Diaz-del-Pino et al. BMC Genomics (2018) 19:56
DOI 10.1186/512864-018-4439-x

mORCA: ubiquitous access to life science

web services

BMC Genomics

@ CrossMark

Sergio Diaz-del-Pino', Oswaldo Trelles' and Juan Falgueras®”

Abstract

Background: Technical advances in mobile devices such as smartphones and tablets have produced an
extraordinary increase in their use around the world and have become part of our daily lives. The possibility of
carrying these devices in a pocket, particularly mobile phones, has enabled ubiquitous access to Internet resources.
Furthermore, in the life sciences world there has been a vast proliferation of data types and services that finish as
Web Services. This suggests the need for research into mobile clients to deal with life sciences applications for

effective usage and exploitation.

Results: Analysing the current features in existing bioinformatics applications managing Web Services, we have
devised, implemented, and deployed an easy-to-use web-based lightweight mobile client. This client is able to
browse, select, compose parameters, invoke, and monitor the execution of Web Services stored in catalogues or
central repositories. The client is also able to deal with huge amounts of data between external storage mounts. In
addition, we also present a validation use case, which illustrates the usage of the application while executing,
monitoring, and exploring the results of a registered workflow. The software its available in the Apple Store and
Android Market and the source code is publicly available in Github.

Conclusions: Mobile devices are becoming increasingly important in the scientific world due to their strong

potential impact on scientific applications.

Bioinformatics should not fall behind this trend. We present an original software client that deals with the intrinsic
limitations of such devices and propose different guidelines to provide location-independent access to
computational resources in bioinformatics and biomedicine. Its modular design makes it easily expandable with the
inclusion of new repositories, tools, types of visualization, etc.

Keywords: Bioinformatics, Biomedicine, Mobile-devices, Software clients, Web services

Background
It is commonplace to say that bioinformatics and bio-
medicine (BIBM) applications are mostly deployed in
the Web. The biggest contributors in this setting (e.g.
EBI [1], NCBI [2], and INB [3]), offer web access to data-
bases and data analysis applications served by their com-
puting infrastructures via different interfaces.
Furthermore, mobile devices have experienced a
continuous increase in popularity and availability. This
increase has motivated the implementation of new cli-
ents for these devices to access scientific applications.
Such clients could be potentially useful in multiple

* Correspondence: juanfc@uma.es

2Computer Languages and Computer Science Department, University of
Malaga, Bulevar Luis Pasteur 35, 29071 Malaga, Spain

Full list of author information is available at the end of the article

(BioMed Central

scenarios, from checking executions and rerun in case of
error, to the use of teaching or divulgation purpose in
classroom or a conference.

Given that the majority of mobile devices have a web-
browser, it is fair to assume an easy adaptation of
current BIBM web-based software clients to such
devices. Nevertheless, in practice such adaptation is not
a simple and direct procedure. This adaptation process
necessitates a profound review of the capabilities of
these new devices in order to decide the correct manner
to replicate the functionality of already available software
for desktop computers and laptops.

Several useful BIBM tools have already been revised
for mobile devices, including Biocatalogue [4], SimAlign
[5], and ‘Oh BLAST it" [6] (see a detailed list in
Additional file 1). An unreasonable amount of effort

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-018-4439-x&domain=pdf
http://orcid.org/0000-0002-5007-5911
mailto:juanfc@uma.es
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Diaz-del-Pino et al. BMC Genomics (2018) 19:56

would be required to build a different application to
adapt every piece of BIBM software. Therefore, we have
devised a more general strategy to avoid one-by-one ser-
vice migration, by using repositories in which service
metadata (e.g. the service’s name, input/output parame-
ters, and description) are stored. This facilitates the
incorporation of new services and enables the produc-
tion of uniform user-friendly interfaces. The system
should be easily expandable such that it can incorporate
new tools. Thus, we start by defining the needed func-
tionality intrinsic to this kind of system.

Considerations regarding mobile applications and
interfaces

There are significant differences between the traditional
WIMP (Windows, Icons, Menus, and Pointer) interfaces
and mobile (or touch user) interfaces (GUI). Details such
as the replacement of mouse hovering effects with spe-
cific touch gestures and the use of multitouch have to be
considered [7]. The high number of changes suggested a
total redesign of the interaction style.

In the particular case of BIBM applications, we have to
take into account considerations regarding distraction
issues and the display of clear and appropriate informa-
tion to make them suitable in complex settings [8].
These issues mean that the application must allow rapid
handling, easy interaction, and accurate and rapid read-
ing. It must also avoid clutter, especially in the display of
BIBM application results [9, 10]. These issues require
applying Human Computer Interaction methods from
design through procurement, training, and use [11].

In the emerging area of mobile application develop-
ment, there still are few standards to follow. The rapid
expansion of mobile devices, which is expected to reach
2 billion users worldwide in 2019 [12] is hindering the
establishment of specific development models. Neverthe-
less, mobile applications development can be classified
into different programming models [13]:

e Native applications are implemented using only
the programming language designed for the device.
These applications can only be executed in the
platform it was developed for, but they can use every
internal feature of the device (GPS, accelerometer,
contacts, calendar, etc). Users appreciate them
because of their integration and efficiency. However,
this approach requires maintaining specific
applications for each type of device operating
system, which translates into the development of
specific applications for each platform with the
consequent increase in development time and
budget.

e Web-based applications can be executed on any
platform simply requiring a mobile web-browser.

Page 2 of 9

Important drawbacks include slowness, limited func-
tionality and performance, and total dependence on
the Web. However, they can access mobile informa-
tion, such as persistent data, or geolocation through
HTML5-specific methods.

e The two prior models combine to form hybrid
applications. They provide applications created
with Web technologies that run natively on the
device as a web container. Native applications
provide some of the advantages of this model (e.g.,
access to the device’s APIs, Stores distribution, and
offline mode). All the previous statements combined
with a cross-platform development provided by the
use of Web technologies. Hybrid applications also
have some disadvantages, most of which are related
to performance requirements or user experience
(UX) design, which has been dramatically improved
in recent years.

Catalogues of BIBM web services: Browsing, discovering
and invocation

In the extraordinarily active BIBM research field, there is
continuous growth in the already high number of avail-
able software as novel tools, demands, and data types
emerge (e.g. over 2000 services are registered in
Bio.tools [14], which is the most recent attempt to create
a BIBM catalogue). This considerable amount of
resources motivates the creation of an intelligent soft-
ware organisation to make easier the integrated use of
tools. The final aims are to remove the necessity of
building custom interfaces for tools and to assist the
users to discover suitable tools for their analyses.

Centralized repositories emerge as the preferred
choice to categorise service metadata, such as service
description, parameters, data types, and documentation.
At present, there exist a number of these metadata cata-
logues in the BIBM fields, such as BioCatalogue [4],
which is one of the most representative for bioinformat-
ics Web Services, and Bio.tools, which appeared recently
as a community effort initiated by the ELIXIR project to
document tools and data services in bioinformatics.

The invocation of a service begins with the compos-
ition of its interface of parameters, which is manually or
automatically designed using the parameter descriptions
available in the repositories. The user then fills the
requested parameters and launches the service. Web
Services can be executed synchronously or asynchron-
ously. The synchronous invocation of services blocks the
interface until execution is finished and the results can
be consulted, whereas asynchronous calls proceed with-
out blocking. Asynchronous calls are the most appropri-
ate, given the intrinsic characteristics of these BIBM
services, which use large amounts of data and could
entail long processing times.

Diaz-del-Pino et al. BMC Genomics (2018) 19:56

Several tools are available for registering, browsing,
discovering, and invoking services from different meta-
data repositories (e.g. jJORCA [15], MOWServ [16],
Taverna [17], Seahawk [18], and EMBL-EBI [19]). Over-
all, existing solutions target only personal computers (i.e.
the platforms that were available when they were imple-
mented). Such solutions are inappropriate for mobile
devices, which have a limited screen size and a different
way of user interaction. For instance, looking for a ser-
vice can be a challenge, especially on repositories with a
large list of them. Exploring the complete resources tree
while seeking for a given item might be a laborious and
time-consuming task. Additionally, parameter selection
and data entry is performed interacting with the screen
rather than by a mouse-click. In fact, mobile devices
pose a real challenge to what are new forms of inter-
action, data sharing between apps, and storing and
accessing the results.

Additional functionality

The most common functions of BIBM clients (i.e. regis-
tering, browsing, discovering, and executing services)
should be extended with the following features:

e Data management: Exploring, creating, and
deleting files are mandatory operations. The system
also requires a component to enable users to upload
and download their files to/from the system. The
current bigdata world still faces challenges related to
data transfer. Decoupling service invocation from
data upload is required to avoid data transfer
problems during invocations and file re-
transmission.

¢ User account management: The system also
requires a component to manage user
authentication, privileges, and data privacy to
protect sensitive data.

e Multi-repository management: As mentioned,
repositories store service metadata. However, due to
the lack of standardization and maturity, new and
different releases are coming out in an attempt to
find the best solution. These solutions usually have
points in common (e.g service description and
parameters) that can be mapped to a common
metadata representation.

Implementation

The presented application (mORCA) significantly
extends the functionality of the initial mobile client
prototype described in our previous work [20] In this
new development we have included important new fea-
tures such as asynchronous calls with monitoring cap-
abilities, the evolution from web-app to hybrid app, or
the development of new modules to list and execute

Page 3 of 9

third-party services. Additionally, minor changes have
been done including a new fuzzy search mechanism, a
user accounting module, and a complete restyling of the
application after performing a usability study with users
of the BIBM application domains.

In this section the design and implementation of a
mobile client satisfying such requirements is outlined.
The current capabilities of mobile devices have been
considered during the whole life cycle.

Architecture

Our design consists of a server-side in which MAPI and
its Web Service are in charge of communicating with
both the repositories and the client. The client-side deals
with the information provided by the server through dif-
ferent modules and also it manages how this information
is shown to the user.

MAPI [21] is a tool for the standardization of the
metadata contained in different Web Service repositor-
ies. It permits the use of different formats of services
using a standard interface in a transparent way since the
data type module manages these different formats. In
addition, MAPI enables the execution of services
responding to diverse communication protocols (e.g.
SOAP, REST, and BioMOBY [22]). To perform this task,
it implements a set of execution workers (i.e. service
invocation modules), which are specifically designed to
execute a given type of service. Further functionality
includes user management, and file system operations
(see the MAPI modules represented as boxes in the right
part of Fig. 1).

The modules of the client-side are in charge of the
main functionality described before:

User authentication

Browsing the repository

Discovering services

Service parameter composition

Service invocation

File management, including data uploading and
downloading

e Service execution monitoring

Software specifications

This section addresses the technologies we used to
implement our software. It has been split into two sub-
sections: the client-side and the server-side.

Client-side

In Considerations regarding mobile applications and
interfaces, we decided to develop a hybrid application.
This kind of mobile development allowed us to focus on
the application, whatever the platform, and to achieve
the performance and functionality requirements of our

Diaz-del-Pino et al. BMC Genomics (2018) 19:56

Page 4 of 9

IS D
_ MAPI
o | Functional Categories |
| ©
I
N : 5 | Tools |
mORCA : % | Location |
| —
|
: = | Namespaces |
. : " ! J
Authentication File System ! | Users |
1
| | Groups |
catalogue Monitoring <A : I é | 2 |
: 3 | FileSystem |
! c
Discovering Services : B .
services invocation ' o Execution Data
| >
' c
1 [0
| (40}
(8 Y, 1
1 8 Workers Interface Fom|1ats Loaders
1 ; nterface
|
|
| Access common interface |
A\ J
Fig. 1 System Architecture. The modular application uses a Web Service to connect with the mAPI framework, which is in the server-side and
covers functionality related to service-oriented architectures, in particular, management of metadata for WS tools and categories, data types, data,
files, and users

setup. These requirements have motivated a complete
restyling.

Web technologies such as jQuery Mobile [23] were
used to make the interface responsive to a wide variety
of screen sizes and to adapt the data input to the devices
(e.g numerical keyboard and drop-down list). jQuery
[24] in combination with Vanilla]S were used to imple-
ment the main functionality and handlers for the back-
end petitions. The software has been packed using
Cordova [25] in order to make it compatible with the
Apple Store and the Google Market.

Server-side
We developed two layers to access MAPI in our server-
side (see Fig. 1). The first is a Web Service layer to access
most of the methods provided by MAPI. This Web Ser-
vice is developed in Java, runs in a Tomcat container, and
uses the SOAP protocol to communicate with the client.
The second layer is a small middleware developed for
the service monitoring module using NodeJS [26] and
MongoDB [27] to track and store user executions.

Main functionality

Browsing the catalogue

Access to Web Service repositories is delegated to the
server-side. The server-side is able to work with multiple
repositories by implementing different accesses for each of
the configured catalogues, decoupling the client-side from
this task. The client- side just requests a hierarchical list of
services from the server-side. To display the retrieved

service tree, whatever the catalogue, a nested “Listview”
was used to represent it as a list of folders and services
(see Fig. 2a). This representation enables users to do a fast
examination of the Web Services tree. Later on users can
look for a specific service by navigating through the cat-
egories. During the navigation process, new panels with
the services and subcategories of the selected category
appear from the right-hand side.

Using this implementation, the developed mobile cli-
ent is able to browse all the service catalogues that the
MAPI server-side is able to handle. This includes the
traditional BioMOBY repositories of the Spanish
National Institute of Bioinformatics, and other cata-
logues such as Bio.tools and BioCatalogue. New cata-
logues can be easily added to the system by mapping its
service metadata to our data structure.

Since a given catalogue can potentially contain a huge
number of services, a textbox component (see Fig. 2a)
provides users the possibility to filter the services tree
according to a user-defined search criteria. The search
engine developed, which lists just the corresponding ser-
vices and categories, is a simplification of the service dis-
covery function of the Magallanes tool [28]. It is
important to note that the implemented search works in
a fuzzy way, meaning that it produces results even if the
search criteria lead to some mismatches.

Service invocation and monitoring
The client invokes the Web Services using the execution
workers present in the MAPI modules of the server-side,

Diaz-del-Pino et al. BMC Genomics (2018) 19:56

Page 5 of 9

O Back SIEGLELCE I @) sign in
el e Ml ol Ml e Ml el)
1 Nrounds
! ter items
1@ fier items. Fuzzy Search
fooooomooocoooooooooo oo o o e
textBox - Blastp
Q Run Blast from a raw handwritten e Wordsize
sequence
o/ Homology Search and Phylogen...
Q When a researcher has one amino acid Filter
]guery sequence it is interesting to search
or similar sequences with a common
false o
/4w Clustal Omega (EBI)
Q Running the EBI Clustal Omega service o Matrix
sLosume2 (2
o' Blast (EBI) ©
Running the NCEBI Blast service via the EBI i
Q REST Web Service Alignments
ofhe run HSP 0
This is a description about the service
Q runHSP This is a description about the Constant
service runHSP
o run PSI Blast
G Compares a protein sequence to a
sequence database and calculates the
statistical significance of matches using

a

in bioinformatics

O [N 2 | L - |

(A = o 0]
© 2016 Bioinformatics and Information T... Home LY Monitoring About
b c

Fig. 2 a The nested “Listview" used to represent hierarchical trees in mobile devices. b The File system view with the main folder of the guest
user with common CRUD operations. ¢ A dynamically generated interface for the EBI BLAST service, which is one of the most common services

& Upload File & From S3
File ®
textBoxBlastp.txt O O
NewickTree.txt o O
HomologyStudy.txt o
GAS_Test (/' J(X)

© 2016 Bioinformatics and Information T...

which enable executing proprietary and third- party ser-
vices. This service invocation is performed in an asyn-
chronous way given the large execution times reported
by most existing services.

Firstly, the service execution interface is dynamically
generated with the information retrieved from the
metadata repository (see Fig. 2b). Next, before invoking
the service, the user has to fill out the input parameters
and the output filename. Files can also be selected from
a list of remotely stored files for the input parameters
that accept it. This is done to remove the input data
from the invocation payload, as was traditionally car-
ried out in most traditional executions (i.e. BioMoby).
Parameters are filled with the default values stored in
the repository. After filling the parameters the service
can be executed. Once invoked, the status of the service
can be checked in the monitoring section. In this
section, there is another “Listview” with information
about the service and a colour representation of status
(see Fig. 3a), which is automatically refreshed when a
service finishes the task. By applying a criterion similar
to that used for the input file, the service output is
saved in the server-side data storage. We provide
different approaches to retrieve the output file from
remote storage.

File system

The mobile application uses the file system component
of MAPI, which is located on the server-side, through its
Web Service interface. The file system component offers
the usual file system operations such as browsing direc-
tories or creating and deleting files. All the previously
mentioned operations are performed in the server side
by MAPIL The implemented file system does not store
data on the client-side due to the size of nowadays bio-
informatics datasets and to avoid file re-transmission in
each service execution. The file system uses the user
accounting system to store the data in folders separated
by users in the server-side.

Different options are provided for data uploading and
downloading, apart from using the server-side uploading
mechanism. These alternatives include plugins to import
data to the server-side data storage using Globus Online
[29] or Amazon S3 [30]. Amazon S3 can be accessed
through the client, allowing the user to import data
between this platform and our server-side. The result of
data upload is a data reference that could be subse-
quently used in the service invocation (i.e. call- by-
reference). In the client-side, files are also shown in a
“Listview”, which has been improved with buttons to
view, delete, and download them (see Fig. 2c). These files

Diaz-del-Pino et al. BMC Genomics (2018) 19:56

Page 6 of 9

mORCA ‘ Sign in ‘ ‘ 0 Back ‘ mORCA Sign in ‘ Dendog ra m
Running Finished Failed Results: p|Q16637|SMN_HUMAN
({
. (
Service name GenBank->sp Q16637 | SMN_HUMAN: 0.00038, SPIQSRE18|SMN_PONAB
HomologySea{chAndPhylogeneticS(udy GenBank->sp |QSREL8 | SMN_PONAB:0.00983)
:0.01239,
GenBank->sp |Q4R4F8 | SMN_MACFA:0.01142,
Results (
®0 GenBank->sp|002771| SMN_CANLF:0.05779, spIQ4R4F8ISMN_MAGCFA
GenBank->sp | P97801 | SMN_MOUSE: 0.10597)
Date 4/10/2016 - 8:11 :0.05101);
Service name runHSP % = sp|Q8HYB8|SMN_FELCA
Results @ b 50| 00277 1|SMN_CANLF
Date 3/10/2016 - 12:28 Workﬂo
Service name
getAminoAcidSequenceUMA
Get Get best
Results ([(x%) Aminoacid Blast (EBI) hits from
sequence Blast
Date 3/10/2016 - 12:26
Get
2016 Riointo 2FICS ano nftormation 1T C) 7) 7 natics and nto tion | il i Createtree
© 20106 Bioinformatics and Iniormation 1I... © 2016 Biointormatics and Iniormation 1I... i’;":j‘;‘é‘g ClustalW from
co(lqlection CilstalW
L) © © 0 () © o o
Home File Browser Monitoring About Home File Browser J'GLITGILT] About

a b

Fig. 3 a The monitoring interface that shows two finished services and one running; b The results of running the ‘'homology search and phylogenetic
study’ workflow described in the guided exercise; ¢ The results shown as a sketched dendogram and the representation of the workflow

Cc

can also be referenced in the input parameters once the
service execution interface has been generated. This is
accomplished using a minified version of a “Listview”
inside a modal menu.

Results

This section presents the life cycle of the application and
the browsing, composition, execution, and monitoring of
a registered workflow. A software user manual is sup-
plied in Additional file 2. The presented example and
others are supplied in Additional file 3.

Life cycle

Figure 4 illustrates the usual procedure for navigating,
searching, invoking, and monitoring services from Web
Service clients in external resources (such as regular
servers, clusters, or even in the cloud environment). In
general, the process consists of a series of stages. The
prerequisite (0) is to store the metadata of the service(s)
into the Web Services catalogue using the Flipper [31]
tool (this is typically done by the repository administra-
tor and is done a single time). At this point the service
information is ready for use to the client. The first
actions required from the end-user are to (1) authenti-
cate in the system and (2) upload the data. The client

then allows the user (3) to browse and discover the
appropriate service, and once selected, the user needs to
(4) fill out the service parameters including references to
the data uploaded in step 2. At this point, the client lets
the user (5) invoke the service, monitor it, and send the
parameters to the MAPI execution module. As a final
step, (6) the client allows the results to be explored once
they become available.

Diving into the mORCA application
The power of accessing Web Services via a mobile
client is proved by presenting an exercise focused on
the execution of a workflow composed of a diverse
set of proprietary and third-party services. This
workflow, which is registered in the BITLAB reposi-
tory as ‘Homology Search And Phylogenetic Study;,
uses a sequence ID to retrieve a sequence from the
Uniprot database and produces a dendogram with
the similar sequences.

This workflow is composed of the following propri-
etary and third-party services:

e Get amino acid sequence: Retrieves an amino acid
sequence from the Uniprot database using the
sequence ID.

Diaz-del-Pino et al. BMC Genomics (2018) 19:56

Page 7 of 9

S MSEESSE T SRS DS R RSSES REESTE, }
: I MAPI |
Flipper Registering (0) ! !
— =
[o) ! l i
I I
I }
N I
I }
{ | I
- . t/‘ .
I 1
; | I
Login (1) ! Metadata Repository Storage !
e e o e e e i ______________ I
—— - - - - - - T T T 3
=5 |l N |
| I 'ﬁ- '
‘)‘W‘(- ° I - i - |
| |
e | |
| Query & Service Service Results :
, I Discovering (3) Parameter enacting Exploration |
EX- oo -o | Composition (4) (5) (6) |
b e e]
Fig. 4 Life cycle for: (0) service registering; (1) authentication of the user in the system; (2) data file upload; (3) service browsing and discovering
through the hierarchically tree; (4) filling of the dynamically generated service interface; (5) service execution from the client; and (6) results
exploration. See main text for more details

e Run BLAST (EBI). This runs a BlastP homology
search in the EBI server using the UnitprotKb
database with the retrieved sequence. This is an
external EBI service. The output is the BLAST
report.

e Get best hits from Blast: This extracts the sequences
most related to the query from the BLAST report
using an E-value threshold. In this workflow, this
value is set by default to 0.02 (the service itself can
change this value). The output is a collection of
sequences each with an ID and namespace.

e Get amino acid sequence collection: This service
returns a set of amino acid sequences corresponding
to the given ID/Namespace pairs. The output is a
file with the retrieved sequences.

e Run ClustalW: The ClustalW algorithm is used to
perform a multiple sequences alignment using the
set of retrieved sequences. The output of this service
is the sequence alignment reflecting sequence
similarity between the analysed sequences.

e Run create tree from ClustalW: Finally, the relations
obtained with the multiple alignment are used to
build a dendrogram tree with Newick format.

Initially, the following steps must be performed (the
full exercise is provided for demonstration purposes; see
Additional file 3): (a) authenticate into the mobile client
for privacy purposes; (b) choose the catalogue of services
to be used (in this case the BITLAB catalogue); (c) dis-
cover the workflow by navigating or searching in the
repository. Once the workflow is located, a swift query
to the server-side is performed to retrieve the service

metadata; (d) with the retrieved information the graph-
ical parameters composition panel is dynamically built
by the client; and (e) after filling the service parameters,
the workflow can be executed. After invoking the work-
flow, the application enables execution status to be mon-
itored. Finally, the results of the invocation and the
intermediate files, which are stored in the server, can be
consulted and retrieved for future use.

Conclusions

Mobile devices are now of great relevance, not only
because of their social impact and the way individuals
use them to perform daily tasks, but also because of
their strong potential influence on the scientific domain
[32]. The ubiquitous, universal availability and other
benefits of such devices have been emphasized along this
document. However, there are still several use cases
where mobile devices could make the difference, and
should be also addressed, such as workflow generation
and visualization, sharing capabilities using QR codes or
Bluetooth, data representation, etc.

The transition from an application written for a
WIMP desktop environment to a mobile device involves
the loss of some characteristics of WIMP environment.
The new possibilities offered by mobile devices neither
exist nor are possible or needed in traditional applica-
tions. Among the most well-known functions is the
hovering effect that provides the user with immediate
information when the cursor hovers above an interactive
item. This function is impossible in touch-based interac-
tions. However, such effects as “pinching” (with a finger
and thumb), rotating, two-finger sliding, and so on, are

Diaz-del-Pino et al. BMC Genomics (2018) 19:56

challenging but not impossible in WIMP interfaces.
Some examples include multi-touch trackpads that can
provide such effects within a desktop environment.

A further limitation is screen size, which restricts the
quantity of information that may be displayed. However,
screen size is not the only issue when designing inter-
faces for mobile applications. An additional issue is asso-
ciated with the accuracy of the input devices (ie. fingers
in mobile devices) in comparison to the greater precision
of mouse pointers. These limitations have been over-
come by designing specific user interfaces with a respon-
sive and clean design and with bigger components by
which to introduce data.

Even though a variety of mobile devices (e.g.Android
or Windows Phone) already have file managers, these
devices remain unable to support large data file uploads,
despite the user is using a Wi-Fi connection. Given the
foregoing and other reasons, such as avoiding file re-
transmission, we made the decision to decouple data
upload from service invocation. This led to the develop-
ment of several data transfer modules that use well-
known data management tools such as Globus Online
and Amazon S3. User authentication is needed to pre-
serve privacy in data storage and service execution on
the server-side.

The development tools inherited from the web develop-
ment model using HTMLS5, JavaScript and other libraries
are now mature enough to provide functional applications
compatible with the majority of mobile operating systems
(e.G. ios, Android and Windows Phone). The need of only
writing once the application code significantly reduces the
cost and time to get it running in all the available
platforms. The main drawback is the limited access to the
offered native capabilities. The hybrid programming
model removes such limitation, enables the application
distribution in the main Stores, and permits the offline
working mode. These features motivated our change from
the web to the hybrid programming model, being the
latter the preferred choice to develop platform independ-
ent applications.

Repositories have been presented as an effective
method for storing service metadata. The main issue
relies on the dissemination and the lack of
standardization of this metadata. Furthermore, the huge
amount of available services makes the task of creating
interfaces for all of them extremely difficult. Our system
is another indicator of the pressing need for a common
representation to facilitate the use of these metadata
and, consequently, the catalogued services.

One of the problems related to the large data sets is
the computation time needed to obtain results. For this
reason, mobile devices are of interest regarding launch-
ing these kinds of services anytime, anywhere. To
exploit their multitasking capabilities, these clients

Page 8 of 9

should implement non-blocking methods to avoid wast-
ing time. To achieve this, we have implemented asyn-
chronous methods combined with a monitoring
middleware, which allow the user to keep in touch with
execution status.

Future work should address which kind of visualization
is appropriate in these devices given that screen size limits
the information that can be represented. We suggest that
preview methods linked to each data type should be
implemented in order to add value to the obtained results.
In addition, future work related to the possibility of stor-
ing the generated interfaces will lead to improvements in
the smoothness of system transitions.

In conclusion, this article has described a mobile appli-
cation, which is capable of browsing various service
catalogues, dynamically generating service invocation
interfaces depending on their metadata, executing the
services and monitoring how such executions are pro-
gressing. The presented application is based on our ini-
tial prototype for mobile clients, which already was built
following a thorough study of traditional Web Services
clients for personal computers. Currently, mobile devices
are also becoming important in the scientific world and
we believe that they will be widely used in the near
future. The application presented is a step forward to
addressing such clients.

Additional files

Additional file 1: State-of-the-art Apps. A PDF file with a full list of apps
belonging to the stores of the main mobile platforms, its descriptions,
links, and icons. (PDF 1546 kb)

Additional file 2: User Guide. A PDF file containing a user guide for the
application, explaining the interface and the main operations. (PDF 2411 kb)

Additional file 3: Guided Exercise. The exercises described in the
manuscript, step by step with screenshots and results. (PDF 2767 kb)

Abbreviations

BIBM: Bioinformatics and Biomedicine; EBI: European Bioinformatics Institute;
EMBL: European Molecular Biology Laboratory; GUI: Graphical User Interfaces;
HCl: Human Computer Interaction; INB: Spanish Bioinformatics Institute;
NCBI: National Center for Biotechnology Information; REST: Representational
State Transfer; SOAP: Simple Object Access Protocol; UX: User Experience;
WIMP: Windows, Icons, Menus and Pointers

Acknowledgements

We wish to thank the BITLAB Group and the application testers for all their
support and comments which have significantly contributed to improve this
work. We would also like to thank Simon Coxon, our language quality
reviewer, for proof-reading of the document.

Funding

The publication fees of this work were funded by the EU Commission
through the Mr.SBM project, code 324554. This work was partially supported
by the ISCIII (projects: PT13.001.012 and RD12.013.006) and the EU Comission
through the Mr.SBM project, code 324554 and the ELIXIR-EXCELERATE
project (INFRADEV-1-H2020 Code 676559).

dx.doi.org/10.1186/s12864-018-4439-x
dx.doi.org/10.1186/s12864-018-4439-x
dx.doi.org/10.1186/s12864-018-4439-x

Diaz-del-Pino et al. BMC Genomics (2018) 19:56

Availability of data and materials

Project name: mMORCA Project home page: http://bitlab-es.com/bitlab/
portfolio/morca/ Operating system(s): Platform independent Programming
language: Javascript License: GNU GPL Any restrictions to use by non-
academics: None.

mORCA is available in the App store by Apple and Play Store by Google. It is
also available as web-app in https://chirimoyo.ac.uma.es/morca/app/. The
software, additional files, user guides, training material and experiments can
be found at http:/bitlab-es.com/bitlab/portfolio/morca/. The source code is
available in https://github.com/Sergiodiaz53/mORCA.

The web-based application was tested and is compatible with the more
common Internet browsers: Internet Explorer + 9, Firefox + 30, Chrome + 36,
Safari +8 and Opera + 12.

Authors’ contributions

SD contributed to software development. OT supervised and coordinated
the work and provided ideas for its development. JF contributed to the
usability aspects. All of the authors contributed to manuscript preparation.
All the authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

'Computer Architecture Department, University of Malaga, Bulevar Luis
Pasteur 35, 29071 Malaga, Spain. “Computer Languages and Computer
Science Department, University of Malaga, Bulevar Luis Pasteur 35, 29071
Malaga, Spain.

Received: 6 October 2017 Accepted: 8 January 2018
Published online: 16 January 2018

References

1. EBI: EBI: European Bioinformatics Institute: www.ebiac.uk. 2016. www.ebi.ac.
uk. Last accessed 24 Nov 2016.

2. NCBI: NCBI: National Center for Biotechnology Information: http://
www.ncbi.nlm.nih.gov/. 2016. http://www.ncbi.nim.nih.gov/. Last
accessed 24 Nov 2016.

3. INB: INB: The Spanish Institute for Bioinformatics: http://www.inab.org/.
2016. http://www.inab.org/. Last accessed 24 Nov 2016.

4. of Manchester, T.U.: NCBI: National Center for Biotechnology
Information: http://bitly/15m2Rtp. 2011. http://bit.ly/15m2Rtp. Last
accessed 24 Nov 2016.

5. KK JB. SimAlign Information: http://bitly/188GIGo. 2011. http://apple.co/
2fsjTvr. Last accessed 24 Nov 2016.

6. Varambhia, H.N. Oh BLAST it! Information: http://bitly/1yYS32q. 2013. http://
bitly/1yYS32q. Last accessed 24 Nov 2016.

7. Cheung, V, Heydekorn, J, Scott, S, Dachselt, R. Revisiting hovering:
Interaction guides for interactive surfaces. In: Proceedings of the 2012 ACM
International Conference on Interactive Tabletops and Surfaces. ITS ‘12, pp.
355-358. ACM, New York, NY, USA (2012). doi:https://doi.org/10.1145/
2396636.2396699. http://doi.acm.org/10.1145/2396636.2396699

8. Deegan, R. Managing distractions in complex settings. In: Proceedings of
the 15th International Conference on Human-computer Interaction with
Mobile Devices and Services. MobileHCI 13, pp. 147-150. ACM, New York,
NY, USA (2013). doi:https://doi.org/10.1145/2493190.2493228. http://doi.acm.
0rg/10.1145/2493190.2493228

9. Plumlee MD, Ware C. Zooming versus multiple window interfaces: cognitive
costs of visual comparisons. ACM Trans Comput-Hum Interact. 2006;13(2):
179-209. https;//doi.org/10.1145/1165734.1165736.

20.

22.
23.
24
25.
26.
27.
28.
29.

30.

32.

0.

Page 9 of 9

Pfeifer Vardoulakis, L., Karlson, A, Morris, D, Smith, G, Gatewood, J, Tan, D.:
Using mobile phones to present medical information to hospital patients.
In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. CHI 12, pp. 1411-1420. ACM, New York, NY, USA (2012). doi:
https://doi.org/10.1145/2207676.2208601. http://doi.acm.org/10.1145/
2207676.2208601

Acharya, C, Thimbleby, H., Oladimeji, P. Human computer interaction and
medical devices. In: Proceedings of the 24th BCS Interaction Specialist
Group Conference. BCS 10, pp. 168-176. British Computer Society, Swinton,
UK, UK (2010). http://dl.acm.org/citation.cfm?id=2146303.2146329

Insight, C. Smartphone Sales to Peak in Western Markets in 2017 as They
Enter New Phase of Maturity Information. 2015. http://bitly/1NoQIVq. Last
accessed 24 Nov 2016.

Andrade, PRM, Albuquerque, A, Frota, O.F, Silveira, RV, da Silva, F.A: Cross
platform app: a comparative study. CoRR abs/1503.03511. 2015.

Ison J, Rapacki K, Ménager H, Kala$ M, Rydza E, Chmura P, Anthon C, Beard
N, Berka K, Bolser D, et al. Tools and data services registry: a community
effort to document bioinformatics resources. Nucleic Acids Res. 2015:1116.
Karlsson J, Trelles O. JORCA and Magallanes sailing together towards
integration of web services. In: Freitas AT, Navarro A, editors. . Berlin,
Heidelberg: Springer; 2012. p. 94-101. https://doi.org/10.1007/978-3-642-
28062-711. https://doi.org/10.1007/978-3-642-28062-711.

Ramirez S, Munoz-Merida A, Karlsson J, Garcia M, Perez-Pulido AJ, Claros MG,
Trelles O. MOWServ: a web client for integration of bioinformatic resources.
Nucleic Acids Res. 2010;38(Web Server issue):671-6.

Qinn T, Addis M, Ferris J, Marvin D, Senger M, Greenwood M, Carver T,
Glover K, Pocock MR, Wipat A, Li P. Taverna: a tool for the composition and
enactment of bioinformatics workflows. Bioinformatics. 2004;20(17):3045-54.
Gordon PM, Sensen CW. Seahawk: moving beyond HTML in web-based
bioinformatics analysis. BMC Bioinformatics. 2007,8:208.

Li W, Cowley A, Uludag M, Gur T, McWilliam H, Squizzato S, Park YM, Buso
N, Lopez R. The EMBL-EBI bioinformatics web and programmatic tools
framework. Nucleic Acids Res. 2015;43(W1):580-4.

Diaz-del-Pino S, Karlsson TJM, Falgueras Cano J, Trelles O. In: Orturio F, Rojas
I (eds.) Mobile Access to On-line Analytic Bioinformatics Tools. Springer,
Cham; 2015. pp. 555-565. doi:https://doi.org/10.1007/978-3-319-16480-953,
https://doi.org/10.1007/978-3-319-16480-953

Karlsson J, Trelles O. MAPI: a software framework for distributed biomedical
applications. J Biomed Semantics. 2013;4(1):4.

Wilkinson MD, Links M. BioMOBY: an open source biological web services
proposal. Brief Bioinform. 2002,3(4):331-41.

jQuery Project, T.: jQuery Mobile. 2010. http://jquerymobile.com. Last
accessed 24 Nov 2016.

jQuery Project, T.: jQuery. 2010. http://jquery.com

Apache Cordova. https://cordova.apache.org/. Accessed 18 Dec 2017.

Dahl, RL: NodeJS. 2009. http://nodejs.org. Last accessed 24 Nov 2016.

Inc, M.: MongoDB. 2009. httpy//www.mongodb.org/. Last accessed 24 Nov 2016.
Rios J, Karlsson J, Trelles O. Magallanes: a web services discovery and
automatic workflow composition tool. BMC Bioinformatics. 2009;10:334.
Globus: Globus Online. 2013. https://www.globusonline.org. Last accessed
24 Nov 2016.

Amazon: Amazon S3. 2006. https://aws.amazon.com/s3. Last accessed

24 Nov 2016.

Torreno, Oscar and Trelles, Oswaldo: Easily Registering Bioinformatics
Services Metadata. 2014.

Nature: The scientist and the smartphone. Last accessed 24th of November
2016. 2010. http://go.nature.com/2gdng2T

http://bitlab-es.com/bitlab/portfolio/morca/
http://bitlab-es.com/bitlab/portfolio/morca/
https://chirimoyo.ac.uma.es/morca/app/
http://bitlab-es.com/bitlab/portfolio/morca/
https://github.com/Sergiodiaz53/mORCA
http://www.ebi.ac.uk
http://www.ebi.ac.uk/
http://www.ebi.ac.uk/
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
http://www.inab.org/
http://www.inab.org/
http://bit.ly/15m2Rtp
http://bit.ly/15m2Rtp
http://bit.ly/188GlGo
http://apple.co/2fsjTvr
http://apple.co/2fsjTvr
http://bit.ly/1yYS32q
http://bit.ly/1yYS32q
http://bit.ly/1yYS32q
http://dx.doi.org/10.1145/2396636.2396699
http://dx.doi.org/10.1145/2396636.2396699
http://doi.acm.org/10.1145/2396636.2396699
http://dx.doi.org/10.1145/2493190.2493228
http://doi.acm.org/10.1145/2493190.2493228
http://doi.acm.org/10.1145/2493190.2493228
http://dx.doi.org/10.1145/1165734.1165736
http://dx.doi.org/10.1145/2207676.2208601
http://doi.acm.org/10.1145/2207676.2208601
http://doi.acm.org/10.1145/2207676.2208601
http://dl.acm.org/citation.cfm?id=2146303.2146329
http://bit.ly/1NoQIVq
http://dx.doi.org/10.1007/978-3-642-28062-711
http://dx.doi.org/10.1007/978-3-642-28062-711
http://dx.doi.org/10.1007/978-3-642-28062-711
http://dx.doi.org/10.1007/978-3-319-16480-953
http://dx.doi.org/10.1007/978-3-319-16480-953
http://jquerymobile.com/
http://jquery.com/
https://cordova.apache.org/.%20
http://nodejs.org/
http://www.mongodb.org/
https://www.globusonline.org/
https://aws.amazon.com/s3
http://go.nature.com/2gdnq2T

	Abstract
	Background
	Results
	Conclusions

	Background
	Considerations regarding mobile applications and interfaces
	Catalogues of BIBM web services: Browsing, discovering and invocation
	Additional functionality

	Implementation
	Architecture
	Software specifications
	Client-side
	Server-side

	Main functionality
	Browsing the catalogue
	Service invocation and monitoring
	File system

	Results
	Life cycle
	Diving into the mORCA application

	Conclusions
	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

