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Abstract

Background: Genomic prediction using Diversity Arrays Technology (DArT) genotype by sequencing platform has
not been reported in yellowtail kingfish (Seriola lalandi). The principal aim of this study was to address this knowledge
gap and to assess predictive ability of genomic Best Linear Unbiased Prediction (gBLUP) for traits of commercial
importance in a yellowtail kingfish population comprising 752 individuals that had DNA sequence and phenotypic
records for growth traits (body weight, fork length and condition index). The gBLUP method was used due to its
computational efficiency and it showed similar predictive performance to other approaches, especially for traits whose
variation is of polygenic nature, such as body traits analysed in this study. The accuracy or predictive ability of the
gBLUP model was estimated for three growth traits: body weight, folk length and condition index.

Results: The prediction accuracy was moderate to high (0.44 to 0.69) for growth-related traits. The predictive ability for
body weight increased by 17.0% (from 0.69 to 0.83) when missing genotype was imputed. Within population
prediction using five-fold across validation approach showed that the gBLUP model performed well for growth traits
(weight, length and condition factor), with the coefficient of determination (R%) from linear regression analysis ranging
from 049 to 0.71.

Conclusions: Collectively our results demonstrated, for the first time in yellowtail kingfish, the potential application of

genomic selection for growth-related traits in the future breeding program for this species, S. lalandi.
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Background

Yellowtail kingfish (YTK) Seriola lalandi has emerged as
an important marine finfish for aquaculture, not only in
Australia but also in many other parts of the world includ-
ing Japan, Latin America (Chile, Mexico), the United
States and New Zealand [1]. In Australia, the hatchery
and production technologies have been well established
for this species, and a genetic improvement program has
started since 2010, using the founder stocks collected
from the wild in South Australia [2]. To date, the selection
program for YTK has been practised solely for growth
rate. Body condition of the fish was also assessed when
selection decision was made because there is a demand
for well conformed fish from overseas markets [3].
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Genetic evaluation of the first two generations of family
selection showed that there was a significant improvement
in fry performance by approximately 8% per generation
[2]. Performance testing of growers produced in the sec-
ond generation (G2) in sea cages however showed lower
magnitude of selection response when the selected fish
were compared with wild stocks or with offspring of the
G1 parents (Premachandra et al,, submitted). The positive
response to selection achieved in the present YTK popula-
tion was consistent with those reported for other aquacul-
ture species, with an average genetic gain ranging from 5
to 15% per generation [4-9]. In the YTK population of
this study, moderate heritabilities (h* = 0.15 to 0.41) were
estimated for body and carcass traits [2, 3].

Along with the conventional selective breeding approach
based on phenotype and pedigree, we are interested in ex-
ploring potential use of molecular and genomic information
to accelerate genetic gain in this line of YTK, especially

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-018-4493-4&domain=pdf
http://orcid.org/0000-0002-4143-955X
mailto:NNguyen@usc.edu.au
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Nguyen et al. BMIC Genomics (2018) 19:107

improving traits that are difficult or expensive to measure
or lowly heritable. To date, high density SNP array-based
chips are not commercially available for yellowtail kingfish
S. lalandi. Further, the cost of whole genome sequencing is
still high, especially for non-model species. Genotyping by
sequencing (GBS) has been used as an alternative to whole
genome sequencing approach due to its low cost of geno-
typing per animal, large amount of high quality genetic
markers and the suitability of the markers for genomic
prediction/selection. Among the Restricted-site Associated
DNA sequencing (RAD-seq) methods, DArTseq™ sequen-
cing technology represents a combination of a DArT com-
plexity reduction methods and next generation sequencing
platforms [10-13]. Similar to DArT methods based on
array hybridisations, the technology is optimized for each
organism and application by selecting the most appropriate
complexity reduction method (both the size of the repre-
sentation and the fraction of a genome selected for assays)
and it can generate a large number of markers at a reason-
able price per sample (approx. 35-50 AU$/sample by the
time of this report). To the best of our knowledge, the
DArTseq™ sequencing technology has not been reported
for any aquatic species. However, many studies have applied
variations of DArT genotyping by sequencing methods in
aquaculture, including those used for genomic prediction.
A synthesised result from the literature shows that there is
potential for the application of genomic selection in salmo-
nids [14, 15] or gilthead seabream [16]. To date, there is no
published information whether DNA markers obtained
from next generation sequencing platforms can be used to
predict breeding values for complex traits in yellowtail
kingfish (S. laland).

Therefore, the principal aim of this study was to inves-
tigate the predictive ability of genomic Best Linear
Unbiased Prediction (gBLUP) method for commercial
traits of economic importance in yellowtail kingfish
(Seriola lalandi), using the DArT sequencing technology.
It is the most common method used to perform
genomic prediction for complex traits whose variation is
of polygenic nature. Specifically, we report the gBLUP
prediction for growth traits (body weight, fork length
and condition index), using five-fold across validation
conducted in the same population. The effects of the
number of markers on the predictive ability of gBLUP
model were also estimated.

Methods

Fish samples and phenotypic data

In this study, a total of 752 DNA samples of yellowtail
kingfish (YTK) were sequenced using DArT-seq technol-
ogy (see section “Library preparation and DArT sequen-
cing”). The animals originated from a selective breeding
program for YTK at Clean Sea Tuna Ltd. in South
Australia. The fish samples analysed in this study were
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offspring of 35 families produced from the first gener-
ation (G1) and wild brood stock parents. The average
number of offspring per family was 17. Breeding was
conducted in tank, comprising three males and three
females. In total, 16 sires and 31 dams successfully pro-
duced offspring in this study. After a nursing/rearing
period of about 120 days in tanks, fingerlings were trans-
ferred to culture in sea cages. When the fish reached an
average body weight of 3 kg, they were harvested and
then anesthetised using clove oil (40 mg/L) and cold
water before morphometric measurements and fin tissue
collection. The morphometric and phenotypic measure-
ments included body weight (W), fork length (L, mea-
sured from the tip of the snout to the end of the caudal
fin rays). The condition index (factor) was calculated as
k = W/L3. Deformities [17] included a range of measures,
namely deformed snout, water belly — a condition where
the belly is distended, deformed tail, deformed opercu-
lum and lower jaw). Skin fluke is due to the monogen-
ean fluke parasite Benedenia seriolae; this fluke inhabits
the skin and fins of Seriola spp. and feeds on mucus and
epithelia cells. Both deformity and fluke were recorded
as binary traits depending on their presence or absence
on the body of the fish at harvest (~ 3 kg) and coded as
1 and zero, respectively. The incidence of skin fluke and
deformity recorded under field condition in this popula-
tion was low (4.3 and 17.6%, respectively) and hence,
results from genomic prediction for these traits were not
tabulated in this paper.

The fin caudal tissue sample was collected from caudal
fin of each fish and stored in 80% ethanol for DNA ex-
traction at a laboratory of the University of the Sunshine
Coast (USC). Fish biometrics, fluke abundancy and
deformities were recorded before they were released
back to the cage.

A detailed description of the population is given in our
earlier studies [2, 3, 17].

DNA extraction, genotyping and parentage analysis

Fin tissue samples of a total of 1568 fish were used to
extract total genomic DNA (gDNA) using DNeasy Blood
and Tissue kits (Qiagen, Germany) and NucleoMag® 96
Tissue kit (MACHEREY-NAGEL GmbH & Co. KG,
Germany). A panel of eight microsatellite markers that
consisted of five newly developed candidates from S.
lalandi transcriptome sequences (YTKO002, YTKO0O08,
YTKO11, YTKO017 and YTKO019) [3] and three loci
(Sdu21, Sdu32 and Sdu46) validated from the literature
[18, 19] were used to genotype the experiment fish for
parentage analysis in this study. Genotyping the brood-
stock fish was completed in our previous study [2]. All
of these markers were proved and validated to use with
yellowtail kingfish previously [2, 3].
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DNA amplification was achieved using Qiagen Multi-
plex PCR PLUS Kits (Qiagen, Germany) in 13.5 pL
reactions, each containing 1.25 pL of 10x primer mix,
6.25 pL of Multiplex PCR Master Mix, 2.75 pL of RNase
free water, 1.25 pL of Q-Solution and 2.0 pL of approxi-
mately 20 ng template gDNA. Amplification was
performed using an Eppendorf Mastercycler nexus
(Hamburg, Germany) with cycling conditions as follows:
initial denaturation at 95 °C for 15 min, followed by
35 cycles of 95 °C for 30 s, 57 °C for 90 s, and 72 °C for
30 s; with a final extension at 68 °C for 30 min.

PCR products were separated by capillary electrophor-
esis on an AB 3500 Genetic Analyser (Applied Biosys-
tems) at the University of the Sunshine Coast. Fragment
sizes were determined relative to an internal lane stand-
ard (GS-600 LIZ; Applied Biosystems) using GENE-
MARKER v1.95 software (SoftGenetics; State College,
USA) and double-checked manually. Individuals with
low or missing peaks were amplified/genotyped a second
time and checked for evidence of large allele dropout,
extreme stuttering and null alleles, based on 1000 boot-
straps and a 95% confidence interval. Tests for HWE at
each locus and genotypic linkage equilibrium among
pairs of loci, numbers of alleles and the observed and
expected heterozygosities of each locus were determined
using GENALEX v6.5, while polymorphic information
content (PIC) was computed in CERVUS v3.0. Parentage
assignment was completed using COLONY software
[20] with confidence scores of above 95%. The pedigree
included 65 full-sib groups (16 dams and 31 sires), with
the family size of 3 to 108 offspring. A total of 1568 off-
springs out of 1998 were assigned to full sib families and
the family size. Based on this pedigree, large size families
(35 full-sib families and averaging 17 fish per family)
were chosen to send to DArT Ptd Ltd. in Canberra,
Australia for sequencing.

Library preparation and DArT sequencing
Four methods of DArTseq™ complexity reduction were
tested in Seriola lalandi (data not presented) and the Pstl-
Sphl method was selected. DNA samples were processed
in digestion/ligation reactions principally as per Kilian et
al. [10] but replacing a single PstI-compatible adaptor with
two different adaptors corresponding to two different
Restriction Enzyme (RE) overhangs. The Pstl-compatible
adapter was designed to include Illumina flowcell
attachment sequence, sequencing primer sequence and
“staggered”, varying length barcode region, similar to
the sequence reported by Elshire et al. [21]. Reverse adapter
contained flowcell attachment region and Sphl-compatible
overhang sequence.

Only “mixed fragments” (PstI-Sphl) were effectively amp-
lified in 30 rounds of PCR using the following reaction

Page 3 of 9

conditions: 94 °C for 1 min, then 30 cycles of 94 °C for
20's, 58 °C for 30's, 72 °C for 45 s and 72 °C for 7 min.

After PCR equimolar amounts of amplification prod-
ucts from each sample of the 96-well microtiter plate
were bulked and applied to c-Bot (Illumina) bridge PCR
followed by sequencing on Illumina Hiseq2500. The
sequencing (single read) was run for 77 cycles.

Sequences generated from each lane were processed
using proprietary DArT analytical pipelines. In the
primary pipeline the fastq files were first processed to
filter away poor quality sequences, applying more strin-
gent selection criteria to the barcode region compared to
the rest of the sequence (minimum Phred pass score = 30
and minimum pass percentage=75). In that way the
assignments of the sequences to specific samples carried
in the “barcode split” step were very reliable. Approxi-
mately 2,500,000 sequences per barcode/sample were
identified and used in marker calling. Finally, identical
sequences were collapsed into “fastqcoll files”. The
fastqcoll files were “groomed” using DArT PL's proprietary
algorithm which corrects low quality base from singleton
tag into a correct base using collapsed tags with multiple
members as a template. The “groomed” fastqcoll files were
used in the secondary pipeline for DArT PL's proprietary
SNP and SilicoDArT (presence/absence of restriction frag-
ments in representation) calling algorithms (DArTsoft14).

For SNP calling all tags from all libraries included in
theDArTsoft14 analysis are clustered using DArT PLs C+
+ algorithm at the threshold distance of 3, followed by
parsing of the clusters into separate SNP loci using a
range of technical parameters, especially the balance of
read counts for the allelic pairs. Additional selection
criteria were added to the algorithm based on analysis of
approximately 1000 controlled cross populations. Testing
for Mendelian distribution of alleles in these populations
facilitated selection of technical parameters discriminating
well true allelic variants from paralogous sequences. In
addition, multiple samples were processed from DNA to
allelic calls as technical replicates and scoring consistency
was used as the main selection criteria for high quality/
low error rate markers. Calling quality was assured by
high average read depth per locus (Average across all
markers was over 30 reads/locus). Regarding whole read
quality, the minimum Phred pass score was set at 10 and
the minimum pass percentage was 50. The average SNP
calling rate was 92% and the fish sample calling rate was
95%. The raw sequence data (accession number
SRP130211) is available at https://www.ncbi.nlm.nih.gov/
sra/SRP130211 (Release date: 2019-02-28) Release date:
2019-02-28.

GBS data analysis
Sample and markers statistics is given in Additional file 1:
Tables S1 and S2, respectively. In total, there were 14,448
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SNP markers. The PIC value for the SNPs was 0.16 under
additive genetic model, whereas it was substantially higher,
0.46 under codominant model. The average proportion of
missing genotype (SNPs) was only 14.8%. The frequency
of minor allele was 0.29. The missing genotype was also
imputed using theDArTsoft14 analysis pipeline.

Pedigree based analysis of heritability

Restricted maximum likelihood (REML) method applied
to a linear (animal) mixed model was used to estimate
heritability for traits studied. The model included the
fixed effect of stock origin (wild and F1 fish) and the
additive genetic random effect of individual fish in the
pedigree. Our preliminary analysis using logarithmic
likelihood ratio test (LRT) indicated that the common
full-sib effect was not significant (P > 0.05). This has
been a result of early communal rearing of all families
soon after birth.

Heritability (h%) for the traits studied was estimated as
h? = 04/0% where 0% is the additive genetic variance, o3
the phenotypic variance (0% =03 +02) and o? is the re-
sidual variance. Pedigree based analysis of heritability were
carried out using the ASREML software package [22].

Genomic prediction

Genomic best linear unbiased prediction (gBLUP)
method was used to assess the predictive ability of the
model for traits studied, using SVS Suite (Golden Helix,
2016). This method (gBLUP) generally shows similar
predictive capacity to other non-linear approaches, espe-
cially for growth traits as used in this study. Theoretical
statistics of the gBLUP method was discussed in earlier
reports [23]. In brief, the statistical model and assump-
tions regarding SNP distribution and its variance are
given below.

The (gBLUP) method uses genomic relationship
matrix (G) derived from DNA marker information to
calculate genomic breeding values for each individual in
the pedigree Clark et al.,, [24]. The model is written in a
matrix notation as follows:

y=m-+Xb+Za+e

where y is the vector of phenotypic observations (body
weight, length and condition index), m = overall mean,
X is the incidence matrix containing fixed effects (i.e.
stock origin in this study) in b. The matrix Z relates re-
cords to genomic values, a is the SNP effect and e is the
residual error. In this model, gBLUP assumes equal
variance o2 for all loci/SNPs:

Var(g) = ZZ'd*, = Gp %, =G 0%

where o} is the genetic variance and ¢ is the normalisa-
tion factor.
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The pseudo heritability was calculated from the

2 A2 A2 .
gBLUP model as h, =0, 0, Is the

genomic variance and 6? is the component of error
variance.

The accuracy or predictive ability of the gBLUP model
was defined as the correlations between the predicted
breeding values and actual phenotypes (r% 5,), divided by

/( 6; + &3 ) where

square root of the trait heritability.

Within population prediction

We conducted within population prediction using five-
fold cross validation approach to assess how well our
model can predict the phenotype. With this approach,
the training data consisting of 752 samples with both
phenotype and genotype were randomly partitioned into
five equal sub-samples (paternal half-sibs were present
in all sub-sets), and in each round (e.g. k-1), one sub-set
was selected as a test (validation) and the model fitted
with four folds to predict the validation set.

The gBLUP five-fold cross validation model used was
the same as described above. The allele substitution
effects (ASE) and fixed effect coefficients obtained from
iterations and k-folds that gave the largest R*-value were
used to predict phenotypes with the following model:

5 =XB+ Ma

where 7 are the predicted phenotypes, X is the fixed
effects matrix, /3’ are the fixed effect coefficients, M is
the genotype matrix, and a are the ASE values.

The five-fold cross validation analyses for all the traits
were conducted in SVS Suite (Golden Helix, 2016). We
compared the actual and predicted phenotypes by asso-
ciation test and linear regression analysis. The coefficient
of determination (R from the regression analysis (e.g.
VanRaden et al. [25]) was also used to evaluate the
predictive ability of the gBLUP model.

Results
Animals, phenotype and heritability
A total of 752 fish sampled from a population of 1568
individuals having phenotype data was sequenced using
DArT marker technology. The number of observations,
mean and standard deviation) for three traits studied are
given in Table 1. Restricted maximum likelihood
(REML) analysis applied to a single trait mixed model
that included the fixed effect of stock origin and the
additive genetic effect of individual animal as a random
factor showed that the growth-related traits (i.e. body
weight, fork length and condition index) were moder-
ately heritable (h* = 0.11 to 0.42).

The pseudo-heritability (h;) of traits estimated from the

marker data using gBLUP genomic relationship matrix is
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Table 1 Phenotypic information of 752 fish sequenced and the
heritability estimated from a pedigreed population (h? + standard
errors) and pseudo genomic heritability (hé) for traits estimated
from the markers, using gBLUP kinship matrix

Traits Unit N Mean SD  h]tse h} £se.

Weight Kg 752 30 035 042+010 047 £0.180
Length Cm 752 582 210 042+0.10 043+0230
Condition index  Unit 752 15.0 1.02 011 £005 021 £0223

Pedigree based analysis of heritability was conducted on genotyped animals
SD Standard deviation

consistent with those estimated from the pedigree
(Table 1). Growth related traits (weight, length and condi-
tion factor) had moderate pseudo-heritability (h; =0.21to
0.47). Magnitudes of the pseudo-heritability estimates ob-
tained from genomic data (SNPs) are generally similar
among statistical methods used.

Predictive ability of gBLUP model
The accuracy or predictive ability of genomic prediction
for growth related traits (i.e. body weight, fork length
and condition index) was moderate to high (0.44 to
0.69) (Table 2).

In addition, within population prediction using five-fold
cross validation approach showed that the correlation
between the predicted and actual phenotypes for all traits

especially for weight and length were very high, "y =

0.76—0.89. The coefficient of determination (R?) from the
linear regression analysis of the actual on predicted phe-
notypes ranged from 0.49 to 0.71 across the growth traits.
The 5-fold cross validations using gBLUP for body weight
and length are given in Fig. 1.

Predictive ability using imputation data

The proportion of missing genotype was only about 14%
in this population; however, imputations were made to
have a complete genotype (without missing value). The
imputation slightly increased predictive ability of genomic
prediction for growth related traits (Fig. 2 vs. Table 2). For
body weight, the predictive ability increased from 0.69 to
0.83 when analysis of the imputed data was compared
with the original genotype provided by DArT.

Table 2 Accuracy or predictive ability of gBLUP model for growth
related traits

Traits gBLUP
Weight 0.69
Length 067
Condition index 044

gBLUP Genomic best linear unbiased prediction
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Effect of markers sub-sets

Figure 3 shows the predictive ability of gBLUP model for
body weight when different marker sub-sets randomly
sampled from the dataset (20%, 40, 60% and 80% of
14,448 SNPs) were analysed. The predictive ability of the
gBLUP model decreased when random marker subsets
were used. The reduction in the predictive ability ranged
from 13 to 18% across important traits studied. A graph-
ical presentation of the predictive ability using different
marker subsets is given for body weight in Fig. 3.

Discussion

The central theme of this study was to determine the pre-
dictive ability of genomic prediction for traits of economic
importance to enable the application of genomic selection
in yellowtail kingfish (YTK). Our gBLUP analysis shows
that the predictive ability obtained for growth-related
traits (body weight, fork length and condition index) was
moderate to high (0.44 to 0.69). A similar predictive ability
was observed for body traits when numerator relationship
matrix obtained from the pedigree was included in
analyses. A linear regression analysis of the actual on pre-
dicted phenotypes also indicated a high predictive capacity
of our models for the observed phenotype. The findings
are particularly significant because one of the promising
features of genomic selection is to reduce efforts of phe-
notyping in selection populations, and the performance of
unphenotyped animals can be predicted from the training
and validation populations from which they are derived.
Our prediction within the same population using five-fold
across validation approach also confirmed that there was a
high correlation between the training and validation

datasets for body weight, Iy = 0.89.

Overall our results are in line with other studies
reported in the literature that based on computer simu-
lations or using empirical data from practical genetic
enhancement breeding programs in farmed animals [26]
or aquaculture species [15, 27-29]. However, comparing
the results from different studies and populations is not
rigorous due to differences in genetic background and
histories of the experimental animals. The predictive
ability of statistical methods used for genomic selection
generally depends on marker effects, frequency of rare
allele in populations [30]. In the present study, we found
that gBLUP had similar predictive ability to Bayesian
methods (i.e. Bayes C or Bayes Cm, results were omit-
ted). This is as expected for growth related traits that
are well known under control by many genes, each with
small effects. With regard to commercial application,
gBLUP is preferred to other methods because it was less
computationally demanding. Furthermore, gBLUP can
account for various variance structure (e.g. heteroge-
neous variance due to genotype by environment
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Fig. 3 The predictive ability of gBLUP model for body weight using
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In addition, we performed gBLUP analysis on a sub-
set of 7988 markers after quality control. The marker
filtering was based on two main criteria: i)<10%
missing values and 2) a minor allele frequency > 0.05.
Linkage disequilibrium (LD) pruning was also applied
to remove highly correlated markers. However, the
predictive ability of the five-fold cross validation model for
body traits was somewhat higher than those obtained
from the full marker set (14,448 markers), e.g. Ty = 0.90

for body weight.

Our five-fold across validation within the same popula-
tion indicated very high predictive ability of the gBLUP
model used especially for body weight. In this study, the full
data that comprised 752 fish originating from the
generation in 2014 were split into training and validation
subsets. It is however necessary, in a future study, to
sequence offspring of this population produced in the latest
generation and re-train the model to ensure that capacity of
gBLUP prediction is maintained before genomic selection
can be considered as an option for future genetic improve-
ment in this YTK population. The capacity of genomic pre-
diction is likely to be reduced in subsequent generations,
mainly as a result of recombination that causes a break-
down of the linkage disequilibrium (LD) between markers
and quantitative trait loci (QTL). The prediction ability also
depends on the number of distant ancestral generations in-
cluded in the training set; the further generations apart the
lower accuracy may be observed [31].

Collectively, the results achieved from this study
showed the potential for genomic selection in this popu-
lation of YTK. However, to enable the application of
genomic selection in different populations (e.g. those
from other States in Australia), genotyping a larger sam-
ple of animals would be needed for further prediction
and validation. Genomic prediction equations developed
for one population may not be applicable to another due
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to LD decays across generations as reported in farmed
animals [32]. A larger training population together with
a higher density SNP panel would also help to increase
the accuracy of genomic prediction for traits with low
heritability, namely skin fluke and deformity (results not
tabulated). In dairy cattle, across-breed genomic selec-
tion used 300,000 SNPs and the accuracies of prediction
ranged from 0.6 to 0.8 for economically important traits
such as milk yield and fertility [33]. Whole genome se-
quencing also increased predictive power of genomic
prediction, although the improvement was not large and
varied with traits and studies [34]. Further, continuation
of collecting more genomic data in future generations of
this YTK population should be conducted to improve
the reliability of genomic prediction for traits used here.

This study is the first reporting genomic prediction in
marine yellowtail kingfish. Earlier studies involved com-
puter simulation and showed potential benefits of genomic
selection for aquatic animal species [35]. Nielsen et al. [36]
demonstrated that the accuracy of genomic selection in a
sib based breeding program can be 33% higher than selec-
tion based on conventional BLUP approach and genetic
gain under optimal contribution selection based on
genomic EBV can be improved by 81%. Implementation of
genomic selection has been shown to reduce generation
time, lower inbreeding and improve genetic gain for traits
of commercial importance in agricultural species, e.g. in
dairy cattle [37]. Recent studies in salmonids reported that
the accuracy of genomic prediction ranged from 0.34 to
0.61 for growth traits [27] and from 045 to 0.71 for
resistance to a range of diseases such as sea louse Caligus
rogercresseyi [28), Piscirickettsia [29] or Flavobacterium
psychrophilum [15]. A synthesised result from the litera-
ture together with our estimates obtained in this study
suggest that genomic selection has the potential to acceler-
ate genetic gain in the future breeding program for yellow-
tail kingfish. To improve the cost efficiency of genomic
selection for this population, reduced sequence coverage
in combination with imputation can be leveraged to
genotype a larger number of training individuals to
improve prediction accuracy and a larger number of
selection candidates (validation population) to increase
selection intensity and as a consequence, this can lead to
increased genetic gain in YTK. A recent simulation study
in plants [38] demonstrated that imputation can allow a
reduced sequence coverage to as low as 1x with 10,000
markers and this can provide comparable genomic
prediction accuracy as SNP arrays. Improved accuracy
with imputation from a low- (256 SNPs) to high-
density panel (250 K SNPs) is also shown in Atlantic
salmon [39]. Return on investment from the low-cost
genotyping by sequencing and imputation to enable a
cost-effective genomic selection program merits future
study in this species.
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Conclusions

Main findings from our first genotyping by sequencing
study in yellowtail kingfish include: i) a large number of
markers were derived from DArTseq™ sequencing technol-
ogy and they can be used for genomic prediction and
selection, ii) the predictive ability of gBLUP model for
growth-related traits (weight, length and condition index)
was high to enable the application of genome-based selec-
tion in this population, and iii) the markers subsets (e.g.
80% of the full set used in this study) can provide a
comparable predictive capacity for growth characters. How-
ever, genomic prediction for traits with low heritability (e.g.
skin fluke or deformity, results omitted) using genotyping
by sequencing technology and imputation deserves further
study in this population of yellowtail kingfish. A large scale
routine data recording from multiple generations in in-
depth pedigree populations is also needed to improve
accuracy of genomic breeding value estimation for other
traits of commercial importance in this species S. lalandi.
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