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Abstract

Background: Ascochyta blight, caused by the fungus Ascochyta lentis, is one of the most destructive lentil diseases
worldwide, resulting in over $16 million AUD annual loss in Australia alone. The use of resistant cultivars is currently
considered the most effective and environmentally sustainable strategy to control this disease. However, little is
known about the genes and molecular mechanisms underlying lentil resistance against A. lentis.

Results: To uncover the genetic basis of lentil resistance to A. lentis, differentially expressed genes were profiled in
lentil plants during the early stages of A. lentis infection. The resistant ‘ILL7537" and susceptible ‘ILL6002’ lentil
genotypes were examined at 2, 6, and 24 h post inoculation utilising high throughput RNA-Sequencing. Genotype

and time-dependent differential expression analysis identified genes which play key roles in several functions of the
defence response: fungal elicitors recognition and early signalling; structural response; biochemical response;
transcription regulators; hypersensitive reaction and cell death; and systemic acquired resistance. Overall, the resistant
genotype displayed an earlier and faster detection and signalling response to the A. lentis infection and demonstrated
higher expression levels of structural defence-related genes.

Conclusions: This study presents a first-time defence-related transcriptome of lentil to A. lentis, including a
comprehensive characterisation of the molecular mechanism through which defence against A. lentis is induced in

the resistant lentil genotype.

Keywords: Lentil, Lens culinaris, Ascochyta lentis, RNA sequencing and transcriptome analysis, De novo assembly,

Fabaceae, Defence response

Background

Lentil (Lens culinaris ssp. culinaris) is a rich source of
protein, minerals and vitamins; and thus plays a sta-
ple food role in the diets of vegetarian, vegan and low
meat consuming communities. Due to exponential pop-
ulation growth in regions where lentil is a main staple,
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annual global production has drastically risen, from 0.85
to 5.03 Mt during the last five decades [1]. However,
global production and quality is substantially impacted
by Ascochyta blight, caused by the necrotrophic fungus
Ascochyta lentis [2]. Together with the cost of manage-
ment through fungicides, this pathogen is responsible for
an annual estimated loss of $16.2 million AUD in Australia
alone [3, 4].

Much research has been conducted to understand
A. lentis epidemiology, diagnostics, lifecycle, survival
and chemical susceptibility [2, 5-8]. This information,
together with the adoption of high yielding resistant cul-
tivars, provides the most environmentally friendly and
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economic strategy for disease management [3]. Relatively
few genotypes, containing simply inherited ‘resistance’ to
A. lentis, have been employed widely in resistance breed-
ing programs on a global scale [8—10]. The lentil industry
in Australia is reliant on A. lentis resistance from three
main sources; two Canadian cultivars cv. Northfield and
cv. Indianhead and the landrace ILL7537, all underpinned
by one or two major resistance genes. Recently, the widely
adopted resistance derived from cv. Northfield (ILL5588),
under the control of one [10] or two dominant genes [11],
seems to have been eroded through increased pathogen
aggressiveness [12]. It is likely that other major resistances
may also be under threat through selective adaptation of
the pathogen population, and therefore there is an urgent
need to understand the key functional genes employed by
resistant genotypes to strategically improve the longevity
of the defence mechanisms available. The initial step
towards this is to identify and characterise the genes
involved, however, there is currently limited information
on the lentil genome or its interaction with A. lentis.
Some initial efforts have been made to explore the
genomic and molecular aspects involved in defence to
A. lentis. Comparative gene expression analysis with
a boutique microarray, comprising a limited number
of defence-related ¢cDNA probes sourced from other
leguminosae species, revealed several genes important in
the early resistance reaction of the resistant lentil acces-
sion ILL7537 to A. lentis at 2, 6, and 24 h post inoculation
(hpi) [13]. The suit of differentially expressed (DE) genes
uncovered confirmed the biological significance of the
early stages in the A. lentis—lentil interaction; represen-
tative of pathogen recognition (2 hpi), induced defence
responses (6 hpi), and necrotic structural defence reac-
tions (24 hpi) [7, 8]. In particular, serine/threonine protein
kinases were reported to be a key component of the
signalling mechanism required to activate downstream
A. lentis defence responses, which included an hypersen-
sitive reaction [13]. Histopathology research of A. lentis
infection and disease progress observed major changes in
the lentil physiology at 2, 6, and 24 hpi and depicted those
as important checkpoints in the defence response of lentil
to A. lentis [8]. Lentil plants detect A. lentis attack as soon
as they come in contact at the host surface or in minutes of
invasion. This mainly occurs between 2-6 hpi (first/early
phase of oxidative burst) as previously reported [8]. These
rapid events are transcription-independent, cause mor-
phological and physiological changes in the infected cells
and their surroundings and further transcriptional and
post-translational activation of transcription factors takes
place. Secondly, a sustained oxidative burst phase that
occurs hours after pathogen attack usually associated with
the establishment of the defences and the hypersensi-
tive response is carried out. In lentil plants this occurred
between 20 and 24 hpi, which may act as a signal for gene
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activation resulting in secretion of fungal penetration-
inhibitory substances into the surrounding plant cell wall
to arrest further penetration and spread [8].

Although a good foundation, these results were greatly
limited by their dependence on homologous sequences
previously discovered as important in other species and
pathosystems. Therefore, there remains a large knowl-
edge gap regarding which genes/functional alleles are
involved in the early defence pathways of recognition,
and biochemical and physiological defence responses
in the lentil-A. lentis interaction. To bridge this gap,
an in-depth molecular study of the interaction is
required.

Next generation sequencing and more specifically
RNA-Sequencing (RNA-Seq) has become a popular and
comprehensively informative approach to monitor wide
transcriptional changes during host-pathogen interac-
tions [14-17]. Recently, an RNA-Seq approach was
employed to characterise the functional defence response
genes of faba bean to A. fabae and these included phy-
toalexins (Dihydrofla-vonol-4-reductase), a chitin elicitor-
binding protein (CEBiP), jasmonate O-methyltransferase
and an F-box/leucine-rich repeat (LRR) protein, as well
as several pathogenesis-related (PR) proteins [17]. Like-
wise, RNA-Seq revealed that protein kinases such as
receptor-like kinases, PR protein classes (2-9, except PR7),
diterpene phytoalexin biosynthesis genes, and WRKY
transcription factors were involved in the defence of rice
to Ustilaginoidea virens [15].

A few RNA-seq studies were conducted recently to
assemble the expressed transcriptomes of lentil, which
provided a good reference for the genes expected to
be expressed throughout various tissues and genotypes.
However, these focused on different developmental stages
and toxic tolerance [18] and marker development [19, 20]
and none of them covered the transcriptional changes
that occur during a pathogen attack and its counteract
defence response. A targeted RNA-Seq approach during
lentil-A. lentis interactions would be beneficial in better
understanding the molecular defence responses of lentil
to Ascochyta blight.

Thus, the aims of this study are to use RNA-Seq to
identify the genes and gene functions, and predict the
molecular pathways employed by a resistant lentil acces-
sion in the early recognition and defence to an aggressive
isolate of A. lentis.

Methods

Bioassay and RNA extraction

Seedlings of lentil genotypes ILL7537 (resistant to A. lentis
[8]) and ILL6002 (susceptible to A. lentis [8]) were grown
in a controlled-environment growth room at 20 °C +2 °C
with 12/12 h dark/light lengths. Three replicates (pots)
of five seedlings per 7 cm diameter pot were grown in a
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light commercial pine bark soil for each of the time points
assessed. At 14 d after sowing, seedlings were sprayed
until run-off with a 1 x 10° suspension of A. lentis ALP2
isolate condiospores [12] or water as a negative control,
according to the method described by Davidson et al. [12].
All seedlings were then placed in the dark for 48 h within
a plastic box and adequate humidity was maintained to
encourage fungal growth and germination. During this
period, the seedlings were harvested and pooled from
each pot (replicate) at 2, 6, and 24 hpi. This provided tripli-
cate biological representative reactions for each genotype,
at each time point and from both fungal and water inocu-
lated treatments (Fig. 1). Another pot of five seedlings of
each genotype that had been inoculated with the isolate
was left unharvested and allowed to grow in the growth
room at 20 °C £2 °C with 12/12 h dark/light lengths to
confirm visible disease symptoms after 7 — 10 d.

At each time of collection, the five seedlings of each
replicate were combined and instantly frozen in liquid
Nj. Total RNA was extracted from the whole seedling
bulks using the RNeasy plant mini kit along with DNase
treatment, according to the manufacturer’s instruction
(QIAGEN, Germany). RNA quality and quantity were
determined with an Experion RNA analysis kit (Bio-Rad,
USA) (Table 1). Subsequently, 6 pg total RNA of each sam-
ple were diluted in 50 pL. RNAse-free H,O and used for
¢DNA library preparation and transcriptome profiling.

Transcriptome profiling

Library preparation and RNA-Sequencing

Library preparation and sequencing were performed
at the Pangenomics Laboratory, RMIT University,
Bundoora, following the methods described in the Ion
Proton user’s guide (Thermofisher Scientific, USA).
Briefly, mRNA was isolated from the total RNA using
Dynabeads mRNA Purification Kit (Thermofisher
Scientific, USA). This was followed by enzymatic
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fragmentation of mRNA to create short reads, <300 base
pairs (bp), suitable for the Ion Proton sequencer. The
c¢DNA was synthesised using reverse transcription and
a unique barcode was attached to the fragments of each
library. The RNA-Seq libraries were prepared using Ion
Total RNA-Seq Kit v2 (Thermofisher Scientific, USA)
according to the manufacturer’s instructions. Finally,
four RNA-Seq libraries were multiplexed and loaded on
an Ion Proton™ chip for sequencing. The resulting raw
RNA-Seq reads were deposited in the National Center
for Biotechnology Information (NCBI) Sequence Read
Archive (SRA study accession number: SRP075524).

Assembly

Short read sequences from the RNA-Seq were down-
loaded and processed on the Griffith University
‘Gowonda’ High Performance Computing Cluster using
Linux command-line operations. Preliminary quality
check of the reads was performed using FastQC (v0.11.2),
followed by 3’ and 5’ ends quality trimming and adaptor
removal by Trimmomatic (v0.32 [21]), with stringency
parameters of SLIDINGWINDOW:4:10 MINLEN:36.
The clean and trimmed reads were then de novo assem-
bled using Trinity (r20140717 [22]), to establish the full
lentil defence-response transcriptome. Assessment of
the assembled transcripts was performed by calculating
and plotting an ExN50 value against a fraction of the
most highly expressed transcripts (Ex). This plot enabled
identification of the assembly saturation point, at which
the maximum length of N50 was obtained, after removal
of the transcripts with minor contribution to the total
expression, which are often associated with assembly
errors [22, 23].

Gene and protein annotations

Open reading frames (ORFs) were predicted from the
assembled transcripts using TransDecoder (r20140704);
an ORF was considered as complete by the presence of a
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Fig. 1 Experimental design of the Ascochyta lentis resistant (ILL7537) and susceptible (ILL6002) lentil genotypes used for RNA extraction
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Table 1 RNA sample details including quality and concentration measurements

Sample ID HPI2 Cultivar Treatment® Replicate RQI¢ RNA conc. (ng/ pL)
1C 2 ILL6002 Mock 1 9.5 504.93
2C 2 ILL6002 Mock 2 9.5 47745
3C 2 ILL6002 Mock 3 94 35948
4C 2 ILL6002 Treated 1 94 39033
5C 2 ILL6002 Treated 2 94 46147
6C 2 ILL6002 Treated 3 9.1 214.97
7C 2 ILL7537 Mock 1 9.5 316.84
8C 2 ILL7537 Mock 2 94 348.37
9C 2 ILL7537 Mock 3 9.6 28167
10C 2 ILL7537 Treated 1 9.9 325.65
11C 2 ILL7537 Treated 2 94 31797
12C 2 ILL7537 Treated 3 9.6 211.23
13C 6 ILL6002 Mock 1 10.0 263.26
14C 6 ILL6002 Mock 2 10.0 359.14
15C 6 ILL6002 Mock 3 10.0 157.02
16C 6 ILL6002 Treated 1 10.0 165.98
17C 6 ILL6002 Treated 2 10.0 236.68
18C 6 ILL6002 Treated 3 10.0 260.98
19C 6 ILL7537 Mock 1 10.0 21047
20C 6 ILL7537 Mock 2 10.0 222.57
21C 6 ILL7537 Mock 3 10.0 296.11
22C 6 ILL7537 Treated 1 10.0 27524
23C 6 ILL7537 Treated 2 10.0 22147
24C 6 ILL7537 Treated 3 10.0 27541
25C 24 ILL6002 Mock 1 9.7 511.10
26C 24 ILL6002 Mock 2 9.7 303.83
27C 24 ILL6002 Mock 3 9.6 467.35
28C 24 ILL6002 Treated 1 9.6 407.76
29C 24 ILL6002 Treated 2 9.5 336.80
30C 24 ILL6002 Treated 3 9.7 263.37
31C 24 ILL7537 Mock 1 9.8 338.72
32C 24 ILL7537 Mock 2 9.7 340.26
33C 24 ILL7537 Mock 3 9.7 550.03
34C 24 ILL7537 Treated 1 9.8 317.72
35C 24 ILL7537 Treated 9.8 41479
36C 24 ILL7537 Treated 3 9.8 481.03

@Hours post inoculation

bSample treatment: Treated — inoculation with highly pathogenic isolate of A. lentis ALP2; Mock — water spray as a negative control
“RNA quality indicator (RQI), as determined by an Experion RNA Analysis System (Bio-Rad)

starting methionine amino acid and an ending stop codon.
Transcripts and predicted peptides were annotated by
sequence alignment similarity search (BLAST 2.3.0+ [24])
to protein databases (NCBI nr, UniProt, Swiss-Prot and
KOBAS, e-value<le-5), and by hidden Markov models
protein domain identification (HMMER3.1b [25]) against

the HMMER/Pfam protein database (v28.0 [26]). Anno-
tated ORFs were classified into taxonomy groups by
extracting the species from their top scoring Blast result.
Higher taxonomy levels (family, phyla) were inferred from
the NCBI Taxonomy database using the taxize R pack-
age [27, 28]. Based on these annotations, Gene Ontology
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(GO [29]) and Kyoto Encyclopedia of Genes and Genomes
(KEGG [30, 31]) terms were assigned to each putative
protein. Since L. culinaris is not included in the KEGG
database of species-specific terms, KEGG orthology terms
were used to match a function to each ORF. Furthermore,
predictions of putative secretory signal peptides (SignalP
v4.1 [32]) and trans-membrane topology (TMHMM v2.0
[33]) were performed. The resulting annotation output
files were further processed and cleaned to remove dupli-
cates, select best matching annotation and identify errors
or missing values.

To determine how inclusive the assembly was of
full length genes, coverage levels of the reconstructed
protein-coding ORFs were calculated from the UniRef90
Blast results, as described in the Trinity documentation
(https://github.com/trinityrnaseq/trinityrnaseq/wiki/Coun-
ting-Full-Length-Trinity-Transcripts). A similar assessment
of the representation of single-copy conserved plant
orthologues was performed using BUSCO [34].

Differential gene expression

The number of reads that mapped to each ORF was
estimated by the super-efficient and alignment-free soft-
ware, kallisto [35]. Preliminary exploratory data analysis
of the estimated counts of each sample was performed by
variance-stabilising transformation of the raw counts, fol-
lowed by computing and plotting a between-sample dis-
tance matrix and principle coordinate analysis to identify
sample-related biases.

The estimated counts were normalised using the
Trimmed Mean of M-values (TMM), a normalisation
method implemented in the edgeR Bioconductor pack-
age (http://bioconductor.org/packages/release/bioc/html/
edgeR.html), to account for differences in library size
between samples [36, 37]. To represent count data vari-
ability, standard error values were calculated per gene,
based on triplicate TMM counts (#=3) at each geno-
type/time point, with the exception of the reference genes,
where SE were calculated based on all samples and across
all experimental groups (excluding the outlier sample 4C,
n=35). TMM counts of selected defence-related tran-
script are provided in Additional file 1.

The estimated counts were further analysed by edgeR
to identify statistically significant DE ORFs between the
experimental groups [38, 39]. Raw p-values were adjusted
for multiple comparisons by the Benjamini-Hochberg
procedure, which controls the false discovery rate [40].
Transcripts were considered to be DE with a |log,FC| >1.5
(positive or negative for either over- or under-expression
respectively), and an adjusted p-value <0.05.

Gene set enrichment analysis of the DE genes was then
performed for the GO and KEGG annotations to deter-
mine over-represented functional pathways (with a
p-value<0.01 and p-value<0.001, respectively) at each
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comparison level (for specific genotype, sampling time
and treatment combination). Each pathway was further
categorised into one of GO’s functional groups (biological
processes, cell cycle or molecular function) or KEGG’s
functional groups (metabolism, environmental informa-
tion processing, organismal systems, cellular processes
or genetic information processing). The analysis was
performed using a custom-written R script (https://
github.com/IdoBar/Trinotate_ GSEA_plotteR), utilising
the goseq R package [41].

Quantitative reverse transcription PCR

Real time quantitative reverse transcription PCR (RT-
qPCR) was used to validate the expression patterns of
selected genes. Three biological replicates from inocu-
lated resistant and susceptible plants at 2, 6, and 24 hpi
were collected, instantly frozen in liquid Ny and stored
at —80 °C until RNA extraction. Samples were pul-
verised while frozen in liquid Ny using a mortar and
pestle and total RNA was extracted using NucleoSpin®
RNA Plant kit along with DNase treatment, accord-
ing to the manufacturer’s instruction (Macherey Nagel,
Germany). Quality and quantity of the total RNA for
each sample were determined using gel electrophoresis,
NanoDrop™ (Thermo Fisher Scientific, USA) and Qubit
(Invitrogen, USA). 0.7 ug of total RNA from each sam-
ple was used to synthesise cDNA using PrimeScript™ RT
reagent Kit (TaKaRa Bio, Japan), incorporating an addi-
tional gDNA removal step. The RT-qPCR was performed
in the CFX96 Touch™ Real-Time PCR Detection System
(Bio-Rad, USA).

Five antifungal compounds and transcriptional regula-
tors involved in defence were chosen as target genes for
the assay: RBP, PR2, PR10, PGIP, ARP and DELLA; and
PP2A as a reference gene. Primers were designed from the
transcriptome sequences for each gene and were tested
to ensure acceptable amplification efficiency, specificity,
consistency and detection range, based on serial dilution
standard curves and melt curves. Amplification efficien-
cies for each gene were calculated from the coefficients
of linear regression equations fitted to the Window-of-
Linearity phase of each reaction of the main RT-qPCR
assay. The calculated efficiencies were then averaged
across all reactions of each gene, as implemented in Lin-
RegPCR (v2017.1) [42, 43]. Details of the primers used
for the RT-qPCR assay are listed in Table 2. Each RT-
qPCR reaction contained 2 pl of cDNA template (diluted
1:25 from the synthesis reaction), 10 il SYBR® Premix Ex
Taq™ (TaKaRa Bio, Japan) and a final primer concentra-
tion of 1.6 uM in a final volume of 20 pul. The reactions
were performed using the following cycle conditions: an
initial 95°C for 2 min, followed by 38 cycles of 95 °C for
10 s, 50-57°C for 30 s (depending on the empirically
determined optimal melting temperature for each primer
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Table 2 Genes and primers used in gRT-PCR assay
Target gene Gene function Primer sequences (5™-3") Amplification efficiency® Tm (°Q)
DELLA SAR signalling F:GTCTTCTAATTCAAACCA 1.926 +0.027 53
R:ATATCTGTTTACCCAAGTAA
RBP-hnRNP Transcriptional factor F:GAGAAAGATATTTGTTGGAG 1.947 + 0.024 51
R: TGATCGTACATTACTACAACA
PGIP Anti fungal compound F: TGAAGGTGATGCTTCTATGCT 2013 +£0.026 53
R: GACTCACATCCAACGTTGCT
PR2 Anti fungal compound F:GGCATGCTGGGAAACAATCT 2018 £0.023 52
R TGGCACACCTAACATGAGCT
PR10 Anti fungal compound F:-TGGCACTTCTGCTGTTAGATGGAC 2017 £0.083 50
R:GGTAATCCATCCAGCCATTTGGAG
PP2A Reference gene F:GCCTCATTTGCAGCTGGTTT 2.002 £ 0.025 53

R TACTCTCGTTCTAGGGTCCT

#Mean and standard deviation of the amplification efficiency for each gene were calculated from the coefficients of linear regression models fitted to each reaction (value of 2

equivalents to 100% efficiency, see [43])

pair), 72°C for 15 s, and a final 5 min extension at 72°C.
All reactions were performed in three technical replicates
for each biological sample (n=3) at each time point. Inter-
run calibrators reactions were included in each plate using
a pooled cDNA as template for each of the three reference
genes.

Amplification data (Cq values) were normalised
between plates using Factor-qPCR (v2016.0) [44] which
estimates between-plates correction factors based on the
inter-run calibrators. DE ratio of each gene between the
resistant and susceptible genotypes at each time point
was then calculated with the Relative Expression Software
Tool (REST® 2009 [45]), considering the amplification
efficiency of each gene [46, 47]. Statistical significance of
the DE genes was tested by a randomisation test incorpo-
rated in REST©® 2009 and were considered as significant
with a p-value <0.05.

Data analysis

The annotation and expression data files were then com-
bined and loaded onto a lightweight, standalone rela-
tional SQLite database (http://www.sqlite.org/), using the
scripts provided in the Trinotate pipeline (v3.0.1; https://
trinotate.github.io/). This allowed for a fast and easy
retrieval of sequences, annotation and expression data
using any combination of conditional filtering and order-
ing. A complete bioinformatics data processing and anal-
ysis workflow is presented in Fig. 2.

Statistical analysis and additional data summarising
were performed using the R statistical programming
language (v3.2.5 [48]). Specifically, relevant data was
retrieved from the SQLite database and pre-processed
using the dplyr package, and then analysed using various
tools from the Bioconductor [49] and the Comprehensive

R Archive Network (CRAN, https://cran.r-project.org/) R
repositories.

Results

RNA-Sequencing and assembly

All RNA extracts were of high quality, with an average
RNA quality indicator of 9.72, as determined on the Expe-
rion (Table 1). A total number of 7.25 x 108 reads with an
average length of 90 bp were produced by the Ion Proton
RNA sequencing platform. Of the total number of bases
sequenced across all reads (7.90 x 10'° bp), 13% =+ 3% in
average were trimmed to remove adapters and low qual-
ity base calls in each read file. In addition, reads which
were too short after adapter trimming and/or had an aver-
age low quality bases were dropped, resulting in a total
of 6.47 x 10% clean reads, comprised of 6.86 x 10'° bp
high quality bases. Detailed trimming statistics of each
read file are provided in Additional file 2. The defence-
related transcriptome of lentil was then de novo assembled
to 317,412 transcripts (total length of 1.45 x 10® bp),
which were grouped into 256,326 trinity ‘genes, with an
N50 = 497 bp. Plotting the ExN50 value against varying
levels of cumulative transcript expression (Ex) identified a
saturation point of the assembly at 96% of the total expres-
sion, giving an improved E96N50 of 827 bp and reducing
the effective contig count to 44,007 (Fig. 3). Detailed
statistics of the transcriptome assembly are provided in
Table 3.

Annotation

Multiple ORFs were predicted from each transcript, to a
total number of 106,754. Close to 30% of the predicted
ORFs presented a minimum of 100 amino acids, a starting
codon for Methionine and an ending stop codon and


http://www.sqlite.org/
https://trinotate.github.io/
https://trinotate.github.io/
https://cran.r-project.org/

Khorramdelazad et al. BMC Genomics (2018) 19:108

Page 7 of 21

loh Protén Analysis Legend
RNA-Seq 5 [ ] B
U — Differential Expression
(" Rawreads [ e Stan e
\__fastqfiles \ (_Homology Annotation | ( Files (
) i § [ Functional Annotation | [ Process
QC | Trimmomatic ‘—>{ FastQC | ( + and Statistics ) o
,
| Trinity
e
De-novo :
Assembly Transcriptome
Analysis
| TransDecoder 1
[ Kallisto | ——
B — ORFs { BLAST |
Counts / N
Differential matrix NCBI ﬁ
Expression . ¥ Annotation
( DESeq2 |
v [ GO/COG KEGG ]
DE data
|
Summary
Lentils - A. blight Transcriptome db R Bioconductor ]
Fig. 2 Bioinformatics flowchart of tools and methods used to process and analyse the RNA-Sequencing data and produce the transcriptome

were therefore predicted as ‘complete’ Another 31% of the
ORFs were predicted to contain a partial 5, more than
double of those with partial 3, most likely due to the
poly(A) enrichment stage in the library preparation pro-
cess, which is reported to introduce a bias towards the 3’
end of the transcripts [50].

1000~
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Fig. 3 Expression-dependant N50 (ExN50), as calculated against a
fraction of the total expressed data (Ex). EXN50 at the point of
assembly saturation (96%) and traditional N50 are highlighted

Both the assembled transcripts and predicted ORFs
were annotated to known genes, using NCBI’s compre-
hensive nucleotide (nt) and protein (nr) databases respec-
tively, resulting in significant matches for 70% of the
transcripts and over 62% of the ORFs. Taxonomic analy-
sis of the Blast matches revealed that 91.1% of the ORFs
matched previously annotated plant genes, 97.6% of those
from the legume family (Fabaceae); another 6.5% matched
fungi proteins (Ascomycota, mainly from the Didymel-
laceae family); and another small fraction (1.8%) matched
bacterial genes (Fig. 4).

Table 3 Lentil-A. lentis transcriptome assembly details

Feature Value
Assembled contigs (n) 317412
Longest contig (bp) 11,358
Mean contig (bp) 457
Contig N50 (bp) 497
Contig N90 (bp) 236
Contig E96N50 (bp) 827

£96 contigs (n) 44,007
Total contig length (bp) 145 x 108
Assembly GC content (%) 41.74
Total reads (n) 7.247 x 108
Avg. sequence retention rate?® (%) 89.63

@Raw sequenced reads which passed quality control measures as determined by
FastQC
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Close to 25% of the Blast annotated ORFs were pre-
dicted to cover more than 80% of their target gene’s full
length sequence, thus providing strong evidence that the
transcriptome assembly contained a reasonable coverage
of the genes in the tissues. A similar conclusion arose from
the BUSCO analysis, identifying 379 complete single-
copy, 339 duplicated and 176 fragmented conserved plant
orthologues in the assembly, out of 956 orthologue groups
in total (overall coverage of 93.5%).

Additional annotation of protein domains was per-
formed against the Pfam database, assigning significant
domains to 56% of the ORFs. Functional annotation of the
putative ORFs using GO and KEGG terms, found a sig-
nificant match to 37 and 33% of the ORFs, respectively,
thus adding another layer of annotation at the molecu-
lar pathway level. Transmembrane structure and signal
peptide predictions were performed as well and added
to the complete ORFs annotation database (full details in
Table 4).

Differential gene expression

Exploratory data analysis

An exploratory data analysis of the estimated counts of
reads that mapped to each ORF clearly showed that the
main difference between the samples were derived from
the genotype variable, which explained 40% of the total
detected variation. Sampling time (2, 6, and 24 hpi) con-
tributed another 17% of the variability (Fig. 5).

The three replicates of each sampling group clustered
well together, with the exception of sample 4C of the
susceptible genotype (ILL6002, round markers in Fig. 5),
which clustered with the 6 hpi samples of the same geno-
type. This sample was identified as an outlier and was
excluded from downstream DE analysis.

Gene set enrichment analysis

The number of putative genes (based on ORF prediction)
that were DE, with |logspFC| > 1.5 and FDR <0.05, was
determined within each comparison, demonstrating once
more that the most noticeable DE was found between
the resistant genotype and the susceptible one, in partic-
ular at 24 hpi, with 2617 DE genes (Fig. 6). A substan-
tial number of genes (507) were commonly DE between
the two genotypes, regardless of sampling time. The DE
genes were then grouped into functional pathways by
their assigned GO and KEGG terms. Comparison of GO
enrichment analysis of DE genes in the resistant genotype
between 2, 6, and 24 hpi identified high representation
of over-expressed genes involved in pathogen recogni-
tion, signalling at 2 hpi compared with 6 hpi. In contrast,
high proportions of genes associated with anti-fungal

Table 4 Transcript and open reading frame annotation

Annotation Occurrences (#) Rate (%)

Transcripts:® 317,412 100
NCBI nt? 223,246 70.3
UniRef90? 138,131 435

ORFs:® 106,754 100
NCBI nr2 93,077 624
SwissProt? 52,452 49.1
Pfam® 60,404 56.6
KEGG? 39,919 374
GO 34,937 327

2Blast based annotation was considered as significant with a BitScore>100
PORFs predicted by TransDecoder

“HMM-predicted Pfam protein domains were considered as significant with
FullSegScore and FullDomainScore>20
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compounds, plant cell wall organisation and construction,
as well as transcriptional regulators, were observed at 6
hpi (Fig. 7a). At 24 hpi, the majority of DE gene were asso-
ciated with regulatory functions in plant stress tolerance,
antimicrobial compounds and photosynthesis pathways
(Fig. 7b).

KO pathway enrichment analysis of the same time
points provided a similar picture to the GO enrichment
analysis (Fig. 7c-d). High representation of genes involved
in microbial, carbon and nitrogen metabolism and sig-
nalling pathways were identified at 2 hpi; a substantial
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number of genes involved in metabolic pathways, photo-
synthesis, and to a lesser extent, defence response genes
at 6 hpi and an increased enrichment of photosynthesis
related genes at 24 hpi.

Primary defence response (2 hpi)

Analysis of DE transcripts among the resistant (ILL7537)
and susceptible (ILL6002) genotypes at 2 hpi, compared
to those at 6 and 24 hpi identified transcripts with match-
ing annotation to several gene families. Specifically, genes
from the protein kinase-like family, known to be involved
in pathogen recognition and early stage of signalling [51],
were moderately over-expressed at 2 hpi (Fig. 8a). A
member of this family is the LRR receptor-like kinase
(LRR-RK), which demonstrated its highest expression lev-
els in the resistant genotype at 2 hpi, with TMM = 40
and a gradual decrease down to TMM = 7.3 at 24 hpi
(log,FC = 2.45). The expression of LRR-RK at 2 hpi in
ILL6002 was lower than in ILL7537 (TMM = 20.9), how-
ever, it then increased dramatically at 6 hpi (TMM = 73),
before decaying back to base levels at 24 hpi, as in ILL7537
(Fig. 8a).

Calmodulin domain protein kinase-like (CDPK) was
also moderately expressed at 2 hpi and 6 hpi, with a TMM
of 2.6, dropping at 24 hpi to just under 0.5 at a log,FC
of 2.5 in the resistant genotype (Fig. 8a). Slightly higher
expression levels were noticed in the susceptible genotype
at 2 hpi (TMM = 4.8), dropping to a stable level of 2.5
at 6 and 24 hpi. Interestingly, a very similar expression
pattern, with approximately 5x times higher TMM values
compared with CDPK;, was found for Ethylene-responsive

a Treated Res vs. Sus @ 24hr

Res vs. Sus @ 6hr

b

Treated Res 24hr vs. 2hr
896

Res Bhrvs. 2hr Res 24hr vs. 6hr

Res vs. Sus @ 2hr

Fig. 6 The number of unique and common differentially expressed genes between the subgroups of inoculated samples (time post inoculation and
genotype). Comparison of inoculated resistant vs. susceptible genotypes at each time point (2 hpi, 6 hpi and 24 hpi, a); and within the inoculated
resistant (ILL7537) genotype samples between the different time points (b). Circle area is plotted to scale (Euler diagram) when geometrically possible
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transcription factor (ERF) across all time points and geno-
types (Fig. 8a).

Xyloglucan endotransglucosylase/hydrolase (XTH),
encoding an enzyme involved in cell wall elongation and
restructuring [52], was most highly expressed at 2 hpi in
the susceptible genotype, with TMM = 61 (Fig. 8). XTH
expression levels then rapidly decreased at 6 hpi to 15.3
and then more gradually to 5.4 at 24 hpi (log,FC of 2
and 3.5, respectively). A similar expression pattern was
observed in the resistant genotype, at approximately half

the levels shown in the susceptible genotype at each time
point (Fig. 8b).

A unique expression pattern was identified for Exo-
cyst subunit 70A1 (EXO70A1), a structural gene involved
in papilla formation [53]. This gene was expressed at
moderate levels (TMM = 3.47) at 2 hpi in the resistant
genotype and then increased at 6 hpi and slightly more at
24 hpi. In contrast, in the susceptible genotype, EXO70A1
was expressed at low levels at 2 hpi (TM<1), with a
steep incline at 6 hpi to TMM = 12.8, superseding the



Khorramdelazad et al. BMC Genomics (2018) 19:108

Page 11 of 21

Gene

4 ERF

—Res
-=Sus

Normalised count
(TMM)

Time
(hours post inoculation)

Gene

4 PR2
«PR4

Normalised count
(TMM)

—Res
== Sus

0.1-

2 6 24

Time
(hours post inoculation)

# CDPK
LRR-RKs

<& MYB49
7 PP2A

Genotype

= PR10

< UPL-BOI
Genotype

Fig. 8 Expression levels of selected genes with exceptional DE trends in the earlier stages of the defence response to A. lentis in ILL7537 and ILL6002
over 2, 6,and 24 hpi. Expression levels of the following genes are presented: CDPK, ERF and LRR-RK, with PP2A and MYB49 as examples of stable
reference genes (a); Delta (12)-FAD, EXO70AT1 and XTH (b); PR genes and UPL-BOI (c); ARP, PGIP and PMEI (d). A full line represents the expression level
in the resistant genotype ILL7537 and the dashed line represents the expression level of the gene in the susceptible genotype ILL6002. Y-axis is in
logarithmic scale, error bars represent standard error values between replicates

10 Gene
= Delta (12)-FAD
A EXO70A1
- XTH
Treatment
- T
1-
2 6 24
Time
(hours post inoculation)
¥
S S
100- 3
3 =
l P Gene
. ARP
10- - PGIP
PMEI
i l
Genotype
—Res
- ' - Sus
0.1-
2 6 24

Time
(hours post inoculation)

expression levels at the resistant genotype, before declin-
ing again at 24 hpi to TMM of 2.5, with a log,FC of 4.44
(Fig. 8b). Delta (12)-FAD demonstrated modest expres-
sion levels of just over 1 TMM in the resistant genotype,
but was still up-regulated comparing its expression in the
susceptible lentil genotype, which was negligible (Fig. 8b).

A noticeable expression pattern was observed for patho-
genesis related proteins PR-2—O-glycosyl hydrolase family
17 (PR2) and PR-4-Thaumatin-like (PR4) proteins. PR2
was over-expressed in ILL7537 at all time points, from
which the most significant differential over-expression
between the genotypes occurred at 2 hpi with a log,FC
of 3. PR4 demonstrated similar expression to PR2 at 2 hpi
with a log,FC of 1.65 between the resistant and suscepti-
ble genotypes, however, its expression in the susceptible
genotype then increased to match the same expression
level as the resistant genotype at 6 hpi and even further at
24 hpi (Fig. 8c¢).

Plant invertase pectin methylesterase inhibitor (PMEI)
was slightly over-expressed in comparison to the suscep-
tible genotype at 2 hpi, with a log,FC of 1.6, followed
by a gradual increase in expression at 6 hpi and 24 hpi
in both genotypes (Fig. 8d). Polygalacturonase inhibitor
(PGIP), which encodes a plant extracellular leucine-rich

repeat protein [54], was over-expressed in the resistant
genotype at 2 hpi with a TMM of 4.3 and log,FC of 3.14 in
comparison with the susceptible genotype. Another fun-
gal inhibitor with high expression across all experimental
groups is the Auxin-repressed protein (ARP). ARP was
found to be DE between the genotypes at 2 hpi, with a nor-
malised count of 158 in the resistant genotype compared
with 21.6 in the susceptible, resulting in a log,FC of 2.9
(Fig. 8d).

Secondary defence responses (6 hpi)

Differential gene expression of resistant genotype at 6 hpi
compared to 2 and 24 hpi and to susceptible genotype at
the same time-point revealed additional functional genes.
A significant increase in the expression from 2 to 6 hpi
was noticed in the susceptible genotype for the anti-fungal
genes mentioned at the primary defence stage (PMEI,
PGIP, ARP; Fig. 8d). An expression pattern similar to that
of the anti-fungal genes mentioned above was observed
for Laccase diphenol oxidase (PPOI), showing a slight up-
regulation at 6 hpi in the susceptible genotype, with a
normalised count of 3 and log, FC of 3.2 compared to 2 hpi
and overall up-regulation in the resistant genotype, mainly
at 2 hpi (Fig. 9a).
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Bet v 1 domain PR-10 (PRI0) protein demonstrated
quite an opposite expression pattern in the resistant and
the susceptible genotypes. In the susceptible genotype,
PRI0 was fairly highly expressed at 2 and 24 hpi with
TMM of 17.3 and 18.3, dropping slightly to 11.6 at 6 hpi
(Fig. 8c). In contrast, the expression of PR10 in the resis-
tant genotype was highest at 2 hpi (TMM = 5.6), before
dropping to half of that at 24 hpi, with overall lower
expression levels than in the susceptible genotype at all
time points, with log,FC of 2.7, 2.1 and 2.8 at 2, 6, and
24 hpi, respectively. Quite similar expression pattern was
observed for Botrytis susceptible interactor E3 ubiquitin
protein ligase (UPL-BOI), with a peak in its expression at
6 hpi in the resistant genotype with TMM of 2.5, dropping
to almost non-existent levels at 24 hpi. In contrast to the
resistant genotype, UPL-BOI was up-regulated at 24 hpi
with a TMM = 4 (Fig. 8¢).

Superoxide dismutase (SOD) showed high expression
levels at 2 and 6 hpi in the resistant genotype with
TMM>70, dropping to TMM = 40 at 24 hpi, with match-
ing trend at the susceptible genotype, though with lower
expression levels (log,FC of about 1.5 at 24 hpi) (Fig. 9a).
An RNA binding motif of the heterogeneous nuclear
ribonucleoproteins class (RBP-hnRNP) also showed its

highest expression at 6 hpi in ILL7537, with a TMM of 5.
RBP-hnRNP showed significant over-expression in the
resistant genotype at all time points, but chiefly at 24 hpi
with a log, FC of 3.3 (Fig. 9a).

Tertiary defence responses (24 hpi)
The expression levels of senescence-associated gene
(SAG) were very high, peaking at 24 hpi in the resistant
genotype with a normalized count of 1714 and log,FC
of 3 compared with the susceptible one at the same time
point (Fig. 9b). Interestingly, the expression of SAG in
the susceptible genotype was a mirroring image of the
resistant one, with completely opposite pattern, showing
lowest expression levels at 2 hpi (TMM = 213), increas-
ing to a maximum at 6 hpi (TMM>1000) and dropping
again at 24 hpi to a TMM of approximately 550. Two other
genes, the E3 Ubiquitin ligase RING/U-box and Receptor-
like Serine/Threonine kinase 1 (R-S/T-K1), expressed with
exactly the same pattern of the resistant vs. susceptible
genotypes as SAG, however, with much lower expression
levels (Fig. 9b).

Gibberellin signalling DELLA protein and Gib-
berellin receptor GIDI exhibited very similar expression
trends: a gradual increase in expression with time and
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over-expression in the resistant genotype, with an average
log, FC across all time points of 2.13 and 1.3, respectively
(Fig. 9¢c). GID1 expression was approximately 2.5x higher
than that of DELLA at all time points. The expression of
NB-ARC domain disease resistance protein demonstrated
similar trend, gradually increasing throughout the
experiment and up-regulated in the resistant genotype
across all time points, mainly at 24 hpi with a TMM of 5
compared to 2 in the susceptible genotype and a log,FC
of 1.85 (Fig. 9b). The E3 Ubiquitin ligase SHPRH also
demonstrated similar gradual increase in expression in
the susceptible genotype, with moderate expression levels
at 24 hpi with a TMM of 8, compared to its much elevated
expression in the resistant genotype at the same time
point, with a TMM of 30, giving a log,FC of 1.9.

Reference genes

A number of genes showed stable expression patterns at
moderate levels across all time points and experimental
groups assessed. A Myb-related transcription factor-like
protein (MYB49) showed the most stable expression, with
an average TMM normalised count of 7.00 £ 0.38, fol-
lowed by a protein phosphatase 2A (PP2A) and a P72
DEAD box, displaying average TMM of 6.90 £ (44) and
8.3 £ (5), respectively (Fig. 8a). These would potentially
be useful for future reference-based comparisons of DE of
specific gene target studies, such as RT-qPCR.
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RT-qPCR validation

The DE patterns of five genes involved in the lentil defence
to A. lentis were validated using RT-qPCR and compared
to those obtained from the RNA-Seq transcriptome anal-
ysis. PP2A demonstrated a constant expression across all
time points and both genotypes, with a standard devia-
tion of just +0.62 in its Cq values, similar to its RNA-Seq
derived expression, described in the previous section and
therefore it was used as a reference gene in the RT-qPCR
analysis.

The target genes, encoding antifungal compounds and
transcriptional regulators, consisted of PR2, PRI0, RBP,
DELLA and PGIP and the DE of each gene between
the resistant (ILL7537) and susceptible (ILL6002) geno-
types was measured at each time point. The DE results
revealed similar expression patterns to those measured by
RNA-Seq across the three time points, with significant
over-expression at the ILL7537 genotype, with the excep-
tion of PR10 (under-expressed in ILL7537 according to the
RNA-Seq analysis), whose expression was slightly over-
expressed at 6 hpi and slightly under-expressed (although
not significantly) at 2 and 24 hpi (Fig. 10).

Discussion

Exploratory data analysis

The clear separation of the resistant genotype sam-
ples from the susceptible genotype samples supports the
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reported genetic distance between the genotypes [55].
Other than the outlier sample (4C), all samples clus-
tered along with their respective replicates, validating the
reproducibility of the assay and the different expression
patterns of each experimental group.

Gene set enrichment analysis

Significant enrichment of metabolic regulation pathways
was observed and these included changes to photosynthe-
sis genes. This enrichment is likely to be directly related
to the bioassay method, as both treated (inoculated with
fungus) and control (sprayed with HyO only) plants were
placed in darkness after fungal inoculation for 24 h in
order to enhance pathogen germination on the plant sur-
face [56, 57]. In addition to the darkness treatment, A.
lentis causes severe leaf and stem lesions and eventually
wilting, which adversely affects the photosynthesis capa-
bilities of the plant and therefore would have contributed
to changes in photosynthesis related transcripts [58, 59].

Gene expression

The DE defence-related genes characterised in this study
could be divided into six groups, based on their function
and timing of expression relevant to the defence against
the A. lentis infection.

Recognition and early signalling

In the primary resistance response, two protein kinases
were identified to play key roles in pathogen recogni-
tion and early signalling: a leucine-rich repeat receptor
kinase (LRR-RK) and a calmodulin domain protein kinase
(CDPK). The leucine-rich repeat motif in LRR-RK and
serine/threonine kinase-like domain in CDPK are known
to be involved in pathogen invasion recognition and sig-
nalling, respectively, to trigger the defence response dur-
ing host-pathogen interaction [15, 51, 60, 61].

In a related defence-response pathway, activation of
ethylene response factor (ERF) positively regulates the
expression of Ca?*/Calmodulin-dependant protein kinase
(SICCaMK), recently described as a key signalling gene in
resistance of tomato to Sclerotinia sclerotiorum [62, 63].
Considering that CDPK demonstrated an expression pat-
tern highly matching that of ERF, along with its sequence
and structural similarity to CCaMK [64, 65], this suggests
the CDPK-like transcript detected in the present study as a
key early signalling molecule in lentil, following the recog-
nition of A. lentis invasion. The LRR-RK, which showed
similar expression pattern to ERF and CDPK in the resis-
tant genotype, is likely to trigger the lentil CDPK-like
gene for downstream signalling by activating ERF [51, 61,
66]. The reduced levels of LRR-RK that were observed
in the susceptible genotype (ILL6002) at this early stage,
followed by an increase in its expression at later stages,
in correlation with elevated levels of ERF and CDPK,
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suggests a late and over-stressed defence response in this
genotype.

Structural defence response

Subsequent to early signalling, structural and biochemical
responses to the invading A. lentis hyphae were detected.
As a physical barrier, lentils often accumulate structural
compounds at the point of penetration, also known as
papilla formation [7, 8] (Fig. 11). Accumulation of xyloglu-
can endotransglucosylase/hydrolase (XTH) and its func-
tion in elongation and restructure of cell walls as part of a
physical barrier, was reported in the response of tomato to
Cuscuta reflexa [67]. Detection of elevated transcript lev-
els of XTH at 2 hpi in both genotypes in the current study,
suggests early response to the inoculation and preparation
for papilla formation. One more structural gene, encod-
ing laccase diphenol oxidase (PPOI), was over-expressed
in the resistant genotype at 2 hpi and to a lesser extent
at 6 hpi, the timing of actual papilla formation [7]. PPOI
prevents in vivo pathogen spread [68] by cross-linking cell
wall polymers and triggering a hypersensitive response
through production of free radicals [69]. Another gene
associated with papilla formation in response to spore ger-
mination is the gene encoding for Exocyst subunit 70A1
family protein (Exo70A1), through its cellular polarity reg-
ulating function [53, 70, 71]. The under-expression of
Ex070A1 in the susceptible genotype at 2 hpi was com-
pensated by a steep incline in expression at 6 hpi. The
expression levels of both Exo70A1 and PPO! were low
at 2 hpi in the ILL6002 susceptible genotype and then
increased to “catch up” with the resistant genotype only
at 6 hpi, suggesting a delayed recognition and response to
A. lentis compared to ILL7537.

Another gene which was over-expressed in the resistant
genotype and practically missing from the susceptible one,
thus seemingly playing a part in the structural defence
response to A. lentis, is Delta (12)-FAD. FAD proteins are
essential for maintaining cellular function and influence a
variety of processes such as the regulation of membrane
fatty acid profiles in different tissues, different devel-
opmental stages, and in response to abiotic and biotic
stresses [72]. Accumulation of Delta (12)-FAD mRNA was
previously demonstrated in parsley cells following treat-
ment by a fungal elicitor, Pep25, and was reported to be
involved in the complex defence response by reinforcing
existing cell walls [73].

Biochemical defence response

During a biochemical defence response to A. lentis, lentils
use anti-fungal compounds including pathogenesis-
related (PR) proteins and reactive oxygen species (ROS),
as was previously described [8, 13]. In the present study,
members of three families of PR proteins were identi-
fied to be significantly DE in ILL7537 in response to
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Fig. 11 Defence-related molecules involved in response of lentil to A. lentis during the first 24 h

A. lentis when compared to ILL6002. The three PR
protein families include: PR2, 4 and 10 (Fig. 11 and
Table 5). PR2 proteins catalyse the hydrolytic cleavage
of 1,3--D-glucosidic linkages in (3-1,3-glucans present
in the fungal cell walls, and cause cell lysis and death
in fungi [74]; and were shown to play a vital role
in defence against pathogenic fungi such as Fusarium
oxysporum in chickpea [75]. PR2 protein is involved
not only in hydrolysis of fungal-cell components, but
it also releases elicitors from the walls of fungi, which
in turn may be recognised by plant receptor molecules
and stimulate various downstream signalling and defence
responses [76]. PR4 protein disrupts fungal cell polarity
and inhibits its growth, reacting with nascent chitin at
the hyphal tip [13] and its involvement in lentil defence
against A. lentis was previously characterised in some
depth [77].

In contrast, PR10, which was over-expressed in the sus-
ceptible genotype at all time points, is known to exhibit
RNase activity on invading intracellular fungal hyphae
[78] and was shown to accumulate and correlate with
increasing fungal biomass [79]. Therefore, the expres-
sion of PRI0 indicates that the susceptible genotype was
challenged by higher fungal load throughout the exper-
iment. The Botrytis susceptiblel interactor (UPL-BOI)
gene showed a similar expression trend to that of PRIO0.

UPL-BOLI is an E3 ubiquitin protein ligase, which regulates
pathogen resistance responses in Arabidopsis to Botrytis
cinerea [80]. Therefore, UPL-BOI may be involved in
expression regulation of PRIO in lentil in response
to A. lentis.

Other DE genes with known antifungal activity were
plant invertase pectin methylesterase inhibitor (PMEI),
polygalacturonase inhibitor (PGIP), and auxin-repressed
protein (ARP), all significantly up-regulated at 2 hpi in
1117537 following A. lentis inoculation. PMEI reduces the
susceptibility of the plant wall to fungal endopolygalactur-
onases and was previously reported to aid in Arabidopsis
defence to B. cinerea and Pectobacterium carotovo-
rum [81, 82], in wheat defence to Bipolaris sorokini-
ana and E graminearum [83] and in pepper defence to
Xanthomonascampestris pv. vesicatoria [84]. Similarly,
PGIP limits the destructive potential of fungal polygalac-
turonases through specific binding and inhibition of them
[85]. PGIP also increases the production of oligogalac-
turonides, leading to the accumulation of phytoalexin,
an antibiotic, in plant tissue [86], as reported in tomato
defence to B. cinerea [87] and Lathyrus sativus defence to
Aspergillus niger and Rhizopus spp. [88]. Meanwhile, ARP
inhibits pathogens by either producing auxin or manipu-
lating host auxin [89] and was shown to be involved in rice
defence to Magnaporthe grisea and Striga hermonthica
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Table 5 Key genes in lentil defence-response to A. lentis
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Functional groups Defence gene name

Gene abbreviation Dominant genotype®

Recognition: Receiving &
signalling molecules

LRR receptor-like kinase

Receptor-like serine/ threonine protein kinase 1
NB-ARC domain disease resistance protein

Botrytis susceptible interactor E3 ubiquitin protein ligase

Early structural response:
Papilla formation

Exocyst subunit 70A1 protein

Laccase diphenol oxidase

Delta (12)-fatty-acid desaturase

Xyloglucan endotransglucosylase/ hydrolase XTH

Early Biochemical response:
Pathogenesis-related &
anti-fungal compounds

PR protein 2 — O-glycosy!l hydrolase

PR protein 4 — Thaumatin family

PR protein 10 — Bet V | type

Plant invertase pectin methylesterase inhibitor

Auxin-repressed protein

Polygalacturonase inhibitor

Superoxide dismutase
Regulation of defence-related

transcripts: DNA & RNA binding
proteins

Ethylene response factor

Heterogeneous nuclear ribonucleoprotein RNA binding motif

Senescence associated gene
Hypersensitive response: Cell
death & SAR

Gibberellin signalling DELLA protein

Gibberellin receptor

E3 ubiquitin-protein ligase SHPRH

Calmodulin domain protein kinase-like

RING/U-box E3 ubiquitin protein ligase

CDPK-like

LRR-RK ILL6002

R-S/T-K1

NB-ARC ILL7537

UPL-BOI

EXO70A1

PPOI

Delta (12)-FAD ILL7537
ILL6002

PR2 ILL7537

PR4

PR10 ILL6002

PMEI

ARP ILL7537

PGIP ILL7537

SOD ILL7537

ERF

RBP-hnRNP ILL7537

SAG

RING/ U-box

DELLA ILL7537

GID1 ILL7537

UPL-SHPRH

2Dominant genotype was specified for genes whose expression was generally up-regulated at all time points in one of the genotypes: ILL7537 - Resistant, ILL6002 —

Susceptible

[90]. Together, PMEI, PGIP and ARP, thus appear to oper-
ate in the lentil ILL7537 resistant genotype to control
the spread and growth of A. lentis in the early stages
following invasion.

Hypersensitive reaction and cell death

A hypersensitive reaction in the infected plant is trig-
gered by an oxidative burst and is characterised by an
increase in free radicals that leads to localised cell death.
As previously determined through histopathological and
molecular studies, this defence response is likely to be
important in resistant lentil genotypes [7, 8, 13]. This was
further demonstrated in the current study through DE
of the senescence associated gene (SAG), which highly

over-expressed at 24 hpi in ILL7537. SAGs are induced
by free radicals, such as ROS and H;O,, leading to a
programmed cell death [91, 92] and have been impli-
cated in the defence of Arabidopsis to several biotrophic
pathogens [93]. This is the first report of SAG involvement
in defence to a necrotrophic pathogen. A similar expres-
sion trend was observed for the gene encoding NB-ARC
domain disease resistance protein (NB-ARC), a domain of
NB-LRRs that regulates signal transduction leading from
recognition to hypersensitive response-signalling and cell
death [94, 95]. The gene encoding RING/U-box protein
(RING/U-box), which is another E3 ubiquitin ligase, was
also significantly over-expressed at the same time points
as SAG and NB-ARC. RING/U-box proteins are involved
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in the hypersensitive defence response of tomato to
Phytophthora infestans [96] and in pathogen-instigated
programmed cell death of Tobacco [97]. Therefore, it can
be assumed that SAG, NB-ARC and RING/U-box are key
control genes for the hypersensitive response of lentil to
A. lentis, triggered in an effort to contain the invading
pathogen.

Following the hypersensitive response, the plant acti-
vates mechanisms to protect its healthy cells from further
damage, as demonstrated by the over-expression of super-
oxide dismutase (SOD) in ILL7537 genotype and its ele-
vated expression levels at 6 hpi. This serves to regulate
the redox status of the plant cells and protect from the
oxidative burst and generated ROS [98].

Systemic acquired resistance (SAR)

Systemic acquired resistance (SAR) is the long distance
signalling of pathogen recognition and defence induced
by signal molecules and plant hormones. This process
may confer long-lasting protection against an invading
pathogen and together with the hypersensitive reaction,
signal the last stage of early defence responses [99]. In the
defence transcriptome of lentil to A. lentis, three puta-
tive SAR-associated genes, Gibberellin signalling DELLA
protein (DELLA), Gibberellin receptor (GIDI) and an
E3 ubiquitin ligase (UPL-SHPRH), had similar DE pat-
terns with highest transcription levels observed at 24 hpi
and general over-expression in ILL7537. DELLA pro-
teins promote defence to necrotrophic fungal pathogens
by activating jasmonic acid/ethylene-dependent defence
responses [100] and by regulating ROS levels [100, 101].
GID1 binds to DELLA, which then leads to ubiquitina-
tion and degradation of DELLA during SAR signalling
[102, 103]. Meanwhile, E3 UPLs are involved in recog-
nition, signalling, hypersensitive reaction and cell death
mechanisms in Arabidopsis [104, 105] and rice [106—109].
Therefore, considering their expression trends in previous
and current studies, we suggest that DELLA, GID1 and
UPL-SHPRH proteins are involved in SAR signalling in
the early lentil defence mechanisms to A. lentis.

Transcription regulators

Since the differences observed between the resistant and
the susceptible genotypes in the current study were tran-
scriptomic changes, it is also useful to observe changes
in the expression of transcription regulators. Therefore,
a DE DNA binding transcription factor was identified,
encoding Ethylene response factor (ERF). ERF stimu-
lates the expression of PR proteins gene promoters and
as discussed earlier, it increases the expression level of
early signalling molecules [62, 64, 66]. The decline in
ERF’s expression in the resistant genotype at 24 hpi, may
indicate the success of the early defence responses men-
tioned previously for ILL7537, whereas the late response
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of ILL6002 required continuous elevated expression of the
defence-related proteins.

Moreover, an RNA binding protein of the heteroge-
neous nuclear ribonucleoproteins (RBP-hnRNPs) class,
up-regulated in ILL7537, is a member of an RNA
binding transcriptional factors family that regulate post-
transcriptional gene expression [110]. These RNA binding
transcriptional factors play key role in regulating tran-
scription of genes in response to biotic and a-biotic stress
in plants [111, 112]. The hnRNP-like protein AtGRP7 have
been shown to play a regulatory role on SOD and ARP in
Arabidopsis, by affecting the processing of their regula-
tory microRNAs [113]. AtGRP7 was further suggested to
be involved in defence against fungal and bacterial infec-
tions in Arabidopsis by interacting with specific LRR-RKs
[114]. The hnRNP that was identified in this study was up-
regulated in ILL7537, in a pattern matching that of SOD
and ARP (Figs. 8 and 9), suggesting it performs a similar
function to AtGRP7.

Reference genes and RT-gPCR validation

Protein phosphatase 2A (PP2A) and P72 DEAD box RNA
helicase have previously been used as reference genes for
relative DE analysis in plant-pathogen interaction studies
[115, 116]. Their stable expression across all the treat-
ments and samples in the current study, along with the
RT-qPCR DE results of the selected defence genes, which
overall conform to those found in the RNA-Seq analysis,
validate the reliability and reproducibility of the RNA-Seq
quantification and downstream DE analysis.

MYB49, whose exact function is yet to be discovered, is a
member of a diverse family of DNA-binding transcription
factors [117, 118]. Considering its most stable expression
in our data, which supersedes PP2A and P72 DEAD box,
it should also be considered as a reference gene in similar
plant-pathogen DE studies.

Conclusions

The results of the current study are highly concordant
with the physiology of the interaction between lentil and
A. lentis and similar pathosystems [7]. Overall represen-
tation of the molecules involved in the defence response
of lentil to A. lentis during the first 24 h is summarised in
Table 5 and Fig. 11.

The majority of time-dependant DE defence-related
genes between the ILL7537 resistant genotype and the
ILL6002 susceptible genotype were found at 2 hpi, sug-
gesting that the resistant genotype demonstrated an ear-
lier and faster detection and signalling response to the
A. lentis infection, thus being better prepared molec-
ularly to deploy critical defence response proteins. In
addition, overall higher expression levels of structural
defence response genes were found in the resistant geno-
type regardless of the time post inoculation, indicating an
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innate ability to form stronger structural barriers against
the fungus compared with the susceptible genotype.

The information provided by this study further extends
the available knowledge of lentil resistance to A. lentis
infection and may assist in future efforts to identify
and develop additional resistant cultivars and manage-
ment strategies, thereby reducing the losses caused by the
pathogen.
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