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Abstract

Background: Typical human genome differs from the reference genome at 4-5 million sites. This diversity is
increasingly catalogued in repositories such as ExAC/gnomAD, consisting of >15,000 whole-genomes and >126,000
exome sequences from different individuals. Despite this enormous diversity, resequencing data workflows are still
based on a single human reference genome. Identification and genotyping of genetic variants is typically carried out
on short-read data aligned to a single reference, disregarding the underlying variation.

Results: We propose a new unified framework for variant calling with short-read data utilizing a representation of
human genetic variation – a pan-genomic reference. We provide a modular pipeline that can be seamlessly
incorporated into existing sequencing data analysis workflows. Our tool is open source and available online:
https://gitlab.com/dvalenzu/PanVC.

Conclusions: Our experiments show that by replacing a standard human reference with a pan-genomic one we
achieve an improvement in single-nucleotide variant calling accuracy and in short indel calling accuracy over the
widely adopted Genome Analysis Toolkit (GATK) in difficult genomic regions.
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Background
Accurate identification and genotyping of genetic varia-
tion, or variation calling, in high-throughput resequenc-
ing data is a crucial phase in modern genetics studies.
Read aligners [1–3] have been successful at aligning short
reads to a reference genome (e.g. GRCh37). Among the
many analyses downstream of read alignment, here we
focus on variation calling. Variation calling is the pro-
cess of characterizing one individual’s genome by finding
how it differs from the other individuals of the same
species. The standard approach is to obtain a set of reads
from the donor and to align them against a single refer-
ence genome. The most recent human reference genome,
GRCh38, improves on the previous reference version
GRCh37 in many respects, including mitochondrial and
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centromeric sequence quality. Despite containing alter-
native haplotypes for certain loci, GRCh38 is still largely
a haploid consensus reference sequence. Thus, it has
been meant to be supplemented by the various databases
capturing human genetic variation. Following the align-
ment of short reads to the reference, multiple tools may
be utilized to call variants with respect to the genome
(e.g., [4–6]).
However, our current knowledge about the human

genome is pan-genomic [7]: after the first human genome
was sequenced, the cost of sequencing has decreased
dramatically, and today many projects are curating huge
genomic databases. These efforts include the 1000Human
Genomes Project [8], UK10K [9], and the Exome Aggre-
gation Consortium and the genomeAggregation Database
(ExAC/gnoMAD) [10], the latter consisting of 126,216
exome sequenced and 15,136 whole-genome sequenced
individuals. These efforts have already had a significant
impact on population and disease genetics. For instance,
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the pathogenicity of many suspected predisposition vari-
ants has been questioned after the discovery of the
variants to be relatively frequent in the human population
[10]. Supplementing this burgeoning data are the
sequencing efforts focusing on phenotypes, for example
cancer [11].
In order to align reads to the pan-genome we use pan-

genomic indexing [12–20]. That is, instead of having one
reference sequence, an entire collection of sequences is
indexed, allowing the reads to be mapped against any
genome of the reference set or even to some recombina-
tion of them.
There is no consensus about how to represent a pan-

genome [7]. Previous efforts can roughly be categorized
into three classes: one can consider (i) a graph represent-
ing a reference and variations from it, (ii) a set of reference
sequences, or (iii) a modified reference sequence.
An example of class (i) approach to pan-genomic index-

ing is to represent the pan-genome as a graph that rec-
ognizes all possible variation combinations (population
automaton), and then use an extension of the Burrows-
Wheeler Transform to support efficient read alignment
[16]. Experiments on variation-rich regions of human
genome show that the read alignment accuracy is greatly
improved over the standard approach [16]. An impor-
tant caveat of this approach is the indexing phase: the
size of the index is exponential in the worst case. Thus,
typically it is necessary to drop some variants to achieve
a good expected case behavior [16]. Alternatively, one
can enumerate all close-by variant combinations and
index the resulting variant contexts (i.e. short subpaths
in population automaton) in addition to the reference
[12, 14, 17, 18]. Yet, in these approaches, the context
length needs to be short to avoid exponential blowup.
Class (ii) approaches consider the pan-genome as a

set of individual genomic sequences [13, 15, 21]. The
Burrows-Wheeler Transform of those sequences is of lin-
ear size and the shared content among individuals trans-
lates into highly compressed indexes. Lately, there have
been proposals to use Lempel-Ziv indexing to obtain an
extremely well compressed index that support efficient
read alignment [15, 21, 22].
Class (iii) approaches aim at modifying the reference

or encoding variants into the reference to improve read
alignment accuracy [14, 20].
The scalability of indexed approaches building on the

simple class (ii) model of a set of sequences makes them
attractive choice as a basis of variation calling. Unfortu-
nately, unlike with class (i) and class (iii) approaches, the
literature on them has primary concentrated on the time
and space efficiency aspects, neglecting the final goal of
enhancing variation calling. This article aims to fill this
gap: We propose a model that relies on the class (ii),
and we show that by adding little structure to it we can

design a flexible pipeline for variation calling that can
be seamlessly incorporated into sequencing data analysis
workflows.
We represent the pan-genome reference as a multi-

ple sequence alignment and we index the underlying set
of sequences in order to align the reads to the pan-
genome. After aligning all the reads to the pan-genome
we perform a read pileup on the multiple sequence align-
ment of reference genomes. The multiple sequence align-
ment representation of the pan-genome lets us extract
a linear ad hoc reference easily (see “Methods” section).
Such a linear ad hoc reference represents a possible
recombination of the genomic sequences present in the
pan-genome that is closer to the donor than a generic ref-
erence sequence. The ad hoc reference is then fed to any
standard read alignment and variation detection work-
flow. Finally, we need to normalize our variants: after
the previous step, the variants are expressed using the
ad hoc reference instead of the standard one. The nor-
malization step projects the variants back to the stan-
dard reference. Our overall scheme to call variants is
illustrated in Fig. 1.

Results
PanVC, our method for variant calling aligns the reads
against multiple reference genomes (represented as a mul-
tiple sequence alignment) using by default CHIC aligner,
a read aligner that specializes in repetitive collections
[23]. Using those alignments, it generates an ad hoc ref-
erence which is given to GATK workflow instead of the
standard reference (See Fig. 1 and “Methods” section).
In our experiments, this approach is labeled MSAchic. As
an alternative, we implemented a PanVC version that does
not rely on CHIC Aligner, but instead, uses BWA to align
against each sequence in the reference. This approach is
labelled MSAbase
Additionally, we also compare against the pan-genome

reference graph approach [16], which we modified also to
output an ad hoc reference (see “Methods” section), so
that one can apply the same GATK workflow also for that.
This approach is labelled GRAPH.
Finally, as a baseline, we considered GATK workflow

[4] that aligns the reads against a reference genome using
BWA and analyses the resulting read pileup. This baseline
approach is labelled GATK.

Experimental setup
Our experimental setup consists of a hidden donor
genome, out of which a set of sequencing reads is
given as input to the variation calling prediction work-
flows. Our framework PanVC, and also the graph-based
approach will use reference set of 20, 50 and 186
genomes. GATK baseline method is limited to use only
one reference.
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Fig. 1 Schematic view of our PanVC workflow for variation calling, including a conceptual example. The pan-genomic reference comprises the
sequences GATTATTC, GATGGCAAATC, GTTTACTTC and GATTTTC, represented as a multiple sequence alignment. The set of reads from the donor
individual is GTTT, TTAA, AAAT and AATC. CHIC aligner is used to find the best alignment of each read. In the example, all the alignments are exact
matches starting in the first base of the third sequence, the third base of the first sequence, the seventh base of the second sequence, and on the
eight base of the second sequence. After all the reads are aligned, the score matrix is computed by incrementing the values of each position where
a read aligns. With those values, the heaviest path algorithm extracts a recombination that takes those bases with the highest scores. This is the ad
hoc genome which is then used as a reference for variant calling using GATK. Finally the variants are normalized so that they are using the standard
reference instead of the ad hoc reference

Our experiments focus on variation calling on com-
plex regions with larger indels and/or densely located
simpler variants, where significant improvements are
still possible. The reason for that is that graph-
based pan-genome indexing has been already thor-
oughly evaluated [16] for mapping accuracy on human
genome data. From those results one can infer that
on areas with isolated short indels and SNVs, a reg-
ular single-reference based indexing approach with a
highly engineered alignment algorithm might be already
sufficient.
Therefore, we based our experimental setup on the anal-

ysis of highly-polymorphic regions of the human genome
[24, 25] that was created in a previous study [16]. This test
setup consists of variation-rich regions from 93 genotyped
Finnish individuals (1000 genomes project, phase 1 data).

The 93 diploid genomes gave us a multiple alignment of
186 strains plus the GRCh37 consensus reference.
We chose variation-rich regions that had 10 SNVs

within 200 bases or less. The total length of these regions
was 2.2 MB. To produce the ground-truth data for our
experimental setup, we generated 221559 100 bp single-
end reads from each of the Finnish individuals giving an
average coverage of 10x.

Evaluation
All evaluated methods output variation calling results
that are projected with respect to the standard reference
genome. Our hidden donor genome can also be repre-
sented as a set of variants with respect to the standard
reference genome. This means that we can calculate the
standard prediction success measures such as precision
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and recall. For this, we chose to define the prediction
events per base, rather than per variant, to tolerate bet-
ter invariances of variant locations as have been found to
be critical in a recent study [26] (See “Methods” section,
“Experimental set-up”).
In addition to precision and recall, we also compute

the unit cost edit distance of the true donor and the pre-
dicted donor. This is defined as the minimum amount of
single base substitutions, insertions, or deletions required
to convert the predicted donor into the true donor. Here
the sequence content of the true donor is constructed
by applying its set of variants to the standard reference
and the sequence content of the predicted donor is con-
structed by applying the predicted variants to the standard
reference.
There are good incentives to use this evaluation

measure to complement precision and recall: first, it
gives a single number reflecting how close the pre-
dicted sequence is to the ground truth. Second, the
projection from the ad hoc reference to the standard
reference may loose information. Third, repeat- and
error-aware direct comparison of indel variant pre-
dictions is non-trivial and only handled properly on
deletions [26].
As our experiments are on human data, where genomes

are diploids, the heterozygous variants may overlap,
which causes some changes to the evaluation measures
above. That is, when applying the variants to the ref-
erence, we omit variants that overlap already processed
ones, and the result is thus a single sequence consist-
ing of all compatible variants. We follow this approach
also when computing the precision and recall measures
to make the “per base” prediction events well-defined.
The results are illustrated in Tables 1 and 2. Row GATK
of Table 1 stands for the GATK workflow. Rows MSA +
GATK of Table 1 stand for the multiple sequence align-
ment -based pan-genome indexing scheme specified in
the “Methods” section. Row Graph + GATK of Table 1 is
using the graph-based indexing of [16] modified to make
it compatible with our workflow. The results are averages
over all the donors.

Table 1 Edit distance from the predicted donor sequence to the
true donor. The average distance between the true donors and
the reference is 95193,9

Pan-genome reference size

1 20 50 100

GATK 74695.9 - - -

MSAbase + GATK - 2885.5 1956.9 1204.7

MSAchic + GATK - 1349.3 1117.4 1099.3

Graph +GATK - 3230.4 3336.8 2706.9

Table 2 Precision and recall of our method MSAchic compared to
GATK

Measure GATK 20 50 100

SNV precision 0.992161 0.998585 0.998863 0.998773

SNV recall 0.904897 0.997098 0.998695 0.999072

Indel precision 0.364853 0.996514 0.99731 0.997778

Indel recall 0.0624981 0.982659 0.985723 0.985958

Discussion
Our results indicate that using pan-genome indexing
improves variation calling significantly on highly-
polymorphic regions of the human genome: the edit
distance between the predicted donor and the true donor
is much smaller already when 10 references are used in
place of one, and it keeps decreasing when more refer-
ences are used. When the evaluation metric is precision
and recall, the same behavior is observed. In particular,
indel calls are improved significantly after the use of
pan-genome indexing. Our results reconfirm previous
findings about the graph-based approach to pan-genome
indexing for specific problems [12, 18]. The approach
of tailoring the reference has recently been reported to
be beneficial even without using any pan-genomic infor-
mation; an iterative process to augment a reference and
realign has been studied in [19].
A unique feature of our proposal is its genericity. For

example, our approach works both on graph representa-
tions and on multiple alignment representations of a pan-
genome. Earlier studies on pan-genome indexing have
mostly focused on read alignments, which are then nor-
malized to the reference to achieve compatibility with
the existing variant calling workflows. Instead, here we
proposed to globally analyse all read alignments and to
produce an ad hoc reference that can be used in place of
the standard reference. We keep the projection between
the ad hoc reference and the standard reference, so that
the variation calling results can always be normalized to
the standard reference afterwards.
In addition to variation calling, our methods could be

extended to other applications such as to support hap-
lotype analysis in a similar way to a previous study [18].
Namely, one can modify the heaviest path algorithms to
produce two predictions. One way to do this is to remove
the coverages along the path of the first ad hoc reference
and run the heaviest path algorithm again to produce a
second ad hoc reference. We leave as future work to make
our method fully scalable. We have tested it on multi-
ple alignments of size 1000 times a human chromosome,
and with such enormous data sets our analysis pipeline
takes weeks to run on a high-performance computer with
1.5 TB of main memory. The current version of our soft-
ware already contains several engineering solutions to
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optimize the space usage of intermediate result files and
exploit parallelism for maximum speed. Together with our
collaborators we are also working on a fully distributed
version of the pan-genome analysis pipeline. However,
already in its current shape, our software is fully functional
in restricted settings, such as calling variants in difficult
regions of moderate size. Such feature can be incorpo-
rated in a full genome analysis workflow, that processes
easy regions using more standard techniques.

Conclusions
Prior work has focused on graph representations of pan-
genomes, usually for specific regions [18]. We show that
a multiple sequence alignment can be used as a practi-
cal alternative, to keep the structure of a pan-genomic
reference.
Our experiments show that by replacing a standard

human reference with a pan-genomic one we achieve an
improvement in single-nucleotide variant calling accuracy
and in short indel calling accuracy over the widely adopted
Genome Analysis Toolkit (GATK) in difficult genomic
regions.

Methods
In the following we provide a detailed description of
each component of our workflow (Fig. 1). Our scheme is
designed to be modular, and to be used in combination
with any variation calling workflow.
The first part of our workflow is the generation of the

ad hoc reference. This is done by the preprocessor, using
as an input the raw reads of the donor as an input and the
pan-genome reference.
The second part is to actually call the variants. We don’t

provide any details on how to do it because we resort
to a variant calling workflow, using our ad hoc reference
instead of the standard one. In our experiments, we resort
to GATK [4].
Finally, we need to normalize our variants. After the

previous step the variants are expressed using the ad hoc
reference instead of the standard. The normalization step
uses metadata generated from the preprocessor to project
the variants back to the standard reference.

Pan-genome preprocessor
The main role of the pan-genome preprocessor is to
extract an ad hoc reference sequence from the pan-
genome using the reads from the donor as an input.

Pan-genome representation
Following the literature reviewed in the Background
section, the existing pan-genome indexing approaches
for read alignment could be classified as follows. Some
approaches consider the input as a set of sequences, some
build a graph or an automata that models the population,

and others consider the specific case of a reference
sequence plus a set of variations. However, the boundaries
between these categories are loose, as a set of sequences
could be interpreted as a multiple sequence alignment,
which in turn could be turned into a graph. Our scheme
can work with different pan-genome representations and
indexes provided that it is possible to model recombina-
tions. The multiple sequence alignment and graph rep-
resentations are versatile enough, but just a collection of
sequences is not.
We consider our input pan-genome as a multiple

sequence alignment and we store all the positions with a
gap. In this way we decouple the problem of book keeping
the structure of the pan-genome (in our case, as a multi-
ple sequence alignment) and the problem of indexing the
set of underlying sequences.
To transform one representation into the other and to

be able to map coordinates we store bitmaps to indicate
the positions where the gaps occur. Consider our running
example of a multiple alignment
GATTAAT--TC

GATGGCAAATC

GTTTACT--TC

GATT--T--TC

We may encode the positions of the gaps by four
bitvectors:
11111110011

11111111111

11111110011

11110010011

Let these bitvectors be B1,B2,B3, and B4. We extract
the four sequences omitting the gaps, and preprocess the
bitvectors for constant time rank and select queries
[27–29]: rank1(Bk , i) = j tells the number of 1s in Bk[ 1..i]
and select1(Bk , j) = i tells the position of the j-th 1 in
Bk . Then, for Bk[ i]= 1, rank1(Bk , i) = jmaps a character
in column i of row k in the multiple sequence alignment to
its position j in the k-th sequence, and select1(Bk , j) = i
does the reverse mapping, i.e. the one we need to map
a occurrence position of a read to add the sum in the
coverage matrix.
These bitvectors with rank and select support take n +

o(n) bits of space for a multiple alignment of total size n
[27–29]. Moreover, since the bitvectors have long runs of
1s (and possibly 0s), they can be compressed efficiently
while still supporting fast rank and select queries [30, 31].

Pan-genome indexing and read alignment
Now, the problem of indexing the pan-genome is reduced
to index a set of sequences.
To demonstrate our overall scheme, we first use a

naive approach to index the pan-genome as a base-
line: we index each of the underlying sequences indi-
vidually using BWA [1]. This approach does not offer
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a scalable pan-genome indexing solution, but it pro-
vides a good baseline for the accuracy that one can
expect from a true pan-genome indexing solution to
provide. In our experiments, this approach is labeled
MSAbase.
For a scalable solution that can manage large and highly

repetitive set of references we resort to CHIC aligner
[23], which combines Lempel-Ziv compression to remove
the redundancy with a Burrows-Wheeler index to align
the reads. In our experiments, this approach is labeled
MSAchic.

Heaviest path extraction
After aligning all the reads to the multiple sequence align-
ment, we extract a recombined (virtual) genome favor-
ing the positions where most reads were aligned. To
do so we propose a generic approach to extract such
a heaviest path on a multiple sequence alignment. We
define a score matrix S that has the same dimensions
as the multiple sequence alignment representation of
the pan-genome. All the values of the score matrix are
initially set to 0.
We use CHIC aligner to find the best alignment for

each donor’s read. Then we process the output as fol-
lows. For each alignment of length m that starts at posi-
tion j in the genome i of the pan-genome, we increment
the scores in S[ i] [ j] , S[ i] [ j + 1] . . . S[ i] [ j + m − 1]
(adjusting the indexes using the bit-vector representa-
tions considered in the previous subsection). When all
the reads have been processed we have recorded in
S that the areas with highest scores are those where
more reads were aligned. An example of this is shown
in Fig. 1.
Then we construct the ad hoc reference as follows:

we traverse the score matrix column wise, and for each
column we look for the element with the highest score.
Then, we take the nucleotide that is in the same position
in the multiple sequence alignment and append it to the
ad hoc reference. This procedure can be interpreted as a
heaviest path in a graph: each cell (i, j) of the matrix repre-
sents a node, and for each node (i, j) there are N outgoing
edges to nodes (i + 1, k), k ∈ {1, . . . ,N}. We add an extra
node A with N outgoing edges to the nodes (1, k), and
another node B with N ingoing edges from nodes (L, k).
Then the ad hoc reference is the sequence spelled by the
heaviest path from A to B. The underlying idea of this pro-
cedure is to model structural recombinations among the
indexed sequences.
A valid concern is that the resulting path might con-

tain too many alternations between sequences in order to
maximize the weight.
To address this issue there is a simple dynamic program-

ming solution to extract the heaviest path, constrained
to have a limited number of jumps between sequences:

Consider a table V [ 1 . . . L] [ 1 . . .N] [ 0 . . .Z] initially set
to 0. The values V [ i, j, k] correspond to the weight of the
heaviest path up to character i, choosing the last char-
acter from sequence j, that has made exactly k changes
of sequences so far. The recursion for the general case
(k > 0, i > 1) is as follows: V [ i, j, k]= S[ i, j]+max{V [ i−
1, j, k] ,maxj′ �=jV [ i − 1, j′, k − 1] }, and the base case for
k = 0, i > 1 is: V [ i, j, 0]= S[ i, j]+V [ i − 1, j] , and for
k = 0, i = 1: V [ 1, k, 0]= S1,j.
Once the table is fully computed, the weight of the

heaviest path with at most k∗ changes is given by
maxj{V [ L, j, k∗] }. To reconstruct the path we need to
traceback the solution.
However, in our experiments we noticed that the uncon-

strained version that just selects a maximum weight path
without additional constraints performs better than the
constrained version, and so we use the former by default
in our pipeline.
It is worth noting that as opposed to a graph repre-

sentation of the pan-genome where the possible recom-
binations are limited to be those pre-existing in the
pan-genome, our multiple sequence alignment represen-
tation can also generate novel recombinations by switch-
ing sequences in the middle of a pre-existing variant.
This happens in our example in Fig. 1, where the ad
hoc reference could not be predicted using the graph
representation of the same pan-genome shown in Fig. 2.

Variant calling
Variant calling can be in itself a complex workflow, and
it might be tailored for specific type of variants (SNVs,
Structural Variants), etc. We aim for a modular and flex-
ible workflow, so any workflow can be plugged in it. The
only difference is that we will feed it the ad hoc reference
instead of the standard one.
In our experiments, we used GATK [4] version 3.3,

following the Best Practices: first we aligned the reads
to the reference using BWA, and next we used Picard
to sort the reads and remove duplicates. Then we per-
formed indel realignment using GATK RealignerTar-
getCreator and IndelRealigner, and finally we called
variants using GATK HaplotypeCaller using parame-
ters genotyping mode = DISCOVERY, standemit
conf = 10 and standcall conf = 30.

Normalizer
Finally we need to normalize our set of variants. To do
so we apply the variants to the ad hoc reference, so that
we obtain an alignment between the ad hoc reference
and the predicted sequence. The metadata generated in
the preprocessor stage – while extracting the heaviest
path – includes an alignment between the standard refer-
ence and the ad hoc reference. Using those, we can run a
linear-time algorithm to obtain an alignment between the
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Fig. 2 Four different representations of a pan-genome that corresponds to the same set of individuals. Top left: a reference sequence plus a set of
variants to specify the other individuals. Top right: a (directed acyclic) graph representation. Bottom left: a multiple sequence alignment
representation, Bottom right: a set of sequences representations

standard reference and the predicted sequence. From this
alignment, we can generate a vcf file that expresses the
predicted sequence as a set of variants from the standard
reference.

Experimental set-up
Evaluationmetric
We separate the single nucleotide variant (SNV) calls from
indel calls as the results differ clearly for these two sub-
classes. A true positive (TP) SNV call is a SNV in the true
donor and in the predicted donor. A false positive (FP)
SNV call is not a SNV in the true donor but is a SNV in
the predicted donor. A false negative (FN) SNV call is a
SNV in the true donor but is not a SNV in the predicted
donor. A true positive (TP) indel call is either an inserted
base in the true donor with an identical inserted base in
the predicted donor, or a deleted base in both the true and
predicted donor. A false positive (FP) indel call is neither
inserted nor deleted base in the true donor but is either
inserted or deleted base in the predicted donor. A false
negative (FN) indel call is an inserted or deleted base in
the true donor but is neither inserted nor deleted base
in the predicted donor. We report precision=TP/(TP+FP)
and recall=TP/(TP+FN).

Modification to graph representation of pan-genome
In our approach we have used a multiple sequence align-
ment to represent the pan-genomic reference, but it is rel-
atively easy to to use a graph representation [16] instead.
A graph representation of a pan-genome usually use a
vertex-labeled directed acyclic graph (labeled DAG), and
reads are aligned to the paths of this labeled DAG. After
all the reads have been aligned to the pan-genome, instead
of our score matrix, we can store for each vertex the
number of read alignments spanning it. Then the heaviest

path can be easily computed using dynamic programming
in a topological ordering of the graph: the weight of the
heaviest path h(v) to a vertex v is maxv′∈N−(v) h(v′) +
w(v), where w(v) is the weight of a vertex and N−(v)
is the set of vertices connected with a in-coming
arc to v.
The difference to the multiple alignment heaviest path

is that the number of recombinations cannot be limited
when using the graph representation.
Another part that is different is the normalizer mod-

ule to map the variants predicted from the ad hoc ref-
erence to the standard reference. For this, the original
proposal in [16] already records the path spelling the
standard reference, so while extracting the heaviest path
one can detect the intersection to the standard refer-
ence path and store the corresponding projection as an
alignment. Thus, one can use the same evaluation met-
rics as in the case of multiple sequence alignment -based
variation calling.

Data availability
The datasets generated during and/or analysed during
the current study are available from the corresponding
author on reasonable request; most of the data and scripts
to replicate the experiments, as well as a pre-built pan-
genome index for the 1000 Human Genomes project data,
are available online: https://www.cs.helsinki.fi/gsa/panVC

Code availability
Our tools are open source and available online: https://
gitlab.com/dvalenzu/PanVC
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