 4, 5,
6, 7 and 8 describe each panel
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fractional proportion of each tissue component in a
mixture using the following equations:

Si;Mix1 ¼ Si;L �ΦL;1
� �þ Si;B �ΦB;1

� �þ Si;P �ΦP;1
� �

ð1Þ

Si;Mix2 ¼ Si;L �ΦL;2
� �þ Si;B �ΦB;2

� �þ Si;P �ΦP;2
� �

ð2Þ
Equations 1 and 2 show the formulae for the pair of

three component mixture designs, where S is the signal
from a particular miRNA i and Φ is the fraction of total
RNA for each tissue (liver = L, brain = B, and placenta = P)
in mixtures 1 and 2. For example, using mixture propor-
tions of 1:1:2 and 1:2:1 (L:B:P) provides corresponding Φ
of 0.25, 0.25, 0.5 and 0.25, 0.5, 0.25, respectively. With this
design, the maximum possible ratio (Si,Mix1/Si,Mix2) for any
miRNA in the final mixture comparison corresponds to a
2-fold difference (i.e., log2 difference between Mix1 and
Mix2 of − 1 or 1) which would be observed for brain-
specific or placenta-specific miRNAs. For miRNAs that
are not tissue-selective, some signals will be contributed
from each component, resulting in ratios falling some-
where within that range. Estimating mixture signals from
measured signals of unmixed tissues using in silico model-
ing with Eqs. 1 and 2 provides predicted values for
comparison to observed results for Mix1 and Mix2.

Ratio estimates
The first two rounds of measurement (Rounds 1 and 2,
not shown) were pilot studies used for tissue profiling
alone, and did not include mixtures. A total of 7 sites
participated in the three rounds (Rounds 3 to 5) that in-
cluded the three pure RNA samples and the two
mixtures of them. In each of these rounds, each site re-
ceived three replicates for each of the 5 samples, with
sample identities hidden. Participants profiled miRNA
expression with the platforms used in their routine
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workflow (one site used two different platforms). Labs
using genome-scale platforms reported all detectable
miRNAs. Labs using RT-PCR performed assays for a
subset of miRNAs of interest to confirm that the
mixtures could produce observed ratios similar to
predicted values.
Log2 transformed ratio estimates for miRNAs were

calculated for each round and compared across multiple
participants. For analysis of genome-scale data, detect-
able miRNAs (counts ≥1 in any one sample) were
normalized to the median total count among the sam-
ples and then log2 transformed. However, raw count
tables, as well as datasets preprocessed with other strat-
egies, could also be used as input. For RT-PCR data, the
quantitation cycle (Cq) values were negatively trans-
formed to provide comparable log2 transformed data.
Predicted log2 ratios were calculated from the pair-wise
differences of the modeled mixtures derived from Eqs. 1
and 2 using the linear transformed means for each pure
tissue component, Si. Observed log2 ratios were esti-
mated from the pair-wise differences between means for
each mixture, Mix1 and Mix2, described in Methods.

Visualizations and analyses
For the sites using genome-scale technologies, the log2 ra-
tios for all detectable miRNA can be visualized using a
Bland-Altman plot [15] to evaluate the ratio data through-
out the dynamic range, and any miRNA that are highly
enriched in one tissue relative to the other tissues should
approach the benchmark values of the mixture designs.
In Fig. 3, the predicted ratios for all detected miRNA

were calculated using Eqs. 1 and 2. The tissue-selective
miRNA (those miRNA that are at least 10 times more
prevalent in one tissue relative to the others) are derived
from comparisons of the profiles of the three pure RNA
samples included in the sample set, and are color-coded
according to tissue type as in Fig. 1. Panels A to D repre-
sent multiple sites using different NGS platforms, with
different sequencing depths. One site (panel A) was able
to detect 1130 miRNA consistently across the 15
samples in the set, with 107 brain-selective and 105
placenta-selective miRNA with log2 ratios distinguish-
able from the “1-to-1” class, 59 miRNA with predicted
log2 ratios of approximately zero (i.e., no difference be-
tween Mix1 and Mix2). The 1-to-1 class includes 23
liver-selective miRNA and 36 miRNA with approxi-
mately equal amounts of signal for brain and placenta.
For much of the dynamic range the tissue-selective
miRNA are predicted to approximate the designed-in
log2 ratio limits of ±1. In comparison, another site
(panel D) using a different NGS platform producing
fewer reads and detected 291 miRNA in total. Of those,
only 18 brain-selective, 9 placenta-selective, and 16
miRNA predicted to be 1-to-1 were identified. Panel E
shows the results from the site using a hybridization-
based platform [16]. The large cluster of non-selective
(NS) miRNA near the low end of the dynamic range is
consistent with a background level of hybridization and
this type of additive noise is known to contribute to ratio
compression. One site (panel F, circles) used a multi-
plexed PCR platform targeting 32 different miRNA that
were selected for their presence on common fixed
content platforms [17]. Based on modeling of the data
from the microarray study [13], two additional PCR sites
were asked to measure a subset of miRNAs predicted to
provide differences between mixtures: ~ 2 -fold up for
miR-451a and miR-335; ~ 2 -fold down for miR-125b
and miR-218; and no change for miR-375. One PCR site
measured all five miRNAs in Round 3 (panel F, squares)
and the other site measured two (panel F, triangles).
Detection metrics are part of the summary table
included in the dashboard view for each site and round
(Additional file 1).
Figure 4 shows the experimentally observed ratios for

miRNAs in Mix1 and Mix2 (see Fig. 1 for composition)
and corresponds to the same labs displayed in Fig. 3,
panels A to F. There is more dispersion in the observed
log2 ratio data when compared to the predicted values,
which also becomes more apparent at the lower end of
the dynamic range. This is expected in part because the
predicted log2 ratios are bounded by Eqs. 1 and 2 and
use the averages of the three pure samples in both equa-
tions. For the subset miRNAs measured with PCR
(Fig. 4f ), the observed ratios confirm that the mixture
design provides the predicted differences. Estimation of
the useable region of the dynamic range based upon de-
viation from benchmark log2 ratios has been described
for mRNA measurements using microarrays [9]. This
metric relies on the subset of tissue-selective miRNAs to
behave similarly to log2 ratio values derived directly
from the mixture proportions. However, as shown in
Fig. 3, measuring the pure tissue components provides
predicted log2 ratio values for every detected miRNA,
and these can be used for direct comparison to the
corresponding observed log2 ratios. By assessing the de-
viation from predicted log2 ratios for all observed values,
the entire measurement system can be evaluated using
all miRNA regardless of their level of enrichment in any
single tissue component. Figure 5 shows these differ-
ences for the same data as Figs. 3 and 4. As summary
metrics for the overall measurement system, the median
deviation value can be used as an indicator of bias and
the inter-quartile range (IQR) can be used as an estimate
of precision (solid and dashed horizontal lines, respect-
ively). An IQR for each tissue-selective classification can
also be determined (see Fig. 6).
It is clear that the majority of values falling outside the

IQR occur at the lower end of the dynamic range. A
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Fig. 3 Predicted distribution of log2 ratios. Panels A to F correspond to measurement processes A to F described in Results. For each datapoint in panels
A to F, the difference between the predicted Mix1 and Mix2 log2 signals (log2 ratios) is plotted against their average for each detected miRNA. Signal
values for each mixture are predicted using Eqs. 1 and 2. Filled circles correspond to predicted values for tissue-selective miRNA (those miRNA that are at
least 10 times more prevalent in one pure total RNA tissue type relative to the other two) or miRNA that were approximately equal in relative abundance
between placenta and brain (1-to-1): red = placenta-selective, blue = brain-selective, and yellow = 1-to-1 (liver-selective and placenta = brain). Open circles
correspond to detectable, but non-selective miRNA. Red, yellow, and blue transparent bands indicate the 95% confidence interval for the loess (locally
weighted smoothing) function (black lines) for the placenta, 1-to-1, and brain subsets, respectively. Panel F includes data from three different PCR labs: one
site using multiplexed PCR (circles) and two sites using individual PCR assays (squares and triangles). Five miRNA of interest are highlighted: miR-451a (red),
miR-335 (orange), miR-375 (yellow), miR-218 (green), miR-125b (blue). The total number of detectable miRNA and their tissue-selective classification are included
in the summary table of the dashboard
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Fig. 4 Observed distribution of log2 ratios. Panels A to F correspond to measurement processes A to F described in Results. For each datapoint
in panels A to F, the difference between the Mix1 and Mix2 log2 signals (log2 ratios) is plotted against their average for each detected miRNA.
Filled circles correspond to observed values for tissue-selective miRNA (those miRNA that are at least 10 times more prevalent in one pure total
RNA tissue type relative to the other two) or miRNA that were approximately equal in relative abundance between placenta and brain (1-to-1):
red = placenta-selective, blue = brain-selective, and yellow = 1-to-1 (liver-selective and placenta = brain). Open circles correspond to detectable,
but non-selective miRNA. Red, yellow, and blue transparent bands indicate the 95% confidence interval for the loess (locally weighted smoothing)
function (black lines) for the placenta, 1-to-1, and brain subsets, respectively. Panel F includes data from three different PCR labs: one site using
multiplexed PCR (circles) and two sites using individual PCR assays (squares and triangles). Five miRNA of interest are highlighted: miR-451a (red),
miR-335 (orange), miR-375 (yellow), miR-218 (green), miR-125b (blue)
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lower limit for the useable range of the measurement
system can be determined for a particular level of toler-
ance for deviation – for example, modeling how the dis-
tribution of deviation changes along the dynamic range
and locating the lowest average log2 signal for which at
least 95% of the modeled distribution falls within one
half fold-change (± 0.585 log2 difference). This lower
limit and the maximum value demarcate the reliable
region of the dynamic range in Fig. 5. A tolerance for
deviation can also be used to define the upper limit
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Fig. 5 Deviation from predicted ratios as a function of dynamic range. Panels A to F correspond to measurement processes A to F described in Results.
Each datapoint in panels A to F represents the difference between the observed and predicted log2 ratios plotted against the average observed and
predicted log2 signal for each detected miRNA. Open circles correspond to all detectable non-selective miRNA and yellow, blue, and red filled circles
correspond to 1-to-1, brain-, and placenta-selective miRNA, respectively. The median and interquartile range (IQR) of the deviation from predicted for all
detected miRNA are indicated by the solid and dashed horizontal lines, respectively. The lower limit of acceptable dispersion (determined by a user
selectable deviation of ±0.585 log2, see Results) and the maximum detectable value are indicated by the margins of the darker grey areas, respectively.
Margins were not assessed in Panel F. Panel F includes data from three different PCR labs: one site using multiplexed PCR (circles) and two sites using
individual PCR assays (squares and triangles). Five miRNA of interest are highlighted: miR-451a (red), miR-335 (orange), miR-375 (yellow), miR-218 (green),
miR-125b (blue). Limits and range included in the summary table of the dashboard
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for technologies that may experience performance
declines at higher signals, for example saturation in
microarrays [9].
The tissue-selective subsets provide both true positive

(brain and placenta) and true negative (1-to-1)
classifications useful for preparing receiver-operating
characteristic (ROC) curves, and the area under the
curve (AUC) can be used as a summary metric [7]. For
each site, the tissue-selective miRNA are ranked by
P-values using a paired t-test comparison of the log2
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Fig. 6 Bias and dispersion within tissue-selective classes. Panels A to E correspond to measurement processes A to E described in Results. The bias and
dispersion for each tissue-selective class is shown in box (IQR) and whisker (1.5*IQR) format with outliers represented by black hash marks and median
values indicated by black line (yellow= 1-to-1, blue = brain, red = placenta, and grey = none-selective (NS)). The median and interquartile range (IQR) of
the deviation from predicted for all detected miRNA are indicated by the solid and dashed horizontal lines, respectively

Pine et al. BMC Genomics  (2018) 19:180 Page 8 of 16
signals for the three replicate Mix1 and Mix2 samples.
Figure 7 shows the corresponding ROC curves for all
detected tissue-selective data as well as the ROC curves
derived from data within the reliable region of the
dynamic range described in Fig. 5. Within a laboratory,
both the AUC and the reliable range can be used to
monitor alterations in performance introduced by
changes in technology, reagents, or operator experience
[7–9]. However, the AUC metric is limited by the
availability of true positive and true negative differences
identified by the pure sample profiles, and direct
comparisons between different measurement systems
may not be meaningful if there is a significant difference
in the number of miRNA being assessed. Range limita-
tions and AUC values per site and round are included in
Table 1 and in the metrics tables of Additional file 1.
Proportion-based metrics
While ratio based metrics are useful for evaluating a
site’s ability to accurately detect differences between
samples, evaluating the measurements for each individ-
ual mixture may provide additional information. A
model can be fit based on Eqs. 1 and 2, and solved for
the expected proportions of Φ (see above) given the set
of signals, Si. Genome-scale data can confidently esti-
mate these proportions from the collected data for each
pure component and mixture. Deviations from the de-
signed proportions can be visualized using target plots
(Fig. 8) [10]. The (x, y) coordinates for the center of each
target correspond to the designed proportions and the
(x, y) coordinates for the end of each line segment em-
anating from the center correspond to the estimated
proportions of each pure tissue component in Mix1 and



0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
FPR

T
P

R

ALL     = 0.947
Range = 1.000

AUC

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
FPR

T
P

R

ALL     = 0.944
Range = 0.971

AUC

a b 

c d 

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
FPR

T
P

R
ALL     = 0.781
Range =   N.D.

AUC

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
FPR

T
P

R

ALL     = 0.959
Range = 0.996

AUC

e 

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
FPR

T
P

R

ALL     = 0.905
Range = 0.953

AUC

Fig. 7 Discrimination accuracy. Panels A to E correspond to measurement processes A to E described in Results. Receiver-Operating Characteristic
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the summary table of the dashboard
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Mix2, respectively. The lengths of these line segments
provide an indication of potential bias in the measure-
ment process. Part of this deviation is due to intrinsic
differences in the miRNA content of each pure tissue,
seen in the consistency of the direction of the yellow
and red lines across labs. An mRNA fraction effect has
been observed for transcriptomic measurements, and a
means to assess this has been developed using RNA
spike-in controls simulating poly-A mRNA [18]. The
proportion estimates and bias indicators for each
component are included in the metrics table of the dash-
board. The sum of all lengths may provide a single
useful indicator and is included in the dashboard
summaries and in Tables 1, 2 and 3. The ellipses
surrounding the line segment ends indicate the 95% con-
fidence intervals for the estimated proportions of each
component in Mix1 and Mix2 and are influenced by a
combination of both dispersion and detection within
each tissue-selective class. Indications of poor precision
are apparent in the measurement process shown in
panel D in both Figs. 6 and 8.

Minimizing the experimental design
It should be noted that each round of the study included
three replicates each of three pure total RNAs, and three
replicates each of two mixtures for a total of 15 samples,
and predicted values were derived from and compared
with samples processed at the same time. Figures 2, 3, 4,
5, 6, 7 and 8 and the data in Table 1 correspond to these
within round comparisons using three replicates. Modi-
fying the experimental design to minimize the number
of samples required may be accomplished it two ways.
First, pure total RNA, prepared as part of large enough

batch to provide mixture samples that span several
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Fig. 8 Deconvolved mixture proportions of tissue components in Mix1 and Mix2. Panels A to E correspond to measurement processes A to E described
in Results. Concentric circles added to target values for emphasis. Line segments connect target values (central point of circles) to their corresponding
estimates. Ellipses show the 95% confidence interval range of the mixture proportions for the three tissue components (yellow = liver, blue = brain,
and red = placenta)

Pine et al. BMC Genomics  (2018) 19:180 Page 11 of 16
rounds may provide a sufficient baseline in the first
round to allow for subsequent rounds of testing to be
based on the paired mixtures alone, reducing the num-
ber of samples required for processing to six. To test
this, we used the Round 3 pure tissue profiles as the
baseline predicted values for comparison with the
mixtures in the subsequent rounds. Metrics derived
from this baseline approach are included in Table 2.
Using predicted data derived from Round 3 pure
samples alone neither obscures, nor distorts the differ-
ences among the measurement processes shown in
Table 1. This indicates that using the paired mixtures
alone, after establishing a baseline prediction, might be
sufficient for monitoring processes over time. Intentional
changes to a measurement process (e.g., reagent kits, in-
strumentation, or software) may require re-evaluation of
the pure components. In this study, aliquots initially
prepared as part of one large set of samples prior to
Round 3 were distributed to participants every six
months for Rounds 4 and 5. Reference sample stability
for longer periods has not been evaluated.
The second approach to reducing the number of sam-

ples would be running the sample set (brain, liver, pla-
centa, Mix1, and Mix2) without replicates. To test this
we limited the analysis to the first replicate of each data-
set. Metrics derived from this approach are included in
Table 3. In this case, the ROC curves derived from data-
sets without sample replication are based on ordered
ratios instead of P-values [7]. In the absence of technical
replication, the resulting AUCs are lower when all
tissue-selective miRNA are evaluated, the lower limit of
the useable range is higher, and the IQR is increased.
Therefore a consistent approach, either with or without
replication, should be used when tracking a
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measurement process over time. It should also be noted
that, in the absence of replication, a measurement failure
for any one the five samples in the set would render
some of the metrics indeterminable.

Discussion
The total RNA reference sample set described here pro-
vides process controls for genome-scale measurements
of miRNA that are reasonable biological mimics and
provide a sufficient number of miRNAs to span the dy-
namic range of a measurement system. Evaluation of the
deviations in ratios designed into the sample set provides
a quantitative assessment of the reliable region of the
measurement system. These sample sets, with or with-
out replication and with or without baseline, can be run
in parallel with or in between biomarker profiling exper-
iments at some frequency to provide ongoing measure-
ment assurance of the complete measurement process.
An observation of poor results with the process controls
(lower AUC, decreased reliable range, etc.) may indicate
that profiling experiment results from a proximal time-
frame may also have issues. However, achieving an
acceptable result with the process controls only indicates
that a measurement process is working well, but does
not confirm experimental observations on the samples
under study.
This study was designed to evaluate the reference sam-

ples and develop associated metrics, and is not intended
as a platform comparison. The results presented are
from those sites that accepted samples for the rounds
that included mixtures and subsequently provided data
for analysis. The platforms are intentionally obscured in
the main text because platform performance is
confounded with site performance in this study. Less
than optimal performance at a particular site due to
other factors (operator experience, etc.) may give the im-
pression of poor platform performance. Measurement
processes A and B are the only processes performed by
two different sites using the same platform. Measure-
ment processes C and D were performed at a single site
using two different platforms (both different from the
platform used in A and B). Measurement processes E
and F are unique sites and platforms. Additional details
for each measurement process, including platform infor-
mation, are available in Additional file 2 as outlines of
the protocols in place at the labs. These protocols are
not intended as recommendations or guidelines. This
study demonstrates the utility of these mixture samples
and associated metrics to evaluate technical
performance of any genome-scale measurement process,
the methods and protocols are incidental to the study
presented here.
The current dataset collection provides a range of

performance and demonstrates that the samples, the
visualizations presented in Figs. 2, 3, 4, 5, 6, 7 and 8, and
the summary metrics shown in Table 1 can be used to
discern differences in performance. Systematic applica-
tion of the samples, metrics, and methods described here
can enable evaluation and optimization of both labora-
tory and measurement platform performance. Evaluating
the relationship between protocols used at different sites
and observed performance may also be useful to identify
key parameters for optimization.
To promote periodic self-assessment of genome-scale

measurement system performance, a web-based version
of the analysis pipeline has been implemented as part of
the EDRN Informatics Center [https://edrn.nci.nih.gov/
microrna]. Dashboard views of the results can also be
generated online (see Additional file 3 for instructions).
Visitors to the site may view descriptions of available
reference samples or download a protocol on how to
prepare them in their own laboratory [14] (a brief de-
scription is available in Methods). Visitors may also view
or download publicly available datasets and results.
Current participants can add to their datasets and
compare the new results to prior datasets to assess indi-
vidual site performance over time. For new sites
interested in assessing their genome-scale profiling
workflows, information about registration and availabil-
ity of EDRN prepared reference sample sets is provided
at the EDRN website.

Conclusions
Metrics and visualizations derived from mixture samples
are well suited for assessing performance of genome-
scale measurement systems used to identify differentially
regulated miRNAs. They are made from biological mate-
rials similar to those studied by biomarker profiling
laboratories and provide a sufficient number of differen-
tially expressed miRNAs with predictable ratios to serve as
benchmarks. Implementing these metrics and visualizations
as part of an online resource offers laboratories the oppor-
tunity to evaluate and optimize their discovery process.

Methods
Mixture design
Human Brain Reference RNA (Cat. No. AM6050),
Human Liver Total RNA (Cat. No. AM7960), and
Human Placenta Total RNA (Cat. No. AM7950) was ob-
tained from Ambion (Thermo Fisher Scientific).
Manufacturer’s stock solutions of 1 μg/μl were verified
on a Qubit (Thermo Fisher Scientific). If necessary, stock
solutions of pure tissue components (same lot numbers)
were combined to provide a sufficient volume of identi-
cal material prior to distribution. Prior to mixing, an
adequate portion of stock solutions are set aside for pure
tissue aliquots. The remaining liver, brain, and placenta
stocks were then mixed by volume using the proportions

https://edrn.nci.nih.gov/microrna
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of 1:1:2 and 1:2:1 for Mix1 and Mix2, respectively. These
five samples (three neat tissues and two mixtures) were
then divided into aliquots. Three replicates of each
sample were distributed to participants as a numbered
blinded set of 15 tubes. A general method for the
preparation of two mixtures of total RNA (Mix1 and
Mix2) derived from three different pure total RNA
sources (RNA1, RNA2, and RNA3) from either commer-
cially available or laboratory prepared total RNA is also
available [14]. This protocol allows labs to recreate pre-
viously measured sample designs for comparison or to
generate new sample designs with different components
and/or mixture formulations.

Sample handling and analysis
Each laboratory used its routine protocol for miRNA
biomarker detection and evaluations. Individual proto-
cols are available online as part of the data repository,
and included in Additional file 2.

Additional files

Additional file 1: Dashboard views of measurement processes A – E from
Rounds 3–5, using three replicates. (PDF 1960 kb)

Additional file 2: Protocols for measurement processes A – F. (PDF 395 kb)

Additional file 3: Instructions for using measurement assurance pipeline
online. (PDF 223 kb)
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